You are here
A NOVEL FRAMEWORK FOR ANALYSIS OF LOWER LIMB MOVEMENTS: INTEGRATION OF AUGMENTED REALITY AND SENSOR-BASED SYSTEMS
- Date Issued:
- 2022
- Abstract/Description:
- In this thesis, an augmented reality device was coupled with motion sensor units to function as a system of cooperative technologies for usage within exercise science and neurorehabilitation. Specifically, in a subfield of exercise science called biomechanics, the assessment and analysis of movements are critical to the evaluation and prescription of improvements for physical function in both daily and sport-specific activities. Furthermore, the systematic combination of these technologies provided potential end-users with a modality to perform exercise within, and correlated feedback based upon the end-user’s exercise performance. Data collection specific to biomechanics can provide both the end-user and their evaluators with critical feedback that can be used to modify movement efficiency, improve exercise capacity, and evaluate exercise performance. By coordinating both technologies and completing movement-based experiments, the systems were successfully integrated.
Title: | A NOVEL FRAMEWORK FOR ANALYSIS OF LOWER LIMB MOVEMENTS: INTEGRATION OF AUGMENTED REALITY AND SENSOR-BASED SYSTEMS. |
66 views
16 downloads |
---|---|---|
Name(s): |
Davis, Edward P., author Pandya, Abhijit , Thesis advisor Florida Atlantic University, Degree grantor Department of Computer and Electrical Engineering and Computer Science College of Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2022 | |
Date Issued: | 2022 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 107 p. | |
Language(s): | English | |
Abstract/Description: | In this thesis, an augmented reality device was coupled with motion sensor units to function as a system of cooperative technologies for usage within exercise science and neurorehabilitation. Specifically, in a subfield of exercise science called biomechanics, the assessment and analysis of movements are critical to the evaluation and prescription of improvements for physical function in both daily and sport-specific activities. Furthermore, the systematic combination of these technologies provided potential end-users with a modality to perform exercise within, and correlated feedback based upon the end-user’s exercise performance. Data collection specific to biomechanics can provide both the end-user and their evaluators with critical feedback that can be used to modify movement efficiency, improve exercise capacity, and evaluate exercise performance. By coordinating both technologies and completing movement-based experiments, the systems were successfully integrated. | |
Identifier: | FA00013952 (IID) | |
Degree granted: | Thesis (MS)--Florida Atlantic University, 2022. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Augmented reality Biomechanics Sensors |
|
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013952 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |