You are here

Optimizing body-proximate telecommunications devices in direct and multipath propagation

Download pdf | Full Screen View

Date Issued:
1998
Summary:
Body-proximate telecommunications devices are examined in both direct and multipath propagation. The study begins with a characterization of standard field strength sensitivity measurement methods for body-proximate telecommunications devices. Original measurements on a group of anthropometrically diverse people reveal that human adults, in a standard pose, are remarkably similar with respect to belt worn sensitivity performance, which motivates and justifies the use of an existing and a newly introduced light weight simulated human body device for testing, analysis and optimization of body worn telecommunications devices. Standard measurement methods using standard open air test ranges are established and validated by international transfers of measurements. The study extends to optimization of telecommunications devices in multipath, and particularly to the diversity reception of signals. A novel signal simulation model is introduced which includes multipath and shadowing, and is validated against both theoretical statistics and measurements. The signal simulation model is extended to characterize polarization randomization and cross-coupling based on an urban generalization of building height to street width ratio. The model is used to analyze measurements of polarization randomization of signals originating from an airborne transmitter flying a path whose geometry is consistent with low earth orbiting communications satellites.
Title: Optimizing body-proximate telecommunications devices in direct and multipath propagation.
126 views
57 downloads
Name(s): Siwiak, Kazimierz.
Florida Atlantic University, Degree grantor
Helmken, Henry, Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1998
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 151 p.
Language(s): English
Summary: Body-proximate telecommunications devices are examined in both direct and multipath propagation. The study begins with a characterization of standard field strength sensitivity measurement methods for body-proximate telecommunications devices. Original measurements on a group of anthropometrically diverse people reveal that human adults, in a standard pose, are remarkably similar with respect to belt worn sensitivity performance, which motivates and justifies the use of an existing and a newly introduced light weight simulated human body device for testing, analysis and optimization of body worn telecommunications devices. Standard measurement methods using standard open air test ranges are established and validated by international transfers of measurements. The study extends to optimization of telecommunications devices in multipath, and particularly to the diversity reception of signals. A novel signal simulation model is introduced which includes multipath and shadowing, and is validated against both theoretical statistics and measurements. The signal simulation model is extended to characterize polarization randomization and cross-coupling based on an urban generalization of building height to street width ratio. The model is used to analyze measurements of polarization randomization of signals originating from an airborne transmitter flying a path whose geometry is consistent with low earth orbiting communications satellites.
Identifier: 9780599014374 (isbn), 12570 (digitool), FADT12570 (IID), fau:9457 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (Ph.D.)--Florida Atlantic University, 1998.
Subject(s): Telecommunication--Equipment and supplies
Radio wave propagation
Telecommunication systems
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/12570
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.