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Abstract: Before Gödel’s incompleteness theorems, logicians such as Bertrand
Russel and Alfred Whitehead pursued an ideal axiomatic system which would
have created a reliable framework to successfully prove or refute every math-
ematical sentence. Gödel proved that such systems can never be created. In
fact, Gödel’s incompleteness theorems establish that axiomatic systems that
are complex enough to formulate arithmetic can never generate a proof of
all the logical statements that are expressible inside of them. According to
the first incompleteness theorem, there are constructible mathematical sen-
tences that can never be proven to be true or false using the axioms and the
logical rules of the system. Furthermore, the second incompleteness theorem
argues that the consistency of all axiomatic systems which contain Peano or
Robinson arithmetic can never be determined using the rules and the proof
mechanisms available in the system.

iii



This thesis is dedicated to my family, my mother Daphney Charles,

and my father Lohier Nizard. They trusted my career choices and

never fail to encourage me.

Special thanks to Dr Terje Hoim whose advice guided me throughout

my time at the Wilkes Honors College. Her ability to help her student

overcome academic obstacles is remarkable. I will remember her anecdotal

explanation of convergent series in which she talks about containing

the tails of series or chopping off mathematical objects into pieces.

Special thanks to Dr. McGovern for supervising this thesis and

for advising me on my career. His modern algebra course opened my

eyes on my ability to pursue theoretical mathematics. He is one

of the few professors at the Wilkes Honors College who enjoys writing

on the chalkboard.

iv



Contents

1 Abstract proof of Gödel’s theorem 2
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1.4 Abstract Proof of Gödel’s theorem . . . . . . . . . . . . . . . 5
1.5 The language of First Order Arithmetic (FOA) . . . . . . . . 5

2 First Order Arithmetic 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Terms, Formulas and Variables . . . . . . . . . . . . . . . . . 7
2.3 Arithmetic Sets and relations . . . . . . . . . . . . . . . . . . 8
2.4 Considerations on truth . . . . . . . . . . . . . . . . . . . . . 9
2.5 Axioms and axiom schema . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Axioms of Arithmetic . . . . . . . . . . . . . . . . . . . 10

3 Gödel’s Theorem in FOA 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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Introduction

Gödel’s theorem could easily be referenced as the greatest achievement in
logic since Aristotle. It is an argument that resembles the Liar’s Paradox
which in simple terms can be stated as “I am lying”. If this statement were
to be the words of someone who always tells the truth, it would escape the
traditional dichotomy of truth which differentiates between true and false
statements. Considering the Liar’s Paradox, if it is true, it is automatically
false (as lying means to not be telling the truth). However, Gödel’s theo-
rem does not directly deal with truth. It instead investigates a property of
mathematical statements called provability. The notion of provability only
makes sense inside of what mathematicians call an axiomatic system. Gödel
used the axiomatic system of Peano arithmetic which constitutes a theoret-
ical framework to people’s traditional assumption about numbers, counting
and measuring. A cornerstone of Gödel’s argument is the construction of
a self-referential statement of the form “G is not demonstrable”. This ar-
gument seems to replicate the liar’s paradox as it negates in itself the very
property that is being investigated.

What does it mean to be provable?

One can argue that mathematics has been around since the early develop-
ment of languages and the notion of counting within the earliest human
groups. However, the Greeks are known as the founder of pure mathemat-
ics. This form of mathematics uses logic to assess the truth or falsehood of
mathematical statements. A proof is a sequence of logical steps that lead to
a statement about a specific property of mathematical objects. The property
of being provable is often naively thought of as an immediate consequence
of a statement being expressible within a certain axiomatic system. This
naive way of viewing the notion of provability works perfectly in the context
of complete systems. The point of Gödel’s incompleteness theorem is that
this form of provability that is tied to expressibility does not extend to all
mathematical systems. In fact, there are systems that express mathematical
properties that cannot be proven using the axioms of the system.
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Chapter 1

Abstract proof of Gödel’s
theorem

1.1 Introduction

In mathematics, a formal language is defined by an alphabet and forma-
tion rules. The alphabet refers to all individual symbols that constitute a
language while the formation rules designate which combinations of those
symbols are well-formed. Those well-formed combinations of symbols are
called expressions. Sentences are a specific type of expressions that have a
truth value.
A language is consistent if there are no sentences in this language that are
true and false at the same time. It then follows trivially that in a consistent
system, every provable sentence (sentences that can be proven to be true)
is in fact true. It is important to note that the converse of this statement
is not always true. In fact, the main purpose of Godel’s theorem is prove
that there are true statements of specific consistent systems which can not
be proven to be true (not provable).
Gödel’s theorem is applicable to a language L with the following properties:

• The language L contains a countable subset E of expressions.

• The subset E contains a subset S of sentences and a subset H of pred-
icates.

• The subset S contains a subset P of provable sentences and a subset
R of refutable sentences, and these two sets are disjoint.
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Figure 1.1: Structure of a language L with aforementioned subsets

• For e ∈ E , n ∈ N and H ∈ H, the language L contains the function
Φ : E × N⇒ E such that Φ(H,n) ∈ S is defined in L.

• The language L contains the truth value function T : S ⇒ {T, F}
which assigns a value of true or false to each statement in S.

• S contains a subset T of true sentences, which in turn contains the
collection of provable sentences. Furthermore, the subset of F of false
sentences contains the refutable sentences.

The structure of such a language is represented by the Figure 1.1.

1.2 Diagonalization

Let G be a one-to-one function between the set E of expressions and the set
N of natural numbers. Later, it will be established that such a one-to-one
function exists for the language of First Order Arithmetic. Let en denote the
expression corresponding to the natural number n by the function G. In that
case, n is called the Gödel number of the expression en such that G(en)=n
and G−1(n) = en.
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Figure 1.2: diagonal numbers, expressions and Godel numbers

The function Φ introduced earlier in this chapter can be used in a self-
referential process called diagonalization. This process consists in pairing
an expression with its own Gödel number by means of the function Φ. The
output of the pairing Φ(en, n) = en(n) is an expression and is called the di-
agonalization of en. If the expression en is a predicate, its diagonalization
is obtained by substituting its only free variable by its own Gödel number to
obtain a sentence (an expression with no free variables). By definition, all ex-
pressions are mapped to a natural number by the function G. Therefore the
diagonalization of an expression also corresponds to a natural number. The
natural number which corresponds to the diagonalization of an expression is
of the form G(Φ(En, n)) and is called a diagonal number.

The complex relationship between an expression en , its Gödel number, and
its diagonalization is represented in Figure 1.2.

1.3 Expressibility

A subset A of N is said to be expressible in L, if and only if there is a
predicate H such that H(n) is true ⇔ n ∈ A.

Given a set A, the subset A∗ is defined as the set of all numbers n such that:
n ∈ A∗ ⇔ d(n) ∈ A.
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1.4 Abstract Proof of Gödel’s theorem

Theorem 1. If L is a language and L is consistent 1, then there exists a
sentence of L which is neither provable nor refutable in L.

Proof. Let P̃ designate the set of statements that are not provable in L. Let
P̃ ∗ be expressible in L. Therefore, from Section 1.2, there is a predicate
H ∈ H that expresses the set P̃ ∗ such that H(n) is true ⇔ n ∈ P̃ ∗.

Let h be the diagonal number of the predicate H. Therefore H(h) is the
diagonalization of H. It is a statement; an expression with no free variables
that has a truth value.

H(h) is true ⇔ h ∈ P̃ ∗ ⇔ d(h) ∈ P̃ .

It becomes clear that d(h) is the Gödel number of an improvable statement,
therefore H(h) is true and not provable.

If instead H(h) is false , it implies that h /∈ P̃ ∗ which implies that d(h) /∈ P̃ .
Therefore by the law of excluded middle d(h) ∈ P . Therefore, the statement
H(h) is either true and not provable or false and provable. This contradicts
that L is consistent.

We discussed earlier in Section 1.1 that in consistent systems provable sen-
tences are true sentences. Given that the system L is consistent, it cannot
allow for the provability of a false statement. Thus, H(h) is true but not
provable.

1.5 The language of First Order Arithmetic

(FOA)

The abstract proof of Gödel’s theorem is called abstract because it does not
take into consideration any particular system. In the next chapter, a system
called First Order Arithmetic will be analyzed.

In Chapter 3, it will be shown that First Order Arithmetic has the structure
described in Section 1.1. To achieve that, it will be proven that a function
equivalent to the function Φ is expressible in First Order Arithmetic. Later

1A language is consistent if there are no sentences that are true and false at the same
time
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in the third chapter, a Gödel numbering will be created using a process
called concatenation. This will play the role of the one-to-one function
that assigns a Gödel number to every expression. Lastly, the set P̃ ∗ will
be shown to be expressible in FOA. It will therefore follow that First order
Arithmetic is incomplete which means that it contains at least a true but not
provable statement.
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Chapter 2

First Order Arithmetic

2.1 Introduction

First order arithmetic is represented by the three basic operations of addition,
multiplication, and exponentiation. The language of this axiomatic system
can be formulated using the following 13 symbols: 0 ′ ( ) f , v ∼ ⇒ ∀ = ≤
⊗. This finite set of characters allows for the representation of all numbers.
A number n can be represented by 0 followed by n many prime symbols.
For example, 2 can be represented by 0′′ . The three operations of addition,
multiplication and exponentiation can be represented respectively by f ′, f ′′

and f ′′′ that will be abbreviated by (·) , (+) and (e). The symbols ∼ ⇒
∀ = ≤ will be respectively interpreted as negation, logical implication, the
universal quantifier, equality and the less than or equal symbol. The symbol
v represents a variable. It can also be concatenated with the prime subscript
symbol to create an infinite but countable set of new variables. The variables
v′ , v′′ , v′′′ , ... can be abbreviated by v1, v2, v3, ...which can be referred by
any letter of the English alphabet.

2.2 Terms, Formulas and Variables

• A term is defined as a variable or a numeral. Both v′ and 0′′ are terms.

• If t1 and t2 are terms, so are (t1+ t2), (t1 · t2) and (t1 e t2).

• A formula is an expression of the form (t1= t2) or (t1 ≤ t2) where t1
and t2 are terms.
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(F ∨G) (∼ F ⇒ G )
(F ∧G) ∼ (F ⇒∼ G )
(F ≡ G) ((F ⇒ G) ∧ (F ⇒ G))
∃viF ∼ ∀vi ∼ F
t1 6= t2 ∼ (t1 = t2)
t1 < t2 ((t1 ≤ t2) ∧ (∼ (t1 = t2)))
tt21 t1et2

(∀vi ≤ t)F ∀vi(vi ≤ t⇒ F )
(∃vi ≤ t)F ∼ (∀vi ≤ t) ∼ F

Table 2.1: Abbreviation of expressions

• If F and G are formulas, then ∼ F and F ⇒ G are also formulas and
∀ vi F is also a formula.

• If F and G are atomic formulas meaning formulas with no variables,
all occurrences of a variable in a formula of the form ∼ F or F ⇒ G
are free.

• All occurrences of vi in ∀viF are said to be bound.

• Sentences refer to formulas with no free variables. An open formula
has at least one free variable.

For convenience and clarity purposes, several expressions are going to be
abbreviated moving forward.

Table 2.1 displays a few expressions and their abbreviations.

2.3 Arithmetic Sets and relations

To this point, we already know that predicates are expressions but we have
yet to formally define the concept of predicate. We start by giving an intuitive
definition of a predicate as an expression expressing properties of numbers.
In this sense, the properties of prime, even, odd, equal to, less than or equal
to are all predicates. Formally, we define a predicate as a formula with
only one free variable. We shall use the notation F (v1) to denote a predicate
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F with free variable v1. For a numeral n, the notation F (n) refers to the
sentence created by replacing every instance of the variable v1 in the formula
F with the numeral n.

F (v1) , with v1 as the only free variable is said to express a set A of numbers
if for all n ∈ A, F (n) is a true sentence.
F (n) is true ⇔ n ∈ A.

A formula can also express a relation R (a set of tuples). In this case a
formula F (v1, v2, v3, . . . vn) exists such that for all tuples of the form (k1, k2,
. . . kn) in R, F (k1, k2, k3,... kn) is true.
F (k1, k2, k3, ...kn) is true ⇔ R(k1, k2, k3, ...kn).

A function f(x1, x2, x3,. . . xn)= y is arithmetic if there is a formula
F (v1, v2, v3,. . . vn, vn+1) such that whenever F (x1, x2, x3,... xn,xn+1 ) is true,
it implies that f(x1, x2, x3,. . .xn) = y.

Given those definitions, it is therefore possible to create proofs that verify
the arithmetic nature of a set, a relation or a statement.

The set of even numbers can be expressed in first order arithmetic:
The set of even numbers is expressed by the formula ∃ v1(v1= 0′′v2). This
formula F is true for all even numbers. It is created using the operation of
+ and (.) and = alone.

The set of prime numbers can be expressed in first order arith-
metic: Let z represent a prime number, let x, y represents two arbitrary
natural number: (∀x∀y(xy = z) ⇒ ((x = 0’ ∧y = z) ∨ (x = z ∧ y = 0 ’)))

The relation ”x divides y” is arithmetic: It is in fact represented by
the formula ∃k : k.x = y.

2.4 Considerations on truth

To formulate the set of true statements in FOA, one has to systematically
define the concept of truth in formal languages. To accomplish that, Tarksi’s
inductive definition of truth will be used. For a language containing negation
(∼), conjunction (∧), disjunction (∨), the universal quantifier (∀) and the
existential quantifier(∃),

• ∼ A is true if and only if A is not true.
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• A ∧B is true if and only if A is true and B is true.

• A ∨B is true if and only if one of A and B is true or both are true.

• ∀viF is true if F (n) is true for all numbers n ; .

• ∃viF is true if and only if there is a number n for which F (n) is true.

2.5 Axioms and axiom schema

The inductive definition of truth in section 2.5 can only be used inductively
on formulas that already have a determined truth value. Those formulas are
called axioms.

The axioms that are going to be used are:

• Implication introduction: F → (G→ F )

• Implication distribution:(F → (G → H)) → ((F → G) → (F →
H))

• Negation introduction: (∼ F →∼ G)→ (G→ F )

• Universal quantifier distribution: (∀vi(F → G) → (∀viF →
∀viG))

• If vi does not occur in F , (→ ∀vi)

• If vi does not occur in t, (∃vi(vi = t))

• If E1 and E2 are expressions, (vi = t)→ (E1viE2 → E1tE2))

2.5.1 Axioms of Arithmetic

To formulate arithmetic, in the language of FOA, a few more axioms are
going to be added to the system. Those axioms express key properties of
operations on numbers.

• If two numbers have the same successor, they are the same number,
that is:

(v
′
1 = v

′
2 → v1 = v2)

10



• 0 is not the successor of a number, that is:

0 6= v
′
1

• 0 added to any number equals the number itself, that is:

0 + v1 = v1

• 0 multiplied by a number equals 0, that is:

0.v1 = 0

• 0 is the first number, that is:

(v1 ≤ 0 ≡ v1 = 0)

• a number to the power of 0 is equal to the successor of 0, that is:

v01= 0
′

• The successor of a number added to another number is the successor
of the sum of the two numbers, i.e.,

v1 + v
′
2 = (v1 + v2)

′

• The product of a number (v1) and the successor of another number (v2)
is the sum of the product of the two numbers added to (v1), that is:

(v1.v
′
2)= (v1.v2) + v1

• A number (v1) to the power of the successor of another number (v2) is
the product of vv21 and (v1), i.e:

(v
v
′
2

1 )= (vv21 ).v1

• Given two numbers, either one is less than the other or they are the
same number, meaning that:

((v1 ≤ v2) ∨ (v2 ≤ v1))

11



Chapter 3

Gödel’s Theorem in FOA

3.1 Introduction

In Chapter 1, it was proven that if the set P̃ ∗ is expressible in a language, the
language will contain a true but not provable statement. It was also estab-
lished that the proof of Gödel’s theorem relies on a Gödel numbering process,
a substitution function and a diagonalization function. In this chapter, the
abstract concepts discussed in Chapter 1 will be discussed within the context
of first order arithmetic.

3.2 Gödel’s numbering

In Chapter 1, the concept of a one-to-one function was introduced. The one-
to-one function is the function G : E ⇒ N that maps every well formulated
expression to a natural number. Notice however that the function need not be
onto. To prove Godel’s theorem, it suffices that every expression is mapped
to a natural number and not the other way around. The simplest way to
create such a mapping is to start by mapping the symbols one by one. Once
the symbols are mapped to a natural number, concatenation can be used to
complete the mapping for complex expressions. The mapping that will be
adopted maps the symbols 0 ‘() f , v ∼ ⇒ ∀ = ≤ ⊗ to the numbers 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, δ, η, ε, respectively. The mapping is represented in Table
3.1 below with the base-13 numbering system to the left and the associated
symbols to the right.

12



0 ’
1 0
2 (
3 )
4 f
5 ,
6 v
7 ∼
8 ⇒
9 ∀
η =
ε ≤
δ ⊗

Table 3.1: Mapping of 13 symbols

Concatenation is now used on the numbers the same way it is used on the
symbols to create expressions. Thus, it is straightforward that every expres-
sion is now mapped to a base-13 number. As an example, considering the
expression v, = 0′′ , (v) 1 is mapped to 6, (,) is mapped to 5, (=) is mapped
to η, (0) is mapped to 1, the sequence (”) is mapped to 00. Therefore the
whole expression is mapped to 65η100, that is G(v, = 0′′) = 65η100.

It has been established that the numbering system introduced maps every
expression to a number. However, it is still important to prove that the
process of concatenation itself can be expressed using First order Arithmetic.

3.3 Well formulated expressions

A well formulated expression refers to the 13 symbols and all possible con-
catenation of the 13 symbols except for the string ′X where X represents any
other string such that X ∈ E . In other words, a well formulated expression
is a finite string of the 13 symbols except the first symbol cannot be ′. This
restriction ensures that there is a valid one-to-one relationship between the

1It would be more correct to write v is mapped to 6. In this case parenthesis are only
used to create emphasis on the symbol 6
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set of expressions in the language of FOA and the set of naturals N.

We let E denote the collection of well formulated expressions.

Theorem 2. There is a one to one function between the set of well formulated
expressions and the set of naturals.

Proof. Each symbol is mapped to a natural number. From the definition, an
expression is a string of symbols. Using the concatenation algorithm, we map
each symbol to a natural number (base 13). The resulting natural number
is the Gödel number of the expression.

We let G denote the one-to-one function from E onto N.

3.4 Arithmetic nature of concatenation

Theorem 3. The process of concatenation can be expressed arithmetically.

Proof. Let Lb define the length function which returns the number of digits
of a number in a base b. Let Cb define the concatenation operation that
concatenates x and y to create the number x followed by y in base b. The

property xCby =x.bL
(y)
t + y holds for all numbers. For example, in base 10,

40 C10 987 = 40987 which is 40. 103 + 987.

To determine if the relation bL
(y)
t = z is arithmetic, notice that bL

(y)
t is the

smallest power of b greater than y for b ≥ 2. This fact can be expressed by
the formula F (v1)= ∀v2: bv2 ≥ y (v1 ≤ v2 ∧ bv1 ≥ y).

All components of the expression x Cb y =x.bL
(y)
t + y are arithmetic, therefore

concatenation is arithmetic.

3.5 Arithmetic nature of diagonalization

3.5.1 Quasi-substitution

Recall that for a predicate F (v1), F (n) is the result of the substitution of the
numeral representation of n for v1 in F . The sentence F (n) is equivalent to
the formula ∀ v1 ( v1= n⇒ F (v1)). (We will denote this logically equivalent
sentence by F [n].) The sentence F [n] is true whenever F (n) is true and
false whenever F (n) is false. This method of substitution which consists in

14



creating a sentence that is equivalent to the sentence F (n) will be called
quasi-substitution.

We will also use quasi-substitution on E that are not necessarily predicates.
If E is a well-formulated expression, then we pick out the first free variable,
say v1, and let E(n) denote the well formulated expression that results of the
substitution of the numeral representation of n for v1 in F . However E[n] is
meaningless in the context of our use of quasi-substitution.
Let Φ : E × N → N be the function defined by Φ((E, n) = E(n). Observe
that if F is a predicate, then for any n ∈ N, Φ((F, n) is a sentence. Then
it follows that the diagonlization of a well formulated expression is the the
number Φ((E,G(E))). Letting n = G(E) and setting en = E we then know
that d(n) = Φ((en, n)).

3.5.2 Quasi-substitution is Arithmetic

Theorem 4. Quasi-substitution is arithmetic. Moreover, the relation of di-
agonalization is arithmetic.

Proof. For an arbitrary expression E, E(n) is a well formulated expression,
nonetheless meaningless if E is not a formula. Well-definedness is enough to
allow the construction of the function relation r(e, n) which represents the
Gödel number of E[n], that is E[n] ≡ ∀ v1 ( v1= n ⇒ E(v1)). Let k1 be
the Gödel number of ”∀v1(v1 =”, the Gödel number of n is 13n, the Gödel
number of ⇒ is 8, the Gödel number of En is n, and the Gödel number of )
is 3, then r(n, n) = d(n) = k ∗ 13n ∗ 8 ∗ n ∗ 3. Therefore quasi-substitution is
arithmetic.

3.6 The set A∗ is arithmetic

Theorem 5. If A is arithmetic, then so is A∗.

Proof. Let A be an arithmetic set. By definition, this means there exists
a predicate F (v1), such that: F (n) is true ⇔ n ∈ A. The set A∗ is the
set of natural numbers that have their diagonal numbers in the set. From
3.5.2, there is a formula expressing the relation d(x) = y. Let F (v1) be the
predicate that expresses the set A, therefore ∀x∃y(d(x) = y∧F (y)) expresses
the set A∗.

15
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Discussion: The proof of Gödel’s theorem that will be formulated in this
chapter relies on the set P̃ ∗. According to 3.5.2, the existence of this set can
be deducted from the existence of the set of non-provable sentences P̃ . It
implies that to complete Gödel’s theorem, one should focus on proving that
the provable sentences as a set can be expressed in FOA. To achieve that,
one should be able to construct a predicate of FOA that expresses the set P̃ .
This is equivalent to proving that the condition of being not provable is an
arithmetic condition.

3.7 Arithmetization of the notion of proof

To this point, the concept of Gödel’s numbering has only been used on sym-
bols and expressions. In this section, this concept is going to be extended to
map series of expressions to natural numbers.

Let the symbol ⊗ indicate that two expressions are part of the same series.
Thus, the series (Ea1 , Ea2 , ...Ean) can be represented by Ea1 ⊗ Ea2 ⊗ Ea3 ⊗
..Ean . Using the coding introduced in Section 3.2, the Gödel number of such
series of expressions is a1δa2δa3...δan. Series of expressions can be recognized
because they have the symbol ⊗ in their representation and the number δ in
their Godel number.

Definition: Two sentences Ea1 and Ea2 are said to be logically interde-
pendent if there is a rule of inference or an axiom schema that allows one
to be deducted from the other.

Formally, a proof is a series of true sentences, each one being logically deriv-
able from the one preceding it. A sentence X will be said to have a proof,
if there exists a series Y of true logically interdependent sentences ending
in X2. As an example, the sentence “The prime numbers are infinite” is
provable within FOA because there is a series of true and logically interde-
pendent sentences such that the sentence “The prime numbers are infinite”
is the end of that series.

Formally, the proof of this sentence can be expressed as followed:
v1 is the greatest prime number. [Ea1 ]

2In Chapter 2, a true statement was defined as either an axiom or a statement that
can be created using the deduction methods
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Let the number v2 = 3.5.7.11...v1+1 be a number. [ Ea2 ]
If the number v2 is prime, v1 is not the greatest prime number as v2 > v1.
[Ea3 ]
If v2 is not prime, there is a prime greater than v1 that divides it. [Ea4 ]
Therefore, no constant v1 is the greatest prime number. [Ea5 ]

In the case presented above, the series (Ea1 , Ea2 , Ea3 , Ea4 , Ea5) represented
by Ea1 ⊗ Ea2 ⊗ Ea3 ⊗ Ea4 ⊗ Ea5 is a proof for Ea5 .

In order to take advantage of the formal definition of proofs, one has to be
able to express the properties of ending, beginning, preceding and being part
of a series arithmetically.

Definition: A number x is said to begin a number y if x is an initial
segment of the representation of y. This relation is expressed by xβy. For
example, in 56778, the relation 56β56778 holds. For consistency, all num-
bers begin themselves and 0 does not begin any number other then itself.
Arithmetically, the predicate that expresses this property is the formula :
x = y ∨(x 6= 0 ∧ (∃ ≤ y)(∃w ≤ y)(Powb(w) ∧ (x.w)Cbz = y)). Therefore the
relation xβy is arithmetic.

Definition: A number x is said to end a number y if x is a final segment of
the representation of y. This relationship is expressed by xEy. For example,
in 56778, the relation 778 E 56778 holds. For consistency, all numbers end
themselves. Arithmetically, the predicate that expresses this property is the
formula :
x = y ∨(∃z ≤ y)(zCbx = y). Therefore the relation xEy is arithmetic.

Definition: A number x is part of a number y if x ends some number
that begins the representation of y. This relationship is expressed by xPy.
For example, in 56778, the relation 67 P 56778 holds. Arithmetically, the
predicate that expresses this property is the formula :
(∃z ≤ y)(zEy ∧ xβz). Therefore the relation xPy is arithmetic.

Definition: A number x is said to precede a number y in a series z if x and
y are members of a series z in which the first occurrence of x happens before
the first occurrence of y. This relation is denoted by x ≺z y and expressed
by x ∈ z ∧ y ∈ z ∧ (∃w ≤ z)(wβz ∧ x ∈ w∧ ∼ y ∈ w).

From the formal definition of a proof, the two principal characteristics are:

• It is a series of expressions.

17



• The expressions that make up the series are true statements.

3.7.1 Seq(x) is arithmetic

Theorem 6. Define Seq(x) as the property for a number x to be a sequence
number. Formally, we express Seq(x) as a number (base 13) that has the
form δa1δa2 . . . δanδ for some number an that do not have a δ in them. Then
Seq(x) is arithmetic.

Proof. The predicate Seq(x) is expressed by the formula :
δβx ∧ δEx ∧ δ 6= x ∧ δδP̃x ∧ (∀y ≤ x)(δ0yPx→ δβy) . Therefore, Seq(x) is
arithmetic.

3.7.2 Categorization of true statements

A statement will be said to be true if it is an axiom or if it is derivable from a
true statement using the rules of inferences. Let A(x) designate the property
of being an axiom . Let Dev designate the property of being derivable from
two statements using logical rules. In particular, Dev(x, y, z) means that z
is derivable from x and y.

Theorem 7. A(x) and Dev(x, y, z) are Arithmetic

Proof. A(x) is clearly arithmetic. Dev(x, y, z) can be expressed as y = x →
z ∨ (∃z ≤ y)(V ar(z) ∧ y = 9zx). Therefore Dev(x, y, z) is arithmetic.

3.7.3 The set P of provable sentences is arithmetic

The set P is arithmetic; there is an arithmetic predicate that expresses it.
Combining the two results in 3.6.1 and 3.6.2, the predicate expressing P (x)
is represented by the formula:
Seq(x) ∧(∀ ∈ x)(A(y) ∨ (∃z, w ≺x y)Dev(z, w, y)) ∧ (x ∈ y).

Discussion of 3.6.3 In section 3.6.3, it has been proven that the set P is
expressible in FOA. Given that the formula P(v1) expresses P, it is straight-
forward that the set P̃ is expressed by ∼ P (v1). Using the theorem in 3.5,
it can be concluded that P̃ ∗ is expressible in FOA. Applying the theorem
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from 1.4 from the abstract proof of Godel’s theorem 3 to FOA, it implies
that there is at least a true statement of FOA that is not provable inside of
FOA.

3.8 Important results

The reasoning behind the first Incompleteness Theorem helped twentieth-
century mathematicians to solve a whole class of difficult problems. Those
results can be found in numerous branches of mathematics such as set theory,
measure theory, topology, etc... One such result is the Continuum Hypothesis
which had puzzled logicians and mathematicians for decades before it was
finally proven by Cohen in 1967 to be independent from ZFC. Another major
result is the second incompleteness axiom which is a direct corollary of the
first incompleteness theorem.

3.8.1 Independence

The concept of independence refers to sentences of which the truth and false-
hood cannot be established using the axioms and theorems of a given ax-
iomatic system. For example, in Euclidean geometry, the Parallel Postulate
states that given a point not on a line, there is a unique line through the
point parallel to the given line. In Hyperbolic Geometry, there is more than
one such line. Therefore, the Parallel Postulate cannot be established from
the first four axioms, i.e. is independent of the first four axioms. What is
usually known as ”Euclidean Geometry” only accounts for straight planes
and surfaces; elliptic and hyperbolic geometries, use the first four euclidean
axioms along with an alternate version of the fifth postulate. Independence
proofs rely on a technique which mathematicians call forcing which consists
in simultaneously creating models in which a mathematical hypothesis is true
and models in which it is false.

3.8.2 The continuum hypothesis

The Continuum Hypothesis (CH) was conjectured by Greg Cantor in 1878
and states that there is no set whose cardinality is strictly between the cardi-
nalities of the natural numbers and that of the reals. This problem is equiv-

3See Chapter 1, subsection 1.4
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alent to saying that given the real number line and an infinite set of points
marked out on it, only two things can be true: either the set is countable,
or it has as many elements as the whole line. There is no third cardinal-
ities between the two. Formally, the continuum hypothesis is represented
by the equality c = 2ℵ0 = ℵ1. Over a span of several decades, mathemati-
cians have tried to prove the theorem using the axioms of Zermelo-Fraenkel
set theory extended with the Axiom of Choice (ZFC). Gödel constructed a
model V = L where the Continuum Hypothesis is true. Then, in 1967, Co-
hen created a model, using forcing, where the Continuum hypothesis is false.
Therefore, the continuum hypothesis or its negation can be added to ZFC
without generating a contradiction.

3.8.3 Second Incompleteness Theorem

Mathematicians have often been concerned about the correctness of the lan-
guages that they use. In 1900, Hilbert considered finding a proof of the
consistency of arithmetic to be one of the most important problems for math-
ematicians of his time. The second incompleteness theorem is an important
result which tackles the problem of inconsistency of axiomatic systems.

Theorem 8. Any formal system that is complex enough to formulate Peano
Arithmetic can prove its own consistency if and only if it is inconsistent.

Proof sketch : The second incompleteness theorem follows directly from the
first incompleteness theorem.
Recall the self referential property of the statement H(h)introduced in 1.4.
Let G designate the statement H(h) constructed in chapter 1. The statement
G expresses that G itself is not provable. This can be expressed formally as
G ≡ G is not provable.

Let Cons(L) define the property of being consistent for a language L, For-
mally, Gödel’s theorem is of the form Cons(L) ⇒ G is not provable. This
expression is equivalent to Cons(L) ⇒ G. At this point a proof of Cons(L)
successfully bypasses Gödel’s first theorem and creates a proof for G. It was
already said that G is not provable, therefore such proof of Cons(L) cannot
exist.
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