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Dispersal plays an important role in the establishment and maintenance of biodiversity and, for most
deep-sea benthic marine invertebrates, it occurs mainly during the larval stages. Therefore, the mode
of reproduction (and thus dispersal ability) will affect greatly the biogeographic and bathymetric
distributions of deep-sea organisms. We tested the hypothesis that, for bathyal and abyssal echi-
noderms and ascidians of the Atlantic Ocean, species with planktotrophic larval development have
broader biogeographic and bathymetric ranges than species with lecithotrophic development. In
comparing two groups with lecithotrophic development, we found that ascidians, which probably
have a shorter larval period and therefore less dispersal potential, were present in fewer geographic
regions than elasipod holothurians, which are likely to have longer larval periods. For asteroids and
echinoids, both the geographic and bathymetric ranges were greater for lecithotrophic than for
planktotrophic species. For these two classes, the relationships of egg diameter with geographic and
bathymetric range were either linearly increasing or non-monotonic. We conclude that lecithotrophic
development does not necessarily constrain dispersal in the deep sea, probably because species with
planktotrophic development may be confined to regions of high detrital input from the sea surface.
Our data suggest that more information is necessary on lengths of larval period for different species
to accurately assess dispersal in the deep sea.

Key words: bathymetric range; biodiversity; biogeographic range; developmental mode; larval dis-
persal; lecithotrophy vs. planktotrophy.

Introduction

In ecological time, dispersal is integral to the establishment and maintenance of biological
diversity both in shallow water and in the deep sea at all spatial scales (Sanders and
Grassle, 1971; Sanders, 1979; Rex, 1981; Scheltema, 1986; Wilson and Hessler, 1987). For
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example, new colonization in an area of the continental slope where the biological com-
munity has been obliterated by a catastrophic disturbance, such as a turbidite, will depend
on immigration of organisms during larval, juvenile or adult stages of their life cycle.
Different species will arrive at different rates which in turn are determined by a complex
suite of factors that may include dispersal ability, reproductive timing, fecundity, local
currents, and the locations of reproductive source populations (Smith and Hessler, 1987).
Once communities are established, life history traits and population processes will deter-
mine rates of local persistence and diversity. Offspring may disperse only short distances to
repopulate locally, they may disperse long distances to establish or replenish another
portion of the metapopulation, or they may be carried to inhospitable habitats where they
may ultimately perish.

Dispersal is thought to have important consequences at both ecological and evolu-
tionary time scales. In ecological time, dispersal potential can influence biological inter-
actions such as competition (Levin, 1974; Chesson, 1985) and the ability of a species to
persist in heterogeneous environments (Palmer and Strathmann, 1981), by allowing larvae
to sample a range of potential environments (Strathmann, 1974). In evolutionary time,
dispersal can increase geographic range allowing exploitation of new habitats (Scheltema,
1986), increase species longevity by damping extinction rates in variable environments
(Hansen, 1978; Jablonski, 1982), reduce adverse effects of inbreeding depression, and
maintain genetic continuity between metapopulations, thereby reducing rates of speciation
{(Wilson and Hessler, 1987).

Most of the advantages of dispersal assume temporal and spatial variability in habitat
quality. The deep sea has more stable habitats than typical shallow-water systems, effec-
tively negating some of the advantages. Etter and Caswell (1994) used.a cellular autom-
aton model to explore the circumstances under which long-distance dispersal was
advantageous in deep-sea systems. Their model predicts that short-distance and long-
distance dispersal are equally advantageous at low levels of disturbance (as would be
expected on the abyssal plains) but that long distance dispersal becomes more advanta-
geous at the intermediate disturbance frequencies that might be expected at slope and shelf
depths.

One of the great surprises of the Challenger expedition was the finding that the abyssal
fauna is similar everywhere in the world’s oceans (Moseley, 1880). Indeed, many groups of
deep-sea animals are known to have cosmopolitan species or genera. This originally was
thought to result from uniform physical and chemical conditions throughout the deep sea,
but may also reflect the virtual absence of dispersal barriers at bathyal depths (Wilson and
Hessler, 1987). Evidence amassed during the past two decades has, however, revealed a
much greater diversity of deep-sea habitat characteristics than previously suspected (re-
viewed by Tyler, 1995). In addition, recent work has shown a significant negative rela-
tionship of species diversity with increasing latitude in the North Atlantic for deep-sea
isopods, gastropods and bivalves (Rex et al., 1993). These findings underscore the im-
portance of readdressing the potential role of pelagic larval dispersal in speciation and
distribution of deep-sea animals.

Most of the research on the origin and zoogeography of the deep-sea fauna has centred
on the speciose pericarid crustaceans, all of which reproduce by direct development
(Hessler and Thistle, 1975; Hessler et al., 1979; Wilson and Hessler, 1987) and hence have
limited dispersal. Other studies have focused on taxa which were predicted to have limited
larval dispersal, such as porcellanasterid sea stars (Madsen, 1961). Although it was long
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thought that brooding and direct development should be the dominant modes of repro-
duction among deep-sea invertebrates (Thorson, 1950), we now know that this may be the
exception rather than the rule. Planktonic larvae, especially but not exclusively lecitho-
trophic larvae, are commonly found in many deep-sea phyla (Rex and Warén, 1982;
Bouchet and Warén, 1994; Pearse, 1994; Young, 1994). The potential roles of develop-
mental mode (and hence dispersal ability) in speciation and biodiversity have been ad-
dressed in several reviews, all of which, however, emphasize the need for additional
analyses (Sanders and Grassle, 1971; Rex, 1981, 1983; Wilson and Hessler, 1987).

Of the deep-sea species known to produce planktonic larvae, the Atlantic prosobranch
gastropods are the best studied (Rex and Warén, 1982; Etter and Rex, 1990). Using
bathyal (500-4000 m) prosobranchs as a model system, Stuart and Rex (1994) showed that
the most important factors influencing local species diversity were regional diversity and
the proportion of species with planktotrophic larvae in the regional species pool. A similar
pattern has been demonstrated for shallow-water infaunal invertebrates in Scandinavian
waters (Josefson, 1985).

In this paper, we consider whether the mode of larval development (and hence the
dispersal potential of each generation) is related to the size of biogeographic (horizontal)
and bathymetric (vertical) ranges in the deep sea. Range size is important in the context of
biodiversity because endemism (restricted species range) is one of the major precursors of
speciation. We focus on echinoderms that live in the Atlantic Ocean because reproduction
has been studied in enough species to analyse large-scale patterns. For comparative pur-
poses, we also include some data from the published literature on biogeographic patterns
of ascidians, all of which produce larvae with very short distance dispersal and some of
which are limited to hard substrata.

Developmental mode 1s related to zoogeographic range in shallow water animals (re-
viewed by Scheltema, 1986) and a similar pattern is expected for the deep sea (Wilson and
Hessler, 1987). Here, we test the hypothesis that bathyal and abyssal species with
planktotrophic development have broader vertical and horizontal ranges than species with
lecithotrophic development. We assumed on the basis of shallow-water studies that dis-
persal of ascidians would be substantially less than dispersal of pelagic lecithotrophic
echinoderm larvae, which in turn would be less than dispersal of planktotrophic echino-
derm larvae.

Materials and methods

We obtained the egg size data from the published scientific literature, as well as from our
own published and unpublished work. We (CMY, PAT) have reared the embryos or
larvae of a number of bathyal echinoderms from the Caribbean region and the Rockall
Trough and have determined egg sizes for many additional species. We supplemented this
data set with information on echinoderm egg size and developmental mode summarized
from the literature by Emlet ez al. (1987) and Sewell and Young (unpublished data). Where
developmental mode (planktotrophy, pelagic lecithotrophy, brooding) was not examined
directly, we assumed on the basis of data in Emlet er al. (1987; Fig. 3) that echinoderm
eggs with a diameter 300 um or larger produced lecithotrophic larvae and smaller eggs
produced planktotrophic larvae. We further assumed that lecithotrophic eggs developed
into pelagic larvae unless brooding had actually been observed. Although development has
not been described in detail for any deep-sea Atlantic ascidian, it is known from the
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taxonomic literature that deep-sea colonial species brood larvae similar to those found in
related shallow-water species (Herdman, 1882; Monniot and Monniot, 1973) and that
solitary ascidians have egg sizes similar to those of shallow-water species. All known
ascidian larvae are short-lived and lecithotrophic. All known colonial ascidians complete
embryogenesis internally and release swimming larvae that remain in the water column for
up to several hours or at most a few days before settlement. Although a few solitary
ascidians brood their embryos, most are free-spawners that fertilize externally and com-
plete larval development in less than one week (reviewed by Svane and Young, 1989).

We used the global scheme of abyssal zoogeography proposed by Vinogradova (1959)
(Fig. 1) despite the existence of more recent and comprehensive schemes (e.g. Menzies
et al., 1973) because the data on ascidian distribution (Monniot and Monniot, 1973) were
already tabulated in this scheme and because some of the biogeographic descriptions in the
scientific literature (e.g. echinoid distributions in Mortensen (1927) and subsequent
monographs) were not sufficiently detailed to categorize in a more complex scheme. We
included in the data set each species that occurred in one of Vinogradova’s Atlantic ‘zones’
(B1, B2a, B2b, B2c) and for which developmental mode could be inferred. This eliminated
most of the exclusively Antarctic brooders and the few species with known egg sizes that
occur only in the Indo-Pacific region. To qualify for inclusion, a species also had to have a
known depth range with a lower boundary deeper than 500 m.

To avoid confusion, we will henceforth use the term ‘zone’ to refer only to bathymetric
(vertical) distribution. The horizontal biogeographic ‘zones’ in the Vinogradova scheme
will be referred to as ‘regions’.

Figure 1. The scheme of abyssal biogeography proposed by Vinogradova (1959) and used in our
study. Latitude and longitude lines are 20° apart.



Role of laryal dispersal on biodiversity in the deep sea 1511

We obtained most distributional data from taxonomic monographs that summarize a
large part of the existing literature. Echinoid data were extracted from the classic works of
Clark (1925) and Mortensen (1927, 1928, 1935, 1940, 1943a,b, 1948a,b, 1950, 1951) sup-
plemented by newer information summarized by Gage et al. (1985) for the Northeast
Atlantic, Serafy (1979) and Young (1992) for the Caribbean region and Tyler ef al. (1995)
for the genus Echinus. We obtained distributions of asteroids from Clark and Downey
(1992) supplemented by our own work on the Bahamian asteroids (Young and Tyler,
unpublished), and of elasipod holothurians from maps in Hansen (1975). Although we only
included species that occur in the Atlantic, we tabulated for the analysis the total number of
geographic regions worldwide in which these species occurred (maximum of 11 regions).

For asteroids and echinoids, we divided species by developmental mode (planktotrophs
vs. lecithotrophs), and by the lower bathymetric limits (‘slope’ species: lower limit between
500 and 1000 m; ‘deep’ species: bathymetric limits > 1000 m). Differences in the frequency
distributions of the number of geographic regions and the widths of bathymetric range
(determined in 1-km increments) were examined for asteroids and echinoids by: (i) de-
velopmental mode (planktotroph vs. lecithotroph) and (i1) ‘slope’ vs. ‘deep’ species, using a
Kolmogorov-Smirnov test. In these classes, we also examined the effect of developmental
mode (two levels: planktotrophy, lecithotrophy) and maximum depth of occurrence (two
levels: 500-1000m, > 1000m) on the number of geographic regions occupied by two-
factor analysis of variance. For the same groups, we further examined the effect of de-
velopmental mode (two levels: planktotrophy, lecithotrophy) and number of occupied
geographic regions (asteroids: five regions, echinoids: four regions) on the width of
bathymetric range. For the analyses of variance, we used the general linear models of SAS.

We used linear and curvilinear regression to explore the relationships between egg size
and the number of occupied geographic regions and between egg size and width of
bathymetric range. We used the Sigmastat polynomial regression programs to determine
the lines that best fit the data and we determined the significance of the re]atlonshlps by
analysis of variance.

Results

Geographic range

Pelagic lecithotrophic larval development is the major reproductive mode for both elasi-
pod holothurians and ascidians. Ascidians are known to have very short larval develop-
ment periods, whereas development time has not been measured for any elasipod. All of
the 14 species of elasipod holothurians that live in at least one region of the Atlantic Ocean
occupied more than one region, most occupied at least three and some species occupied as
many as eight regions (Fig. 2). The species with the broadest geographic distributions
(eight regions) have egg sizes ranging from 280 um (Elpidia glacialis) to 4400 um (Psy-
chropotes longicauda). The pattern was strikingly different for Atlantic deep-sea ascidians,
which were overwhelmingly limited to one or a few geographic regions (mostly less than
four), generally within a single ocean basin (Fig. 2). A single species occupied six geo-
graphic regions.

The frequency distributions of the number of geographic regions occupied by asteroids
and echinoids did not differ significantly between developmental modes, when examined
either separately or when the data for the two classes were combined (Fig. 3). For
asteroids, ANOVA showed a significant effect of developmental mode on the number of
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Figure 2. Frequency histograms of the number of geographic regions (Fig. 1) occupied by deep-sea
ascidians and elasipod holothurians that occur in the Atlantic Ocean.

occupied geographic regions, and the number of regions occupied by lecithotrophs was
significantly greater than that occupied by planktotrophs (Table 1). For this class, there
was no significant effect of maximum depth of occurrence on the number of occupied
regions. For echinoids, there was a significant interaction between the effects of devel-
opmental mode and maximum depth (Table 1), resulting from the large number of
planktotrophic species at bathyal depths in the Bahamas which are limited to a single
region (Fig. 3).

In both asteroids and echinoids, the frequency distributions of the number of occupied
geographic regions differed significantly between species with a maximum depth of oc-
currence between 500 and 1000 m and species with a maximum depth of occurrence deeper
than 1000 m (Fig. 3). This pattern also held when data from the two classes were combined
(Fig. 3). In each case, deeper dwelling species tended to occupy a larger number of geo-
graphic regions than species found at a maximum depth of <1000 m.

There was a significant relationship between egg diameter and number of occupied
geographic regions for asteroids, but not for echinoids or elasipods (Fig. 4). In asteroids, a
second order polynomial equation described best the relationship between the two vari-
ables, with the greatest horizontal ranges found at intermediate egg diameters (Fig. 4).
When data were combined for echinoids, asteroids and elasipods, there was a significant
positive linear relationship between egg diameter and geographic range (Fig. 4). This
pattern is exactly opposite to that predicted from dispersal distances of shallow-water
species (Scheltema, 1986). Some of the species with large egg sizes also have wide geo-
graphic distributions.

Bathymetric range

The frequency distributions of the widths of bathymetric range differed significantly be-
tween developmental modes when the data for asteroids and echinoids were combined, but
not when the classes were examined separately (Fig. 5). In the combined data, most
planktotrophs occurred over a vertical range of only 1-2 km, whereas the vertical range of
lecithotrophs was often greater than 2 km, or as much as 6 km, wide. For asteroids, there
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Figure 3. Frequency histograms showing the number of species of asteroids and echinoids occu-
pying different numbers of biogeographic regions. The species are classified as either ‘slope’ or ‘deep’
species on the basis of the maximum depth of occurrence (see text for explanation), and as plank-
totrophic or lecithotrophic on the basis of larval rearing or egg size. ‘D’ is the Kolmogorov—Smirnov
two-sample statistic and p values are for two-tailed tests.

was a significant effect of developmental mode on the width of bathymetric range which
was greater for lecithotrophic than planktotrophic species (Table 2). There was a signi-
ficant effect of the number of occupied geographic regions on the width of bathymetric
range for both asteroids and echinoids (Table 2).

There was a significant positive linear relationship between egg diameter and width of
bathymetric range for asteroids (Fig. 6), although the regression equation explained only
16% of the variance. As with horizontal range, the relationship was opposite to that
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Table 1. Two-way analyses of variance examining the effects of developmental mode (two levels:
planktotrophy, lecithotrophy) and maximum depth of occurrence (two levels: 500-1000 m,
> 1000 m) on the number of geographic zones occupied by asteroids and echinoids (data illustrated
in Fig. 3)

Source of Sum of Mean

variation d.f. squares square F J4

Asteroids ,
Maximum depth (A) 1 2.102 2.102 1.65 0.210
Developmental ' '
mode (B) 1 6.199 6.199 4.85 0.036
AXxB 1 0.041 0.041 0.03 0.860
Error 29 37.03 1.277

Echinoids
Maximum depth (A) 1 5.504 5.504 9.70 0.004
Developmental 1 0.728 0.728 1.28 0.266
mode (B)
AXB 1 4.779 4.779 8.42 0.007
Error 31 17.60 0.568

predicted by conventional theory. Planktotrophic species appeared to have a more re-
stricted distribution relative to lecithotrophic species, which had very wide ranges (Fig. 5).
For echinoids, the data were best described by a third order polynomial equation which
explained 40% of the variance. For planktotrophic species, the width of the bathymetric
range increased with egg size. However, the relationship was not as clear for lecithotrophic
species; some species with eggs > 1 mm have vertical ranges nearly as wide as those of the
most widely distributed planktotrophs, whereas other species occur in ranges of less than
1000 m (Fig. 6). The combined data for asteroids and echinoids preserved the parabolic
relationship found for echinoids, although there was more scatter around the line (Fig. 6).
There was no significant relationship between egg diameter and bathymetric range width
in elasipod holothurians (Fig. 6).

Discussion

Our major conclusion is that lecithotrophic development does not necessarily constrain
dispersal in the deep sea. Comparison between ascidians with short-lived lecithotrophic
larvae and elasipods which are likely to disperse longer distances demonstrates that geo-
graphic range is probably related to the distance of dispersal in the deep sea, as it is in
shallow water. However, the prediction that species with planktotrophic larvae should be
more widespread than species with lecithotrophic larvae does not hold for the deep At-
lantic echinoderms. Indeed, the available data indicate that some of the most widespread
species in the deep sea reproduce without the benefit of feeding larvae.

If dispersal distance is positively correlated with range size, then why are planktotrophs
not more widespread in the deep sea? Conventional wisdom dictates that planktotrophic
larvae should be capable of longer dispersal than lecithotrophic larvae because they can
supplement the original energy allocated to the egg by feeding. Lecithotrophic larvae in
shallow water often have relatively short lives. For example, larvae of bryozoans, ascidians
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Figure 4. Scatter plots and regression analyses of the relationships between egg diameter and the
number of geographic regions occupied by echinoderm species. Only significant regression lines are
shown. The best-fit curves are: for asteroids, the second order polynomial equation
y=1.192 4+ 0.007x — 4.381e5x?; for asteroids, echinoids and elasipods combined, the first order
linear equation y = 2.359 + 8.784¢*x.

and many corals are brooded within the parent until larvae are ready to swim and settle.
Shallow-water echinoderms that produce lecithotrophic larvae may complete development
in just a few days, although pelagic periods as long as several weeks are common in
temperate species. There is some evidence that lecithotrophic larvae have sufficient energy
and nutrient stores to swim for long periods of time. For example, larvae of the temperate
starfish Mediaster aequalis survived in culture for more than a year before settlement
(Birkeland et al., 1971). At low temperatures, the potential for dispersal without feeding is
even greater because of low metabolic demand. Shilling and Manahan (1994) showed that
the lecithotrophic larvae of some Antarctic echinoderms have low mass-specific respira-
tion rates that may enable them to disperse for months, or even years, without depleting
their energy reserves. We expect the same phenomenon to occur in the cold waters of the
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Figure 5. Frequency histograms showing the number of asteroid and echinoid species occupying
bathymetric ranges of different sizes. Each range category on the x-axis represents the upper
boundary of the class. ‘D’ is the Kolmogorov—Smirnov two-sample statistic and p values are for two-
tailed tests.

deep sea. Thus, in the deep sea, planktotrophic developers may not spend any more time in
the plankton than pelagic lecithotrophs.

Recent studies on the genetics of hydrothermal vent organisms lends additional support
to our finding that lecithotrophy does not limit deep-sea dispersal. Analysis of allozymes
in two species of archaeogastropod limpets with lecithotrophic development failed to

Table 2. Two-way analyses of variance examining the effects of developmental mode (two levels:
planktotrophy, lecithotrophy) and geographic range (number of occupied zones) on the width of
bathymetric range (data iltustrated in Fig. 5)

Source of Sum of Mean

variation d.f. squares square F )4

Asteroids
No. zones (A) 4 10 466 246 2 616 561 4.76 0.006
Developmental mode (B) 1 2 741 263 2 741 263 4.98 0.035
AxB 3 1 953 279 651 093 1.18 0.337
Error 24 13 204 516 550 188

Echinoids
No. zones (A) 3 8 196 350 2732116 4.39 0.012
Developmental mode (B) 1 1 805 141 1 805 141 2.90 0.100
AxB 3 1 957 352 652 450 1.05 0.387
Error 27 16 820 627 622 986
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Figure 6. Scatter plots and regression analyses of the relationships between egg diameter and the
widths of bathymetric range of echinoderm species. Only significant polynomial regression lines are
shown. The best-fit curves are: for asteroids, the first order linear equation y = 1050 + 0.869x; for
echinoids, the third order polynomial equation y = —1.031e® + 18.34x — 0.023x? + 7.674e%x%; for
asteroids and echinoids combined, the second order polynomial equation y = 4.922¢?
+4.245x — 0.003x%.

support the prediction that dispersal should occur in a stepping-stone fashion (Craddock
et al., 1997). Gene flow did not decline as a function of distance between sampling sites,
suggesting that the lecithotrophic larvae of these species are capable of very long distance
dispersal (Craddock ez al., 1997). Based on the evidence available, alvinellid polychaetes,
which are also endemic to hydrothermal vent systems, have lecithotrophic or direct de-
velopment (Desbruyéres and Laubier, 1986; Zal et al., 1995). Genetic analysis of one such
species, Paralvinella grasslei, nevertheless revealed evidence of substantial genetic ex-
change among distant populations (Jollivet et al., 1995). A more recent model of alvinellid
dispersal failed to reconcile this apparent paradox (Chevaldonné et al., 1997). One possible
explanation is that lecithotrophic alvinellid larvae have much greater dispersal potential
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than currently assumed. Analysis of genetic exchange among distant populations of a
species with planktotrophic larvae, the brisellid vent shrimp, Rimicaris exoculata, reveals a
similar lack of population differentiation (Creasey et al., 1996).

In the deep sea, species with planktotrophic larvae may be confined to regions where
there is sufficiently high surface production to produce a significant amount of fine detrital
food at bathypelagic and abyssopelagic depths. Planktotrophic larvae could be food
limited in oligotrophic areas (but see Olson and Olson (1989) for counter-examples from
shallow water), whereas lecithotrophic larvae may survive even if advected to areas of low
productivity using energy stored internally. All planktotrophic echinoderms in the deep
sea are also seasonal breeders, suggesting a strong link to seasonal patterns of surface
productivity (Tyler and Young, 1992). In the Northeast Atlantic, we have found no sea-
sonally breeding planktotrophic species south of 42°N, suggesting that a dispersal barrier,
perhaps caused by food limitation, may be present in this area.

Planktotrophic species dominate the tropical bathyal fauna in the Caribbean region and
these species tend to be endemic to that single geographic region. We suspect that tem-
perature is a major cause of their limited distribution. Because they live at intermediate
temperatures at slope depths, they are probably limited in some life history stage to certain
latitudes because of geographic changes in temperature. By contrast, some of the deeper
dwelling planktotrophs, such as Echinus affinis, occupy multiple regions, all of which have
similar low temperatures at the appropriate depths. Pineda (1993) showed that the vertical
range width of many slope species is significantly related to the mean depth of occurrence,
apparently because their boundaries are constrained either by the sea surface or by the
abyssal plain.

In the elasipod holothurians, it is important not to underestimate the dispersal of post-
larval juveniles. Gebruk et al. (in press) have recently reaffirmed that pelagic juveniles of
many elasipod species are found many thousands of metres above the sea bed. These
Jjuveniles have adult characteristics, but feed in the plankton rather than on benthic det-
ritus. Thus, although elasipods have lecithotrophic larvae, the larval stage is not the only
life history stage where dispersal may occur.

Developmental mode is not the only factor that determines dispersal distance. Larval
advection depends on physical forcing mechanisms and such mechanisms may change
from region to region. For example, small-scale eddies caused by local features of the
seabed may retain eggs and larvae near the site of spawning in some regions, whereas
larvae that spend comparable times in the plankton may disperse greater distances where
the eddies are absent. On a larger scale, Taylor columns that occur over seamounts may
retain reproductive propagules close to the seamount. '

The flow of water in the deep sea is still relatively poorly understood compared to the
surface circulation, so in most cases we cannot predict where larvae released at a particular
location will go. On the basis of biogeographic distributions in the genus Echinus, Tyler
et al. (1995) have hypothesized that the western boundary undercurrent, which transports
North Atlantic Deep Water (NADW) south along the slope of the eastern United States,
could have transported larvae from the centre of speciation in the North Atlantic to the
South Atlantic and Pacific Oceans. Periods of weak NADW flow have probably resulted
in allopatric speciation of isolated populations of Echinus.

Sanders and Grassle (1971) hypothesized that the rate of speciation in any particular
deep-sea group is reflected by the number of extant species. They noted that the asellote
isopods are very speciose and attributed this to genetic isolation caused by the lack of a
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larval phase. Ophiuroids by contrast are not as diverse and many have long larval periods
(Sanders and Grassle, 1971). Our data suggest that caution should be exercised in inter-
preting dispersal distances in the deep sea. If lecithotrophs can disperse as far, or perhaps
farther, than planktotrophs, then inference of developmental mode from larval proto-
conchs of gastropods, prodissoconchs of bivalves, etc. may not accurately predict dispersal
potential. Before we can relate dispersal potential to speciation rates, more empirical
studies that address the actual lengths of larval life for deep-sea species are needed.
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