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A sudden expansion combustor (SUE) is analyzed using computation fluid 

dynamics (CFD).  CO emissions and NOx emissions are computed for various operating 

conditions of the SUE combustor using a can type and an annular type geometrical 

configurations.  The goal of this thesis is to see if the SUE combustor is a viable 

alternative to conventional combustors which utilize swirlers.  It is found that for the can 

type combustor the NOx emissions were quite low compared to other combustor types but 

the CO emissions were fairly high.  The annular combustor shows better CO emissions 

compared to the can type, but the CO emissions are still high compared to other 

combustors.  Emissions can be improved by providing better mixing in the primary 

combustion zone.  The SUE combustor design needs to be further refined in order for it 

to be a viable alternative to conventional combustors with swirlers.
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1. INTRODUCTION

Gas Turbine engines produce harmful pollutants that can cause irreparable 

damage to the environment.  In light of this, strict standards have been put in place to 

limit the amount of NOx, CO, unburned hydrocarbons, and other harmful products of 

combustion.  These standards make it necessary for engineers to come up with ways to 

reduce emissions while maintaining, acceptable levels of performance such as the thermal 

efficiency, combustor stability, and pattern factor.  There are several different combustor 

designs that have been implemented over the years that have been successful in reducing 

emissions, such as lean direct injection (LDI), lean premixed prevaporized (LPP), and 

rich-burn/quick-quench/lean-burn (RQL) combustors.  However, none of the 

aforementioned combustor designs are without flaw.  Much research is currently under 

way to improve the design of such combustors to reduce emissions.  This thesis seeks to 

present performance characteristics of a high pressure RQL combustor called the sudden 

expansion combustor (SUE) that is being designed to produce low emissions [1].  The 

SUE combustor does not use any swirlers to produce a recirculating region to stabilize 

the flame necessary for combustion.  Rather, it uses a sudden expansion and jets of air 

and the fuel to create the recirculation region necessary to anchor the flame.  The SUE 

combustor is 
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proportions of air flow rates are controlled to see which ones are optimal for low 

emissions.  Once the correct proportions of air are determined, the geometry surrounding 

the liner can later be designed and simulated for a better representation of the flow field. 

The flow turbulence is modeled using the k-ε model with wall functions to 

approximate the flow within the boundary layer region.  Selected non-premixed 

combustion is handled by using a beta probability density function (β-PDF) model [2].  

Since the fuel used by the SUE combustor is liquid kerosene,  FLUENT’s discrete phase 

model is used to simulate the fuel injection and evaporation processes.  The complex 

processes of primary and secondary atomization of the injected fuel are neglected in the 

analysis as suggested in reference 3.  Kerosene droplets are injected into the 

computational domain in the shape of a cone with specified initial conditions such as, 

initial velocity, droplet diameter, cone angle, and cone radius.  The fuel droplets are 

tracked in the computational domain using the Euler-Lagrange formulation.  The effects 

of mass transfer, heat transfer, and momentum transfer between the gas and liquid phases 

are handled by empirical relations in the liquid phase and source terms in the gas phase 

equations.  To compute the NOx levels, a species conservation equation is written for the 

NOx with the source terms calculated from chemical kinetics.  The Zeldovich mechanism 

[2] is used to predict thermal NOx while the Fenimore mechanism is used for prompt NOx 

formation.  

This thesis goes over some of the background theory necessary to appreciate the 

complex phenomena that occur inside a typical gas turbine combustor.   The background 
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theory shows how complicated the physics to justify the need for approximations in order 

to bring the required computational effort to a manageable level.  The time averaged 

equations of motion are presented first. Then some turbulence models are discussed that 

are needed for the solution of the time averaged equations of motion.  Combustion 

fundamentals are presented next, such as chemical kinetics, spray processes, and the 

mixture fraction concept.  Some turbulent combustion models are presented and the β-

PDF model is explained in detail, with some basic combustor design practices to follow 

in the subsequent section.  This review highlights what is required of all combustors in 

order to achieve complete, stable combustion without any harm to other engine 

components.  Various combustor designs are presented as to show how they achieve low 

emissions. 

After the background theory, the geometry of the SUE combustor is presented.  

Then, the numerical methods that are used to solve the governing equations are reviewed 

along with the appropriate boundary conditions.   Two different combustors are simulated 

operating at five different operating pressures, from 300 psi (20.7 bar) to 100 psi (6.9 

bar). For each operating pressure, the global equivalence ratio is also varied from 0.9 to 

0.5.  The NOx and CO levels are mass-averaged at the exit plane of the combustor and 

plotted against the equivalence ratio with the operating pressure as a parameter.  Results 

of various cases are shown and any trends found are reported in the results section.   
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2. BACKGROUND THEORY

Turbulence and combustion models used in the CFD analysis are briefly reviewed 

first.  Then some theory on atomization and its modeling is discussed, followed by a 

discussion on radiation modeling and pollutant formations.  Some performance 

parameters are outlined to compare different operating conditions within the combustors.  

How these parameters are calculated and their meaning are discussed in the 

“Compressibility and Performance Parameters section”. The “Combustor Fundamentals” 

section describes a typical combustor’s geometry and reviews some basic low emission 

combustor deigns.  The techniques used to discretize and solve the governing equations 

of motion are described in the “Solver Theory” section.  This chapter concludes with the 

literature review on low emission combustors with a focus on aircraft combustors. 

2.1 Turbulence Modeling 

Small perturbations appear in all flows due surface roughness, random changes in 

the operating conditions, and so on.  In laminar flows, the viscous forces are sufficient to 

dampen these perturbations which eventually die out.  However, if the inertial forces 

exceed the viscous forces by a certain amount, the small perturbations start to grow and 

eventually the whole flow becomes unstable.  The flow becomes highly irregular and 

flow variables start to randomly fluctuate with time [4].  The governing Navier-Stokes 

equations can no longer be solved directly for all practical configurations; an averaging 

or filtering process needs to be performed on the variables in order to obtain a solution. 
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The most common approach to turbulence modeling is to decompose each flow 

variable into a mean component and fluctuating component, which is referred to as the 

Reynolds decomposition.  For instance, the velocity  ݑሺ࢞,  ሻ after Reynoldsݐ

decomposition becomes: 

,࢞ሺݑ ሻݐ ൌ పഥݑ ሺ࢞, ሻݐ  ,࢞′ሺݑ  ሻݐ

Equation 1: Reynolds decomposition 

The mean component is obtained by time averaging the flow variable.  For instance, the 

time average of velocity ݑపഥ  is shown below [5]: 

పഥݑ ሺ࢞, ሻݐ ൌ
1
ܶ
න ,࢞ሺݑ ݐሻ݀ݐ
௧బା்

௧బ

 

Equation 2: Time average of velocity 

where T is the averaging period.  Equations similar to Equation 1 for all the variables are 

substituted into the governing equations of motion and time averaging is performed on all 

the equations.  The results are the Reynolds averaged Navier-Stokes equations (RANS).  

For illustrative purposes, the Reynolds averaged momentum equation for a steady 

incompressible fluid is shown below in Equation 3: 

ఫഥݑ
పഥݑ߲
ݔ߲

ൌ
1
ߩ
߲
ݔ߲

൫െ തܲߜ  ߤ2 పܵఫതതതത െ ఫ′തതതതതതത൯ݑ′పݑߩ

Equation 3: Reynolds averaged momentum equation for steady incompressible flow 

Where ߩ is the fluid density, തܲ is the time averaged pressure, ߤ is the dynamic viscosity, 

 : is the kronecker delta, and పܵఫതതതത is the mean rate of strain given byߜ

పܵఫതതതത ൌ
1
2
ቆ
పഥݑ߲
ݔ߲


ఫഥݑ߲
ݔ߲

ቇ 

Equation 4: Rate of strain tensor 
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ఫ′തതതതതതത is called the Reynolds stress and has six independent components that areݑ′పݑߩ

unknown a priori.  These stresses must be modeled in order to obtain a solution to the 

Navier-Stokes Equations.  Typically a combination of theoretical and experimental 

methods are used to model them.  A very common approach is to assume that the 

Reynolds stresses are related to the mean velocity gradients by using the Boussinesq 

hypothesis [2]: 

െݑߩప′ݑఫ′തതതതതതത ൌ ௧ߤ ቆ
పഥݑ߲
ݔ߲


ఫഥݑ߲
ݔ߲

ቇ െ
2
3
൬݇ߩ  ௧ߤ

തതതݑ߲
ݔ߲

൰  ߜ

Equation 5: Boussinesq hypothesis 

Where k is the average turbulent kinetic energy given by 

݇ ൌ
1
2
ప′തതതതതതതݑ′పݑ

Equation 6: Average turbulent kinetic energy 

and ߤ௧ is the turbulent viscosity.  The turbulent kinetic energy and turbulent viscosity 

need to be specified in order to obtain a solution.   Perhaps the most popular technique is 

to solve the transport equations for the turbulent kinetic energy and for the turbulent 

dissipation rate ε.  Subsequently from k and ε, the turbulent viscosity is calculated from 

Equation 7. 

௧ߤ ൌ ఓܥߩ
݇ଶ

ߝ

Equation 7: Turbulent viscosity 

where ܥఓ is a constant taken equal to 0.09.  ܥఓ has been calculated from direct numerical 

simulation (DNS) results in turbulent channel flows [4].  There are additional terms in the 

turbulent kinetic energy and turbulent dissipation rate equation that still require modeling.  

The exact equation for the transport of turbulent kinetic energy is [6]: 
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ߩ
߲݇
ݐ݀

 ఫഥݑߩ
߲݇
ݔ߲

ൌ െݑߩప′ݑఫ′തതതതതതത పഥݑ߲
ݔ߲

െ ߝߩ 
߲
ݔ߲

ቈߤ
߲݇
ݔ߲

െ
1
2
ఫ′തതതതതതതതതതݑ′పݑ′పݑߩ െ ఫ′തതതതതതݑ′

Equation 8: Transport of turbulent kinetic energy 

The last two terms on the right hand side of Equation 8 are grouped together and modeled 

as: 

1
2
ఫ′തതതതതതതതതതݑ′పݑ′పݑߩ െ ఫ′തതതതതതݑ′ ൌ െ

௧ߤ
ߪ

߲݇
ݔ߲

Equation 9: Modeling of triple velocity correlations and pressure velocity correlation 

where ߪ is the turbulent Prandtl number for kinetic energy and its value is taken to be 1 

from DNS results [4].  With the above assumptions, the incompressible form of the 

turbulent kinetic energy equations becomes: 

ߩ
߲݇
ݐ߲

 ఫഥݑߩ
߲݇
ݔ߲

ൌ ቈߤ௧ ቆ
పഥݑ߲
ݔ߲


ఫഥݑ߲
ݔ߲

ቇ െ
2
3
൬݇ߩ  ௧ߤ

തതതݑ߲
ݔ߲

൰ ߜ
పഥݑ߲
ݔ߲

െ ߝߩ 
߲
ݔ߲

൬
௧ߤ
ߪ
൰
߲݇
ݔ߲

 

Equation 10: Modeled equation for turbulent kinetic energy  

The exact equation for the turbulent dissipation rate is very complex and can be found in 

reference 6; only its modeled form is presented below: 

ߩ
ߝ߲
ݐ߲
 ఫഥݑߩ

ߝ߲
ݔ߲

ൌ ఌଵܥ
ߝ
݇
ቈߤ௧ ቆ

పഥݑ߲
ݔ߲


ఫഥݑ߲
ݔ߲

ቇ െ
2
3
൬݇ߩ  ௧ߤ

തതതݑ߲
ݔ߲

൰ ߜ
పഥݑ߲
ݔ߲

െ ߩఌଶܥ
ଶߝ

݇


߲
ݔ߲

൬ߤ 
௧ߤ
ఌߪ
൰
ߝ߲
ݔ߲

 

Equation 11: Modeled equation for turbulent dissipation rate 

With ܥఌଵ ൌ 1.44, ఌଶܥ ൌ 1.92, ߪ ൌ 1, ఌߪ	݀݊ܽ ൌ 1.3 determined from experiments of 

simple turbulent flows [2].  With Equations 3, 5, 7, 10, and 11, along with the continuity 

equation, the flow field is solved.   
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The above k-ε model constants are used for many CFD analyses, including the 

analyses presented in this thesis.  These constants are chosen so that they are reasonable 

for the most common flows.  Ideally, these constants should be changed so that the CFD 

results agree best with any available experimental results.  Since there are no available 

results for the geometry considered in this thesis, the default values are retained. 

The k-ε model is generally valid for high Reynolds number flows that are fully 

turbulent.  The k-ε model also assumes the Reynolds stresses are isotropic.  In flows with 

strong swirl, such as the flow found in combustors, the Reynolds stresses are highly 

anisotropic and the k-ε model may prove to be inadequate.   (The Boussinesq hypothesis 

is another source of uncertainty in CFD analysis, for it is not valid in all flows.  It fails, 

for example, when the shearing rate changes suddenly) [4, 6]. 

Despite the apparent disadvantages, the k-ε model is predominantly used in this 

thesis, since it is computationally inexpensive and fairly stable.  This is especially 

important when simultaneously solving a large number of equations present when 

running combustion simulations.   The k-ε model is used in many numerical simulations 

in combustion [7-9] thus it is used here to stay consistent with the literature 

When the strain exceeds a certain value, the k-ε model predicts negative value for 

the normal stresses, which is not physically possible [2]. The realizable k- ε model fixes 

this problem by using an expression involving mean strain and mean rotation rates to 

calculate ܥఓ instead of treating it as a constant.  One case is computed with the realizable 

k- ε model to compare with the k- ε model. 

The Reynolds-stress model (RSM) is another turbulent viscosity model that is 

widely used in which a transport equation for each of the Reynolds-stresses is solved.  As 



10 

a result, seven equations must be solved as opposed to two equations in k-ε models.  Thus 

it requires more computational effort when compared to the k-ε model.  In exchange for 

longer running times, one can model highly anisotropic flows with reasonable accuracy.  

The RSM is not the “silver bullet” to the turbulence problem, however, like many 

turbulent viscosity models, the RSM utilizes semi-empirical methods in order to model 

its correlation terms. These methods are not valid for all flow configurations and must be 

used with caution.  The Reynolds-stress model is compared with the k-ε model in this 

thesis for one case study; the differences between the two models are presented in the 

results section. 

Special care needs to be taken when computing flow variables in the vicinity of 

the combustor wall.  There exist large gradients at the wall which needs to be handled 

properly in order to obtain an accurate solution.  The approach taken here is to use the 

law of the wall to compute the flow adjacent to the walls.  Within a turbulent boundary 

layer, there exist three regions: the viscous sublayer, the buffer layer, and the log-law 

region.  The law of the wall is used so that the flow in the viscous sublayer and the buffer 

region need not be resolved.  Instead, an empirical formula is used to calculate the mean 

velocity, the dissipation rate, turbulent production, and the temperature of the first near 

wall node.  The equations for these quantities can be found in the FLUENT theory guide 

[2].  Using the law of the wall reduces computational costs when compared to modeling 

all three regions because the first computational cell can be placed further away from the 

wall, which results in less cells overall. 

An alternative to the turbulent viscosity models is a scale resolving simulation 

(SRS) model.  In a turbulent viscosity model, all scales of turbulence are modeled and the 
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equations of motion are time averaged so that only mean variables are solved for.  On the 

other hand, the SRS method models only the small scales of turbulence and resolves the 

large scales [10].  The advantage of SRS is that the large eddies, which are dependent 

upon geometry, and are resolved while the small eddies, which are more uniform and do 

not depend much upon the flow geometry are modeled.  Because the small scales are 

uniform in nature, they can be modeled by a theory which is applicable to a wide variety 

of flow problems.  Furthermore, SRS are transient: they can capture instabilities found in 

gas turbine combustors such as the vortex bubble breakdown formed in flows with strong 

swirl.  SRS can therefore yield much more information than a RANS simulation can 

provide. 

Unfortunately, SRS model is computationally extremely expensive, even more so 

than the RSM model.  The grid size must be small enough to capture the turbulent 

structures of interest.   Ideally, eddies in the inertial subrange should be resolved.  To 

accomplish this, Fluent recommends that 40-50 computational cells should span a length 

equal to the integral length scale [11].  In addition, the time step has to be sufficiently 

small enough such that a Courant Friedrich Levi number of 1 is obtained throughout the 

computational domain.  These requirements are also too stringent for this thesis, so the 

SRS model was not implemented. 

2.2 Combustion Fundamentals 

Combustion consists of several heat-releasing chemical reactions between a fuel 

and an oxidizer.  If the reactants are mixed before the reaction takes place, then the 

combustion that ensues is categorized as premixed combustion.  Once ignited, the 

flammable mixture propagates within the combustion chamber constantly consuming 
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fresh gases.  The fresh gases heat up as they pass through the flame and the heat causes 

the fresh gases to chemically react, thereby releasing more heat.  The flame propagates at 

a speed called the flame speed, and when the flame speed is equal to the speed of the 

incoming gases, the flame remains stationary.  It is the propagating nature of a premixed 

flame that restricts its universal use in combustion devices.  If the fuel supply is shut off 

unexpectedly, the flame can propagate back to the fuel supply and possibly cause an 

explosion [12].  It is for this reason that aircraft combustion chambers generally use a 

nonpremixed flame or partially premixed flame.  Premixed flames are predominately 

used in stationary gas turbines because of their potential for low NOx emissions. 

A nonpremixed flame occurs when fuel and oxidizer are not mixed before 

combustion takes place.  A mixture of fuel and oxidizer within the combustion chamber 

must be given enough time in order for the chemical reactions to take place completely.  

Nonpremixed flames are more stable and easier to control than premixed flames.  The 

sudden expansion type combustor utilizes a nonpremixed flame and, combustion, and its 

various configurations, are the focus of this project report. 

Before various available nonpremixed combustion models are reviewed, some 

general combustion terms and equations are explained.  A global reaction considers the 

reactants that initiate combustion, and the final products of combustion in one step.  If 

there is just the right amount of hydrocarbon fuel and oxidizer so that only CO2 and H2O 

remain after combustion, then such a global reaction is a stoichiometric reaction.  A 

stoichiometric reaction for a generalized hydrocarbon fuel is given as: 

௬ܪ௫ܥ  ቀݔ 
ݕ
4
ቁ ሺܱଶ  3.76 ଶܰሻ → ଶܱܥݔ 

ݕ
2
ଶܱܪ  3.76 ቀݔ 

ݕ
4
ቁ ଶܰ 

Equation 12: Generalized hydrocarbon stoichiometric reaction 
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The stoichiometric air-fuel ratio can be calculated as follows 

௦௧ܨܣ ൌ
4.76 ቀݔ 

ݕ
4ቁܯ ܹ

ܯ ܹ௨

Equation 13: Stoichiometric air-fuel ratio 

where ܨܣ௦௧ is the stoichiometric air-fuel ratio, ܯ ܹ is the molecular weight of air 

(28.85 kg/kmol) and ܯ ܹ௨ is the molecular weight of fuel.  FLUENT materials library 

has C12H23 as the molecular formula for kerosene (JP-5), which yields ܨܣ௦௧ ൌ 14.4.   

The local equivalence ratio,߶, is a measure of how fuel rich, or fuel lean a 

mixture is at a point.  The local equivalence ratio is defined as: 

߶ ൌ
௦௧ܨܣ
ܨܣ

Equation 14: Local equivalence ratio 

where AFL is the local mass ratio of air to fuel at a point.  When ߶ is unity, the mixture 

is stoichiometric.  When ߶ is greater than unity, then the mixture is fuel rich and when 

߶is less than unity, the mixture is fuel lean.  The equivalence ratio can also be 

established on a global basis for a combustor as: 

߶ீ ൌ
௦௧ܨܣ
ܨீܣ

Equation 15: Global equivalence ratio 

where ߶ீ is the global equivalence ratio, and ܨீܣ  is the ratio of the total mass flow rate 

of air to the total mass flow rate of the fuel entering the combustor.   

Equation 12 shows the initial and final states of combustion for the reactant and 

product species.  What is not shown, however, are the intermediate species formed during 

the combustion process.  Combustion takes place in a number of steps forming 

intermediate species with each step.  Those intermediate species then form other 
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intermediate species until combustion is complete.  Each elementary reaction shows one 

of the many chemical reactions that occur during the combustion process, and the 

collections of all elementary reactions is called the reaction mechanism.  The number of 

elementary reactions in a reaction mechanism can range from 40 to several thousand [13].  

Often, a reduced mechanism is used to approximate the reaction mechanism.  There are 

several techniques used to obtain a reduced mechanism, two of which are worth 

mentioning here.  One technique is to use the steady-state assumption on intermediate 

species that are produced and consumed in the reactions that take place very quickly.  

Since production and consumption rates of a species are approximately equal, time rate of 

change of concentration is approximately zero.  The other technique is to evoke the 

partial-equilibrium assumption.  The partial-equilibrium assumption is used when a 

reaction is very fast in the forward and reverse direction.  The fast reaction can then be 

assumed to be in chemical equilibrium so that rate equation need not be solved for the 

fast species.  Both the partial-equilibrium and steady-state equations are used to calculate 

NOx formation in this thesis. 

In order to mathematically model flows with combustion, the species 

conservations equations must be solved along with the Navier-Stokes and the energy 

equations.  The species conservation equation for the ith species is [12]: 

߲
ݐ߲
ሺߩ ܻሻ 

߲
ݔ߲

൫ݑߩఫഥ ܻ൯ ൌ
߲
ݔ߲

൫݉′′൯  ሶ߱ 

Equation 16: Species conservation equation 

where ܻ is the mass fraction of species i,  ݉′′ is the mass flux of species i in the jth 

direction, and ሶ߱  is the rate of production of species i due to chemical reactions.  The 

species mass flux poses modeling problems due to concentration gradients, thermal 
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gradients, pressure gradients, and other effects (see reference 12 and 14 for more details). 

The equations that describe these effects are quite complex. The mass flux term will be 

further discussed in the turbulent combustion section. 

The chemical production term poses a difficult challenge to model as well.  It is 

shown the following two equations [15] 

ሶ߱  ൌ ܯ ܹ൫߭′′ െ ߭′൯ܳ

ெ

ୀଵ

 

Equation 17: Reaction rate term 

ܳ ൌ ෑ൬ܭ
ߩ ܻ

ܯ ܹ
൰
ఔᇱೖೕ

െ ෑ൬ܭ
ߩ ܻ

ܯ ܹ
൰
ఔᇱᇱೖೕ

ே

ୀଵ

ே

ୀଵ

Equation 18: Progress Rate 

where M is the number of reactions, N is the number of species, ߭′′and ߥ′is the 

stoiciametric coefficient of the products and reactants respectively, and ܳ is the progress 

rate of the jth reaction.  ܭ is called the forward reaction rate and is calculated from an 

Arrhenius expression: 

ܭ ൌ ܶܣ
ఉೕ݁ݔ ൬െ ఈܶ

ܶ
൰ 

Equation 19: Arrhenius law 

where ܣ, ߚ, and ఈܶ are the pre-exponential constant, the temperature exponent, and 

the activation temperature respectively, and T is the temperature.  ܭ is the reverse 

reaction rate and can be calculated similarly from chemical equilibrium and ܭ.  The 

species conservation equation is written for N-1 species and even when complete reaction 

mechanism is used, the calculations would require vast computational resources.  

Furthermore, computing the time-average of the reaction rate for turbulent flows is 
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extremely difficult because of nonlinearity of the Arrhenius expression.  These 

complications force the use of reduced mechanisms in various combustion models as well 

as some alternate methods.  One such alternative method is the mixture fraction 

approach, in which instead of working with individual species mass fractions, one deals 

with a variable called the mixture fraction.  The mixture fraction is the ratio of mass of 

species that originated in the fuel to the total mass of the mixture.  If it is assumed that all 

diffusion coefficients of species are equal and the corresponding Lewis number (defined 

as the ratio of thermal diffusivity to mass diffusivity) is unity, which is a good 

assumption in turbulent flow.   Then the N-1 mass fraction equations can be replaced 

with the mixture fraction equation as shown below [12]: 

߲
ݐ߲
ሺ݂ߩሻ 

߲
ݔ߲

൫ݑߩఫഥ݂൯ ൌ
߲
ݔ߲

ቆܦߩ
߲݂
ݔ߲

ቇ

Equation 20: Mixture fraction transport equation 

where f is the mixture fraction and D is the mass diffusion coefficient.  This equation 

contains no source terms, which is its major strength.  One must then find relations 

between the mixture fraction and the various species mass fractions, temperature, and 

density.  One method to obtain such a relationship is to assume the species are in 

chemical equilibrium.  The species mass fractions, temperature, and density can then be 

found from a thermodynamic database for a given value of mixture fraction.  

With the mixture fraction field known, the local equivalence ratio can be 

computed from: 

߶ ൌ ௦௧ܨܣ ∗ ݂ሺ1 െ ݂ሻ 

Equation 21: Equivalence ratio as a function of mixture fraction 
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Equation 21 can be used to compute contours of constant equivalence ratios to see where 

the rich regions of the flame reside. 

One very important theoretical parameter in combustion is the corresponding 

adiabatic flame temperature.  It is the temperature that the products of combustion reach 

if all the chemical energy in the fuel is used solely to raise the temperature of the 

products.  In reality, the flame loses heat due to radiation heat transfer.  Complete 

combustion does not take place in practice as well; these two effects lower the flame’s 

temperature.  Therefore, the adiabatic flame temperature is an upper bound that the flame 

can ever reach.  This could be used as a check against numerical calculations and is done 

so in this thesis. 

2.3 Turbulent Combustion Modeling 

Time-averaging the governing equations is a widely used technique in predicting 

turbulent flows.  This technique, however, is not so straight forward when applied to the 

species conservation equations due to the nonlinear Arrhenius expression.  The mean 

reaction rate must be modeled, or another equation that accounts for chemical effects 

must be used in place of the species conservation equation.  Two turbulent combustion 

models are presented here: the eddy dissipation model (EDM) and the presumed 

probability density function (PPDF). 

In the EDM model, it is assumed that chemistry is much faster than the rate at 

which eddies can mix the reactants.  This assumption is reasonable when the operating 

pressure is high, since chemical reaction rates increase with pressure [15].  The mean 

reaction rate can then be taken to be proportional to the turbulent mixing rate, ε/k.  For a 



18 

one step irreversible reaction, the mean reaction rate ሶ߱ഥ can be found from the minimum 

of the following three equations [16]: 

߱തതതത ൌ ܣߩ̅ ܻഥ
ߝ
݇

Equation 22: Fuel reaction rate 

߱ைమതതതതത ൌ
ߩ̅
ݏ
ܣ ைܻమ
തതതത ߝ

݇

Equation 23: Oxidizer reaction rate 

߱തതതത ൌ
ߩ̅

ݏ  1
ܤܣ ܻഥ

ߝ
݇

Equation 24: Product reaction rate 

where s is the oxygen stoichiometric coefficient, and A and B are empirical constants.  In 

FLUENT, A and B are taken to be 4 and 0.5 respectively.  The EDM model must account 

for dissociation, or else the predicted temperatures would be far too high.  To account for 

dissociation without considering additional reactions, a modified polynomial for the 

specific heats for each species can be used.  This technique is used in this thesis when a 

case is computed using the EDM model 

In the presumed probability density function (PPDF) approach, the mixture 

fraction is used to obtain the mean density, mean temperature, and means species mass 

fractions from: 

ത߰ ൌ න ሺ݂ሻ߰ሺ݂ሻ݂݀
ଵ


 

Equation 25: Mean scalar calculated from PDF 

where ߰ represents the temperature, density, and species mass fractions and the relation 

߰ሺ݂ሻ is found from a thermodynamic database.  ሺ݂ሻ is the probability density function 
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of the mixture fraction for a turbulent flow.  In a PPDF model, ሺ݂ሻ is assumed to be an 

analytical function of one or more of its moments.  This thesis uses a β-PDF for ሺ݂ሻ as 

given by the following three equations [2]: 

ሺ݂ሻ ൌ
݂ఈିଵሺ1 െ ݂ሻఉିଵ

 ݂ఈିଵ ሺ1 െ ݂ሻఉିଵ݂݀

Equation 26: Equation for p(f) 

with ߙ as: 

ߙ ൌ ݂̅ ቈ
݂൫̅1 െ ݂൯̅

݂′ଶതതതത
െ 1

Equation 27: Equation for α 

and ߚ as: 

ߚ ൌ ൫1 െ ݂൯̅ ቈ
݂൫̅1 െ ݂൯̅

݂′ଶതതതത
െ 1

Equation 28: Equation for β 

The β-PDF is a function of its first two moments, the mean mixture fraction and the 

mixture fraction variance.  To compute the mean mixture fraction, Equation 20 is time-

averaged and in order to close the turbulent terms, a gradient diffusion hypothesis is 

utilized.  The resulting mean mixture fraction equation is [2]: 

߲
ݐ߲
൫݂ߩ൯̅ 

߲
ݔ߲

൫ݑߩఫഥ݂൯̅ ൌ
߲
ݔ߲

ቆ
௧ߤ
௧ߪ

߲݂̅

ݔ߲
ቇ 

Equation 29: Mean mixture fraction transport equation 

The mixture fraction variance equation can be derived from the mean mixture fraction 

equation; its modeled form is [2]: 
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߲
ݐ߲
൫݂ߩ′ଶതതതത൯ 

߲
ݔ߲

൫ݑߩఫഥ݂′ଶതതതത൯ ൌ
߲
ݔ߲

ቆ
௧ߤ
௧ߪ

߲݂̅

ݔ߲
ቇ  ௧ߤܥ ቆ

߲݂̅

ݔ߲

߲݂̅

ݔ߲
ቇ െ ߩௗܥ

߳
݇
݂′ଶതതതത 

Equation 30: Mean mixture fraction variance 

 .ௗ are model constants; their values are as 0.85, 2.86, and 2 respectivelyܥ , andܥ ,௧ߪ

Equation 25 for each scalar variable ߰ is valid only for adiabatic flows.  For non- 

adiabatic flows,  ߰ is a function of the mean enthalpy ܪഥ and the mixture fraction.  The 

following transport equation for the mean enthalpy must also be solved [2]: 

߲
ݐ߲
ሺܪߩഥሻ 

߲
ݔ߲

ሺݑߩపഥܪഥሻ ൌ
߲
ݔ߲

ቆ
݇௧
ܿ

ഥܪ߲

ݔ߲
ቇ 

Equation 31: Transport of mean enthalpy 

Thus a joint PDF of the mixture fraction and the enthalpy must be considered.  An 

assumption employed by FLUENT is that the enthalpy fluctuations are independent of 

the enthalpy level, and ത߰ then becomes: 

ത߰ ൌ න ,ሺ݂ሻ߰ሺ݂ ഥሻ݂݀ܪ
ଵ


 

Equation 32: Equation for a mean scalar for a non-adiabatic system using the PPDF 
model 

This equation is computed for various values of mean mixture fraction, mixture fraction 

variance, and mean enthalpy, and stored in look up tables that are used to calculate the 

temperature, density, and species mass fractions during the CFD computations. 

Since for fuel rich mixtures the chemical equilibrium assumption is invalid, one 

must take into account chemical non-equilibrium.  One method to take chemical non-

equilibrium into account is the use of the rich flammability limit (RFL) concept.  In the 

RFL model, chemical equilibrium calculations cease when the mixture fraction goes 

above twice the stoichiometric mixture fraction.  Temperature, density, and species mass 
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fractions are calculated based on mixing and not burning, which is because a mixture at 

an equivalence ratio of about 2 simply mixes without burning [18].  

2.4 Discrete Phase Modeling 

Gas turbines employed in aircraft differ from stationary gas turbines because 

aircraft must carry their fuel with them.  This restricts aircraft combustors to use liquid 

fuel.  Liquid fuel is injected into the combustion chamber via an atomizer.  The atomizer 

breaks up the fuel into droplets and injects them into the combustor to evaporate.  The 

atomization process of the liquid fuel and the subsequent combustion process of the fuel 

droplets are summarized in this section as justification of the idealization of the discrete 

liquid phase.  Then the corresponding discrete phase models are presented to show how 

the liquid phase processes are computed. 

The atomization process consists of primary atomization and secondary 

atomization.  Primary atomization consists of forming droplets from a jet or sheet of 

liquid fuel.  This is accomplished by a high relative velocity between the fuel and the 

atomizing fluid (which is usually air).  The relative motion between the fuel and the 

atomizing fluid creates instabilities which cause some of the fuel to break away from the 

jet which then forms into droplets.  The mechanism which creates the relative motion 

between the fuel and air differs between different atomizer designs.  One of the simplest 

atomizers is the plain-orifice atomizer, which consists of fuel exiting a circular hole as 

shown below 
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compute the trajectory of a large number of droplets.  Once the droplets impacted the 

prefilmer surface, they used a simplified version of the Navier-Stokes equations to 

predict the height of the film that would form on the prefilmer surface.  The film height 

was then used to calculate the Sauter mean diameter (to be defined later in this section) at 

the atomizing lip.  Their analysis agreed quite well with experimental data. 

Secondary atomization occurs when droplets break up into smaller droplets.  

There are several regimes of secondary atomization that occur under different operating 

conditions.  Each regime occurs with different relevant mechanisms for break up.  

Different theoretical models to treat secondary atomization can be applied depending on 

the Weber number and the primary mechanism of breakup.  For instance, FLUENT offers 

a droplet breakup model called the Wave breakup model which predicts newly formed 

droplets based upon the fastest growing Kelvin-Helmholtz instability [2]. 

Different atomizers produce a different distribution of droplets sizes.  There are 

different mathematical distribution functions in the literature which can be used to 

represent empirical data from an atomizer.  One very common distribution is the Rosin-

Rammler distribution, which is shown below 

1 െ ܳ ൌ ݔ݁ ቈെ ൬
ܦ
ܺ
൰


 

Equation 35: Rosin-Rammler distribution 

where Q is the fraction of volume of droplets less than D, and q and X are constants used 

to fit the data.  The Rosin-Rammler distribution is used in CFD analysis to represent a 

polydisperse spray without modeling the dense spray region close to the injector.  If no 

empirical data is available for an atomizer, then one can approximate the polydisperse 

spray with a monodisperse spray with an equivalent average diameter.  The most 
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commonly used average diameter is the Sauter mean diameter, which is the “diameter of 

a drop whose surface-to-volume ratio is equal to that of the entire spray” [20]. 

To model the liquid phase, the approach taken here is to use an Euler-Lagrange 

formulation.  In this approach, the gas phase is treated as a continuum by solving the 

Navier-Stokes equations, energy equation, species equation, and so on.  The liquid phase, 

however, is written in a Lagrangian frame of reference for each droplet, and each droplet 

is tracked within the computational domain.  Instead of modeling the flow around a 

droplet, empirical correlations are used to account for the effect of the gas phase on the 

liquid phase.  To account for the effect of the liquid phase on the gas phase, source terms 

are used in the momentum equations to account for drag, mean enthalpy equation to 

account for heat transfer, and mean mixture fraction to account for evaporation.  The 

main assumption used in the Euler-Lagrange model is dilute spray approximation.  Near 

the injector, the volume fraction of the liquid phase is high, and particle collisions and 

coalescence effects occur frequently.  Moreover, the evaporation rate of a droplet in the 

dense spray region is affected by its neighboring droplets.  Away from the injector, 

however, droplets rarely collide and the evaporation of one droplet does not affect 

another droplet’s evaporation rate.  The dilute spray assumption assumes the droplets 

tacked within the computational domain are far away from each other so that empirical 

correlations based off of a single evaporating droplet may be used.  

To track a droplet within the computational domain, a force balance is written on 

each droplet in the ith direction [2]: 
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,ݑ݀
ݐ݀

ൌ ݑ,൫ܨ െ ,൯ݑ 
݃൫ߩ െ ൯ߩ

ߩ
ܨ

Equation 36: Force balance on a droplet 

where ݑ, is the velocity of a droplet in the ith direction, ݑ is the gas velocity in the ith 

direction, ݃ is the gravitational acceleration component in the ith direction, ߩ is the gas 

density, and ߩ is the density of the liquid phase.  The ∑ܨ term represents forces that are 

usually neglected in spray combustion models such as forces  due to pressure gradients, 

the thermophoretic force, and Saffman’s Lift force, to name a few [2].  The second term 

on the RHS of Equation X represents the gravity force, and is neglected in the current 

analysis.  ܨ, is the drag force on the droplet in the ith direction and is calculated as 

follows [2] 

,ܨ ൌ
ߤ18
݀ଶߩ

ܴ݁ௗܥ
24

Equation 37: Drag force on a droplet 

with: 

ܴ݁ௗ ൌ
ݑห݀ߩ െ ,หݑ

ߤ

Equation 38: Droplet Reynolds number 

݀ and ܥ are the droplet diameter and droplet drag coefficient respectively.  To calculate 

the drag on the droplet, it is assumed that the droplet is spherical throughout its trajectory.  

Then the drag coefficient is calculated from [2]: 

ܥ ൌ ܽଵ 
ܽଶ
ܴ݁ௗ


ܽଷ
ܴ݁ௗ

ଶ 

Equation 39: Drag coefficient for a spherical droplet 
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where ܽଵ,	ܽଶ, and ܽଷ are constants found from reference 22.  Equation 36 is solved for 

the velocity and the droplet trajectory using a trapezoidal discretization technique.  For 

further details, see the FLUENT theory guide [2]. 

To model the evaporation of a droplet, FLUENT uses several laws which employ 

different equations depending upon the droplet’s current temperature.  When the droplet 

is below the vaporization temperature of kerosene, which is taken to be 341 K, FLUENT 

assumes no evaporation takes place, and the temperature of the droplet is calculated from: 

݉ܿ
݀ ܶ

ݐ݀
ൌ ൫ܣ݄ ஶܶ െ ܶ൯

Equation 40: Heating of a droplet 

Here, radiation heat transfer of the liquid phase is neglected and the droplet is always 

assumed to be at a constant temperature ܶ.  ܿ, ݉, h, ܣ, and ஶܶ are the specific heat of 

the droplet, mass of the droplet, heat transfer coefficient, droplet surface area, and local 

gas phase temperature respectively.   

When the droplet temperature is at the boiling point of kerosene, which is taken to 

be 477 K, FLUENT uses a boiling rate controlled evaporation equation: 

݀݀
ݐ݀

ൌ
4݇ஶ

ܿ,ஶ݀ߩ
൫1  0.23ඥܴ݁ௗ൯݈݊ ቈ1 

ܿ,ஶ൫ ஶܶ െ ܶ൯
݄

 

Equation 41: Boiling controlled evaporation rate 

where ܿ,ஶ and ݇ஶ is the specific heat and thermal conductivity of the gas phase 

respectively.  It is assumed that the droplet’s temperature is at the boiling point 

throughout the evaporation process. 
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2.5 Radiation Modeling 

Radiation heat transfer can be a dominate mode of heat transfer in combusting 

flows due to the high temperatures of the products of combustion.  Furthermore, radiation 

effects can alter the species concentrations present in the combustor [23].  To account for 

radiation heat transfer, one must solve the radiative transfer equation (RTE): 

,࢘ሺܫ݀ ሻ࢙
ݏ݀

 ሺܽ  ,࢘ሺܫ௦ሻߪ ሻ࢙ ൌ ܽ݊ଶ
ସܶߪ

ߨ

௦ߪ
ߨ4

න ,࢘ሺܫ ,࢙ሻΦሺ࢙ ᇱሻ݀Ω࢙
ସగ


 

Equation 42: Radiative transfer equation 

I is the radiation intensity at a position ࢘ in the direction of the vector ࢙.  
ௗூ

ௗ௦
 is the change 

in intensity along a ray path.   Φሺ࢙,  ௦ are the scattering phase function andߪ ᇱሻ and࢙

scattering coefficient respectively, and are generally a function of temperature, frequency 

range, chemical concentration, and chemical composition [24].  ܽ  is the absorption 

coefficient which is dependent on temperature, pressure, frequency range, and chemical 

concentration.   n is the refractive index, and represents the ratio of the speed of light in a 

medium to the speed of light in a vacuum.  ߪ is the Stefan-Boltzman constant.   

The RTE equation differs from the other governing equations in that its dependent 

variable is a function of direction and position, and it is an integro-differential equation.  

The RTE has to be further simplified in order to be implemented into a finite volume 

scheme.  There are several techniques in the literature to simplify the RTE equation, two 

of which are discussed here: the P-1 model and the discrete ordinates (DO) model. 

The radiative properties of a fluid are also a source of complexity when modeling 

radiative flows because they depend on many variables.  The emissivity of walls, for 

example, varies with surface roughness and the amount of oxidation present [25].  
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Simplification of the properties of the radiating gases and its enclosure must be made in 

order to obtain a solution to the governing equations.  Some of the common 

simplifications used in the literature are briefly reviewed and are also employed in this 

report. The scattering coefficient is assumed to be zero throughout the computational 

domain.  All walls are assumed to be grey blackbody emitters, and they also reflect 

incident radiation in an isotropic manner.  The index of refraction is taken to be unity.  To 

model the non-grey behavior of the absorption coefficient and emissivity, the weighted –

sum-of-grey-gases (WSGG) model is used.  For further details, see the FLUENT theory 

guide [2]. 

The P-1 model is a very common simplification to the RTE that is employed in 

this thesis.  The P-1 model expands the radiation intensity into a series of spherical 

harmonics and retains the first four terms of the series [26].  As a result, one only needs 

to solve a transport equation for the incident radiation G [2]: 

߲
ݔ߲

൬
1
3ܽ

ܩ߲
ݔ߲

൰ െ ܩܽ ൌ െ4ܽ݊ଶܶߪସ 

Equation 43: P-1 equation (with a zero scattering coefficient) 

From the solution of the radiation intensity, one can compute the source term for the 

mean enthalpy equation, ܵோ, due to radiation heat transfer from the expression shown 

below: 

ܵோ ൌ െ
ݍ߲
ݔ߲

ൌ ܩܽ െ 4ܽ݊ଶܶߪସ

Equation 44: Source term for mean enthalpy equation due to radiation heat transfer 

where ݍ is the heat flux in the ith direction.  The boundary condition for the incident 

radiation is given below: 
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௪ݍ ൌ െ
1
3ܽ

ܩ߲
߲݊

ൌ െ
௪ߝ

2ሺ2 െ ௪ሻߝ
ሺ4ܽ݊ଶܶߪସ െ  ௪ሻܩ

Equation 45: P-1 Boundary Conditions 

where ݍ௪ ,	ߝ௪ , and ܩ௪ is the wall heat transfer due to radiation, wall emissivity, and 

incident radiation at the wall respectively. 

The DO model solves the RTE in n discrete directions that span a solid angle of 

4π steradians [26]. As a result, there are n RTE’s that are solved along with the other 

governing equations.  For methods of angular discretization, and boundary conditions of 

for the discrete ordinates model, see the FLUENT theory guide [2]. 

2.6 Pollutant Formation 

 This section reviews the effect of NOx and CO on human health and the 

environment.  Then it discusses some general trends found in gas turbine combustors.  

The section concludes with how NOx formation is modeled in this thesis. 

CO is formed in the rich regions of a flame when there is insufficient oxygen to 

react with the fuel to complete combustion [27].  It can also be formed under lean 

conditions due to dissociation of CO2.  CO is toxic to the human body and can cause 

asphyxiation if large amounts are inhaled. CO production is minimal towards the leaner 

side of stoichiometry (0.8 < ߶ < 1) and rises quickly when the equivalence ratio is 

outside of that range [28]. Increasing the operating pressure has shown to decrease the 

CO emissions.  An increase in residence time has also shown to decrease CO emissions 

because more time is available to complete combustion [29]. 

 NOx is the term used to collectively refer to oxides of nitrogen; some of the 

common oxides of nitrogen found in combustion systems are NO, NO2, and N2O.  
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Among these three, NO is the most abundant species in a combustor.  At lower altitudes, 

NO forms ozone and NO2.  ozone in lower altitudes can cause various illnesses [28].  

NO2 can react with water in the atmosphere to form acid rain which is highly corrosive.  

NO2 can also react with unburned hydrocarbons in the atmosphere and sunlight to 

produce smog.  In very high altitudes, NO can react with ozone to deplete the ozone layer 

that is responsible for blocking harmful ultraviolet rays. 

For fuels with no nitrogen content, there are three mechanisms which produce 

NOx: the Zeldovich mechanism, the Fenimore mechanism, and the N2O mechanism [28].  

NOx formed by the Zeldovich mechanism is called thermal NOx; it increases 

exponentially with flame temperature and linearly with an increase in residence time 

[29].  NOx produced by the Fenimore mechanism is referred to as prompt NOx and is 

dependent upon the amount of carbon atoms present in the fuel [2]. NOx produced by the 

N2O mechanism involves a reaction between N2, O, and a third body molecule [13].  It 

occurs under oxygen rich conditions and high operating pressures and can occur at lower 

temperatures as compared to thermal NOx due to its lower activation energy [2].  Pressure 

seems to have a varied effect on NOx production which varies with each combustor.  NOx 

can be insensitive to pressure, or it can vary with pressure raised to some power between 

0.5 and 0.8 [27]. 

To compute the NOx in FLUENT, a NOx post processor is used.  Once the flow 

field has been computed, the NOx post processor solves a species transport equation for 

the NO and N2O mass fractions.  Since the NOx calculations are decoupled from the 

governing equations, it is assumed that the NOx has a negligible impact on the rest of the 
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flow.  In modeling the reaction rate term, the quasi-steady state assumption is made for 

the N atoms and the partial equilibrium assumption is used for O and OH.  

 To compare NOx and CO emissions among the different combustor 

configurations, a mass weighted average of the NOx and CO mole fractions are computed 

at the exit plane of the combustor.  The mole fractions are calculated in parts per million 

(ppm) on a dry basis as follows [12]: 

߯, ൌ
1,000,000 ∗ ߯
൫1 െ ߯ுమை൯

Equation 46: NO and CO in parts per million on a dry basis 

where ߯, is NO or CO in parts per million on a dry basis, ߯ is the NO or CO mole 

fraction, and ߯ுమை is the mole fraction of H2O.  Another indicator of emissions is the 

emission index, which is the amount of a pollutant emitted in grams per kilogram of fuel.  

The emission index is calculated as shown below [30]: 

ܫܧ ൌ
ܻ ሶ݉ ∗ 1000݃/݇݃

ሶ݉ 

Equation 47: Emission index for pollutant i 

where ܫܧ is the emission index of either NO or CO, and ሶ݉  is the mass flow rate of fuel. 

2.7 Compressibility Effects and Performance Parameters 

An incompressible flow solver is used to solve for the flow field within the 

combustor.  To check the condition of incompressibility, the Mach number must be 

checked in the exit plane.  The Mach number is computed as shown below: 

ܽܯ ൌ ܸ

ඥܴܶߛ

Equation 48: Mach number 
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where ܸ and T are the mass-weighted axial velocity at the exit and mass-weighted 

temperature respectively.  R is the gas constant which is taken to be the gas constant of 

air (0.287 


∗
) since combustion gases have a molecular weight close to air.  ߛ is the 

ratio of specific heats and is value is taken to be 1.33 which is representative of 

combustion gases [29]. 

One important parameter in combustor design which measures losses in the 

combustor is the ratio of the stagnation pressure drop across the combustor, ܲ, െ ܲ,, to 

the inlet stagnation pressure ܲ,.  Assuming incompressible flow, the pressure loss, 
∆
,

can be found from: 

∆ ܲ

ܲ,
ൌ
ቀ ܲ 

1
ߩ2 ܸ

ଶቁ െ ቀ ܲ 
1
ߩ2 ܸ

ଶቁ

ቀ ܲ 
1
ߩ2 ܸ

ଶቁ

Equation 49: Pressure loss 

Another important performance parameter is the combustion efficiency, η, which 

represents the fraction of fuel that is burned in the combustor to the total fuel mass flow 

rate.  It can be calculated from: 

ߟ ൌ 1 െ ܻ ሶ݉
ሶ݉ 

Equation 50: Combustion efficiency 

where ሶ݉  is the fuel flow rate, ሶ݉  is the mass flow rate of the combustion gasses,  and ܻ 

is the mass-weighted average of the fuel mass fraction in the exit plane. 

Residence time is defined as the ratio of the combustor length to the inlet velocity.  

Physically, it represents the average time a fluid particle spends inside the combustor; it 

is used in emission calculations in the results section.  
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added and mixed uniformly with the primary zone gases to achieve a lean equivalence 

ratio (about 0.5 to 0.7) and a low exit temperature [28]. 

Another type of combustor used to achieve low NOx is the lean direct injection 

(LDI) combustor.  In an LDI combustor, all the air from the compressor is sent to the 

primary zone except that which was needed for liner cooling.  Fuel and air are mixed via 

one swirler, or many smaller swirlers.  Combustion takes place at a low equivalence ratio 

throughout the combustor as to keep the flame temperature low to discourage NOx 

production [32].  

2.9 Solver Theory 

This report utilizes the finite volume method (FVM) to solve for the reacting flow 

field.  In the FVM, the computational domain is subdivided into a finite number of 

control volumes.  The integral forms of the governing equations are written for each 

control volume and the resulting equations are solved.  The steady form of the governing 

equations in general form is  

න ࢛߶ߩ ∙ ݀


ൌ න Γథ߶


∙ ݀  න ܵథܸ݀


Equation 51: Transport equation for a general scalar ࣘ  

where ߶ is a general scalar that represents mass flux, mean enthalpy, mixture fraction, 

and other relevant variables, dA is a surface element of the area A, V is the volume of the 

control volume, Γథ is a diffusion coefficient of ߶, and ܵథ is a source term.  The integral 

and gradient term must be discretized in order to obtain a solution.  The discretized form 

of Equation 51 is: 
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∙ ࢌ ൌΓథ߶ ∙ ࢌ 

ே



ܵథܸ 

Equation 52: Discretized form of governing equations 

where ܰ is the number of faces of a control volume, and the subscript f denotes the face 

value of the control volume.  The scalar values are stored in the center of each control 

volume.  To obtain the scalar values at the cell faces, a second order upwind scheme is 

used for the can type combustor geometry.  When the second order upwind scheme was 

used for the annular type combustor geometry, the solution did not converge.  To remedy 

this, a first to higher order blending scheme is used.  Its accuracy is midway between that 

of a first order upwind scheme and a second order upwind scheme.  For further details, 

refer to the FLUENT theory guide [2].  The gradient term is computed using the least 

squares cell based method.   

FLUENT’s segregated solver is used to solve the governing equations.  Each 

equation is solved sequentially and uncoupled from one another.  After guessing an initial 

solution, the momentum equations are solved.  Then, a pressure correction equation is 

solved that corrects the mass fluxes at each face so that the continuity equation is 

satisfied.  The SIMPLE algorithm is used to obtain the pressure correction equation.  

After the mass fluxes are corrected, equations for turbulent quantities, mixture fraction, 

mixture fraction variance, and radiation intensity are solved.  Then the source terms are 

updated from the discrete phase quantities.  If convergence is not obtained after the 

source terms are updated, then this process repeats until one has a converged solution. 

Convergence is judged by monitoring the residuals.  Once the residuals stop 

changing, contours of temperature, velocity, species, and other relevant variables are 
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monitored while running more iterations.  If the contours do no exhibit any noticeable 

changes, then the solution is considered converged. 

2.10 Literature Review 

Some of the research work regarding NOx reduction in gas turbine combustors are 

presented in this section, focusing is on aircraft combustors.  Representative NOx and CO 

emission levels and trends for various combustors are presented for comparison with the 

results presented in this thesis.   Also presented in this section are reported maximum 

flame temperatures from studies which used C12H23 as the molecular formula for 

kerosene.  This serves as a form of validation for the results in this thesis since there is no 

experimental data presented for the SUE combustor as of yet. 

Rosfjord et al. [33] conducted an experimental study on a scale model of a LDI 

stationary gas turbine which utilized the RQL concepts for different liquid synthetic fuels 

which contained fuel-bound nitrogen.  They varied the operating pressure and residence 

time and studied their effect on NOx and smoke emissions.  They found the NOx 

emissions to be insensitive to fuel bound nitrogen content, operating pressure, and 

residence time.  They have quoted NOx levels as low as 37 ppm could be achieved with 

the RQL concept. 

Hussain et. al [34] performed experiments on a jet type mixing combustor that 

uses jets of air, rather than a swirler to achieve mixing of fuel and air.  About 10 ppm of 

NOx in the exit plane was achieved because the jets of air where able to mix with the fuel 

in a rapid and efficient manner.  Good combustion efficiency and flame stability was also 

achieved.  It was reported that the jet type mixing combustor had NOx emissions on par 

with premixed systems without the stability issues 
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Tancia [35] presented results from experimental studies performed on RQL, LPP, 

and LDI combustors with the intent to find correlations for NOx.  He reported that the 

LPP and LDI combustors had the lowest NOx emissions compared to the RQL 

combustors, but the LPP suffered from instability issues.  It was claimed that the RQL 

combustors could approach the emission levels of the LPP combustor if the quench step 

was improved.  He reported that there was no definite pressure dependence on NOx 

production for the three combustor types. 

Valachovic [36] performed CFD calculations on a turbofan combustor at idle 

power conditions to see the effects of the variation of liner-wall cooling on CO and UCH 

emissions.   It was found that UCH and CO emissions increased with liner wall cooling.  

The highest CO emission index value found from experiment is 100 g/kg fuel.   

Talpallikar et. al [7] performed a parametric study using CFD on a relatively 

simple combustor to see how the design of the quick mix section of an RQL combustor 

effects NOx emissions. They varied the slot aspect ratio of the jets that are responsible for 

quickly bringing the equivalence ratio from rich to lean as well as the momentum flux 

ratio between the quick-mix jets and the liner air flow.  They found that the NOx levels 

were very sensitive to both momentum flux ratio and slot aspect ratio.  The study showed 

that the quick mix section must be carefully designed in order to obtain low NOx

emissions.  

Meisl et. al. [37] studied the effect of operating pressure and primary equivalence 

ratio on NOx formation in an RQL combustor using the perfectly stirred reactor (PSR) 

concept and by experiment.  Three conditions were studied, a low power condition, 

medium power condition, and high power condition and totally fixed nitrogen (TFN) 
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concentrations were taken in the primary zone, and in the exhaust gases.  It was found 

that for each condition, there existed an optimal equivalence primary equivalence ratio 

which produced the lowest NOx.  This optimum equivalence ratio decreased with 

increasing pressure.  Furthermore, the increase in pressure did not affect the TFN 

concentration in the rich primary zone, but had a significant effect in the lean zone.  

Datta and Som [38] performed numerical studies on a Lean Direct Injection (LDI) 

combustor which uses liquid n-hexane as the fuel. They studied effect of pressure and 

swirl number on NOx emissions. The air was at a temperature of 1060 R (589 K) and an 

equivalence ratio of approximately 0.25 was used.  They performed calculations with the 

pressure at 14.5 psi (1 bar) and at 87 psi (6 bar) and found the NOx levels at the exit to be 

19.16 ppm and 203 ppm respectively.  These values were at a swirl number of 0.76, 

which is considered to be moderately swirling flow. 

Zarzalas et. al. [39] performed an experimental study on an RQL combustor 

which utilized a conventional swirler to stabilize the flame.  They performed a parametric 

study to see how NOx and soot values vary with operating pressure and air-fuel ratio 

(AFR). The inlet air temperature was 1300 R (722 K) and the pressure was varied from 

87 psi (6 bar) to 275 psi (19 bar).  The NOx production increased with operating pressure 

for all cases.  The NOx levels also rose with AFR up to stoichiometric conditions then 

decreased for rich fuel conditions.   

Tancia et. al. [40] performed an experimental study on a lean-direct injection 

combustor using various inlet temperatures, swirler configurations, operating pressures, 

and flame temperatures.  For an inlet temperature of 810K, an inlet pressure of 400 psi 

(27.6 bar), and a flame temperature of 1800 K the NOx emission index is less than 6.  
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They were also able to find correlation between inlet temperature, inlet pressure, fuel-air 

ratio, and swirler pressure drop which fit well for their cases. 

Bank et. al. [41] describes the development of an axially staged lean-premixed 

partially-pre-vaporized (LP(P)) combustor.  The residence time of the fuel in the 

prevaporizer is much smaller than the auto-ignition delay time, which prevents auto-

ignition and flashback.  The NOx emission index never exceeded 4 g/kg fuel at high 

temperature and pressure conditions, but the combustor suffered stability issues close to 

lean blow out (LBO) conditions.  To remedy this, a RQL pilot burner was added, which 

improved stability, but raised NOx levels. At an operating pressure of 72 psi (5 bar) and a 

temperature ranging from 400K to 535K, the NOx emission index for only the RQL pilot 

burner ranged from 0.1 to 7.1 g/kg fuel, and the CO emission index ranged ranged from 

38 to 66 g/kg fuel for  

Straub et. al. [42] performed experimental and numerical simulation of a 

stationary RQL Trapped Vortex Combustor (TVC).  Studies were conducted with the 

inlet temperature at 700 F (644 K), the pressure at 147 psi (10.1 bar), and the fuel as 

gaseous methane.  It was found that the NOx levels decreased with increasing cavity 

equivalence ratio up to about an equivalence ratio of about 1.6 then the NOx levels very 

slowly increased after that.  The CO levels did not increase with cavity equivalence ratio 

up to about a value of 2 then the CO levels slowly increased after that.  They claimed that 

their TVC combustor can obtain a theoretical lower limit of 10 ppm of NOx levels if the 

mixing is perfect.   

Puster et. al. [1] has performed some numerical studies on the SUE combustor 

presented in this thesis, although the combustor in this thesis contains some slight 
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modifications to the geometry.  They have reported that the sudden expansion combustor 

produced about 45 parts per million (ppm) of NOx at the exit plane of the combustor for 

high power conditions (equivalence ratio is about 1) and about 4 ppm of NOx at moderate 

power conditions.  They used two types of liquid fuels.  This thesis extends their work to 

provide NOx and CO characteristics for a wide range of operating conditions. 

Patel et. al. [43] performed an experimental and CFD study on a LDI combustor 

using C12H23 as their fuel.  The air inlet conditions are 294 K and 1 atm.  It was found 

that they had a maximum temperature of 2350 K and 2646 K.  The NOx and CO 

maximum at the centerline are 700 ppm and about 650 ppm respectively. 

Frassoldati et. al. [8] performed an experimental and CFD analysis of a LPP 

combustor for a turbofan engine.  Their CFD model used a 20 degree angular sector 

which captured a section of the fuel injector/swirler assembly.  They used C12H23 as the 

fuel and reported a maximum temperature between 2300 K to 2500 K.   They also 

provided plots of radially averaged NO and CO as a function of the azimuthal angle of 

the combustor.  The peak NO concentration encountered in the combustor was around 

500 ppm to 600 ppm while the CO concentrating peaked at around 600 ppm.  

 Yamamoto et. al. [44] performed experiments on a combustor which utilized a 

triple swirler which can create a nonpremixed flame and/or a premixed flame, depending 

upon the power conditions.  The fuel utilized is kerosene; their reported maximum flame 

temperature is 2286 K. They performed a parametric study on how NOx, CO, smoke, and 

unburned hydrocarbons (UHC) varied as a function of operating points during a landing 

take off cycle (LTO).  It was found that 100% maximum take-off thrust (a combustor 

pressure of 380 psi (26.2 bar) and an inlet temperature of 787 K), the NOx emission index 
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was no more than 9 g/kg fuel and the CO was no more than 60 g/kg of fuel.  When only 

the nonpremixed mode of the swirler was used, the NOx emissions were no more than 16 

g/kg fuel.   
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Turbulence Intensity  10%

Air Inlet Temperature  556 K

Wall Temperature  556 K

Droplet Diameter  10 µm

Droplet Temperature  300 K

Cone Angle  30°

Cone Radius 

0.03125 in 

(0.79 mm)

Initial Fuel Velocity 

600 ft/s 

(183 m/s)

% Primary Air  65.50%

% Secondary Air  3.13%

% Dilution Air  31.40%

Table 1: Boundary conditions common to both combustors 

The turbulence intensity represents the ratio of the root-mean square velocity to the mean 

velocity and is taken to be 10% to represent moderately turbulent flow coming from the 

diffuser.  The integral length scale is taken to be 7% of the hydraulic diameter [14].  The 

air and wall temperature is taken to be 556 K to be representative of the temperature of 

the air exiting a high pressure compressor. The velocity, temperature, and turbulence 

quantities are all assumed to be uniform at the inlets. % Primary Air, % Secondary Air, 

and % Dilution Air represent how much of the total airflow is split among the air coming 

from the inlet, the annular cooling slot, and the dilution holes respectively.   The air 
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Can Combustor Velocity 

Primary Air Velocity 

300 ft/s 

(91 m/s)

Dilution Air Velocity 

170 ft/s 

(52 m/s)

Secondary Air Velocity 

30 ft/s   

(9 m/s)

Table 2: Can Type Combustor Inlet Velocities 

Annular Combustor Velocity 

Primary Air Velocity 

280 ft/s   

(85 m/s)

Dilution Air Velocity 

120 ft/s   

(37 m/s)

Secondary Air Velocity  12 ft/ (4 m/s)s

Table 3: Annular type Combustor inlet velocities 

The operating pressure is changed from 300 psi (20.7 bar) to 100 psi (6.9 bar) in 

increments of 50 psi (3.4 bar).  Each of the five operating pressure cases to be studied has 

different mass flow rates for each inlet since the density changes with operating pressure.  

For a fixed operating pressure, the global equivalence ratio is changed from 0.9 to 0.5 in 

increments of 0.1.  To change the equivalence ratio for a fixed operating pressure, the 

fuel flow rate was varied while the air mass flow rates were kept constant. 
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4. RESULTS 

 The CFD analysis of the can type and the annular type combustor are presented in 

this section.  The results of different turbulence models, combustion models, and 

radiation models are presented to show the differences between the models.  Finally, the 

results of the parametric study are presented for both combustor types. 

4.1 Reacting Flow Fields of the Can Type and Annular Type Combustors 

 Detailed results for the can and the annular type combustors are shown for the 

case of an operating pressure of 300 psi (20.7 bar) and a global equivalence ratio of 0.7.  

Various contour information shown about the mid-plane of each combustor type.       

Contours of velocity magnitudes are shown first for both combustors: 
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The temperature contours for both the can type combustor and the annular type 

combustor are shown below in Figure 31.   Due higher velocity of the secondary inlet jets 

in the can combustor, the top portion of the primary region has a leaner mixture than that 

of the annular combustor.  Since both regions are above an equivalence ratio of 1, the 

lower equivalence ratio region has a higher temperature.  This explains why the 

temperature of the primary region of the can combustor is at a higher temperature than 

the annular combustor.  Since the primary region is rich, the temperatures there are lower 

which produces lower NOx levels as compared to the case where combustion takes place 

closer to stoichiometry.  However, for inlet flow conditions chosen for the primary inlet, 

secondary inlet, and cooling holes, no quick-quenching takes place.  Combustion takes 

place in the dilution region which produces high temperatures.  This is in stark contrast to 

conventional RQL combustors which have a lean, homogenous dilution zone. 
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The annular combustor has a higher NOx emission index than the can type combustor, but 

its CO emission index is lower.  This can be attributed to the residence time of both 

combustors.  CO emissions increase with a decrease in residence time which is why the 

can type combustor has worse CO emissions than the annular type.  NOx levels increase 

linearly with residence time for many combustors.  Looking at Table 4, the residence 

time of the annular combustor is 3.6 times that of the annular combustor.  Assuming the 

sudden expansion combustor follows the same linear trend, the NOx emission index in the 

annular type combustor is: 

3.6 ∗ ݈݁ݑ݂		݃݇/ܱܰ	݃	3.6 ൌ  ݈݁ݑ݂	݃݇	/ܱܰ	݃	12.96

which is approximately the same result calculated for the annular type combustor. 

 The calculated values for pressure drop are below that quoted in the literature for 

a typical combustor.  Also, the annular combustor pressure drop is lower than the can 

combustor pressure drop, which is consistent with the literature, although the difference 

is minute. 

 The RQL combustor studied by Bank had the highest NOx emission index of 7g 

NO/kg fuel and the highest CO emission index of 66 g CO/kg fuel.  The can type 

combustor has a NOx emission index lower than this value, but the CO emission index is 

far too high.  The annular type combustor’s CO emission index is too high as well, 

although it is better than the CO emission index of the can type combustor. 

4.2 Comparison of Results for Various Models 

 This section compares different turbulence, combustion, and radiation models that 

are frequently used in the literature to model combustion problems.  The results using the 

eddy dissipation model are compared to the PPDF model.  Then a case utilizing the RSM 
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model is compared to the results using the k- ε model.  Finally the results for all the 

models are summarized and compared at the end of the section.  All cases are computed 

with an operating pressure of 300 psi (20.7 bar) and a global equivalence ratio of 0.7.  

The models are compared only for the can type combustor.  

 Figure 40 shows temperature contours resulting from using the eddy dissipation 

model.  The temperatures obtained from the eddy dissipation model are much lower than 

the predicted values from the PPDF model.  The PPDF model therefore represents a more 

conservative estimate of the flow field because it predicts higher temperatures. 

 

 

 

 

 

 

 

 

 



 

T

m

d

d

d

Figure 40: C
shows the r

The contours 

much lower th

issipation m

issipation ca

issipation ca

Contours of t
results obtain

ob

of NOx con

han in the PP

model.  The re

ase because t

ase. 

temperature 
ned from the
btained from

centrations a

PDF model,

egion of max

the region of

78 

(K) for the e
e PPDF mod
m the eddy d

are shown in

 the NOx lev

ximum NOx

f maximum 

eddy dissipa
del, the botto
dissipation m

n Figure 41. 

vels are also 

x concentratio

temperature

ation model. 
m picture sh

model. 

 Since the te

much lower

on is wider f

e is wider for

The top pic
hows the resu

emperatures 

r with the ed

for the eddy 

r the eddy 

 

 
ture 
ults 

are 

ddy 



 

 

 

n

ra

le

 

F

Figure 41
obtained fro

The re

o contours a

adiation mod

evels and com

The te

igure 42.  Th

: Contours o
om the PPDF

ealizable k-ε

are shown.  T

del, so no co

mbustion eff

emperature c

he RSM mo

of NOx conce
F model, the 

eddy

ε model prod

The discrete 

ontours are sh

ficiency are 

contours with

del calculati

79 

entration (pp
bottom pict

y dissipation

duces similar

ordinates m

hown for tha

reported. 

h the Reyno

ions predict 

pm). The top
ture shows th
n model. 

r results to th

model results 

at model as w

olds stress mo

a mixture in

p picture sho
he results ob

he standard 

are very sim

well.  Only t

odel are sho

n the primary

ows the resul
btained from

k-ε models,

milar to the P

the emission

own below in

y zone that is

 

 

lts 
m the 

so 

P-1 

ns 

n 

s 



 

cl

co

b

T

 

F

loser to stoic

orner of the 

etween 1.7-2

The leaner mi

Figure 42: Te
PPDF mo

chiometry as

primary zon

2.0, whicle t

ixture produ

emperature c
odel, the bott

s compared t

ne, the local 

the equivelen

uces higher te

contours (K)
tom picture 

80 

to the standa

equivelence

nce ratio pre

emperatures

). The top pic
shows the re

ard k-ε case.

 ratio compu

edicted by th

s in the prim

cture shows 
esults obtain

  Close to th

uted by the R

he k-ε is betw

ary zone.

the results o
ned from the 

he upper left 

RSM model

ween 2.0-2.3

obtained from
RSM mode

is 

3.  

 

 

m the 
l. 



 

 

pr

zo

 

re

d

The N

roduces mor

one, and this

Figure 43
obtained fro

A sum

ealizable k-ε

ifferences.  T

NOx concentr

re NOx in the

s attributes to

: Contours o
om the PPDF

mmary of all 

ε models, RS

The eddy dis

rations of the

e primary zo

o its higher o

of NOx conce
F model, the 

the models 

SM model, a

ssipation mo

81 

e RSM mod

one due to th

overall NOx

entration (pp
bottom pict
RSM mod

tested are pr

and DO all pr

odel produce

del are shown

he higher tem

 levels in the

pm). The top
ture shows th

del. 

resented in T

roduced sim

ed a differen

n below.  Th

mperatures in

e exit plane. 

p picture sho
he results ob

Table 5.  The

milar flow fie

nt temperatur

he RSM mod

n the primary

ows the resul
btained from

e standard an

elds with min

re field whic

del 

y 

 

 

lts 
m the 

nd 

nor 

ch 



82 
 

predicted much lower temperatures than the other models, and it predicts a wider area of 

maximum temperature.  The RSM predicts noticeably higher emissions and lower 

combustion efficiency than the other models due to its different prediction of mixing in 

the primary zone.  Note how a difference in equivalence ratio of about 0.3 constitutes an 

increase of about 100 ppm of NOx in the exit plane.  The k- ε models and the DO model 

produced all produced similar emission levels and combustion efficiency. 

300 psi, 0.7 ER  Standard k‐ε
PPDF 
P‐1 

Realizable k‐ ε
PPDF 
P‐1 

RSM
PPDF 
P‐1 

Standard  
k‐ ε 
PPDF 
DO 

Standard    
k‐ ε 
EDM 
 

Combustion Efficiency  98.70% 98.90% 97.70% 98.90%  99.30%

NOx (ppm)  178  118 280 180  0.3

NOx Emission Index  3.6  2.39 5.73 3.6  0.006

CO (ppm)  29774 28527 34882 28128  N/A

CO Emission Index  559  535 663 529  N/A

Table 5: Summary of results from various models 

4.3 Results of the Parametric Study 

 The variation in NOx concentrations and emission index in the exit plane for the 

can type combustor for varying operating pressure and global equivalence ratio are 

shown in Figures 44 and 45: 
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Figure 44: NOx exit concentration variation with operating pressure and equivalence ratio 
for the can type combustor. 

 

Figure 45: Variation of NO emission index with operating pressure and equivalence ratio 
for the can type combustor. 
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At an equivalence ratio of 0.5 and an operating pressure of 100 psi (6.9 bar), the primary 

zone equivalence ratio is close to unity, more so than the other cases with higher 

equivalence ratios.  When the operating pressure is increased with a fixed equivalence 

ratio of 0.5, the primary zone equivalence ratio reduces to unity, and thus higher 

temperatures are encountered in the primary zone.  These higher temperatures produce 

higher NOx concentrations in the primary zone.  An additional case is run with an 

operating pressure of 275 psi (19 bar) to see how the pressure varied between the case of 

250 psi (17.2 bar) and 300 psi (20.7 bar).  This is represented by the orange dot in Figures 

44 and 45. 

 Similar NOx data for the annular type combustor are shown in Figure 46 and 47 

 

Figure 46: NOx exit concentration variation with equivalence ratio and operating pressure 
for the annular type combustor 
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Figure 47: Variation of NO emission index with operating pressure and equivalence ratio 
for the annular type combustor 
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the same way as the can type combustor.  When the equivalence ratio is less than about 

1.3 in the primary region the NOx concentrations grow rapidly with leaner mixtures. 

The CO emissions in ppm and in g CO/g fuel for the can type combustor are 

shown in Figures 48 and 49. 

. 

Figure 48: CO exit concentration variation with equivalence ratio and operating pressure 
for the can type combustor 

 

Figure 49: Variation in CO emission index concentration with operating pressure and 
equivalence ratio for the can type combustor 
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 CO emissions increase with equivalence ratio because of incomplete combustion.  

Operating pressure shows no noticeable effect on the CO emissions.  Normally, higher 

pressures suppress the dissociation of CO2 into CO, which lowers CO emissions. 

However, since the regions of appreciable concentrations of CO2 are small due to the 

large regions of incomplete combustion, the amount of CO formed from CO2 is small.  

Any increase in pressure decreases the CO dissociated in this small region, but its effect 

is negligible due to the large amounts of CO formed due to incomplete combustion. 

 The CO emissions for the annular type combustor are shown in Figures 50 and 

51. 

 

Figure 50: Variation in CO exit plane concentration with operating pressure and 
equivalence ratio 
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Figure 51: Variation in CO emission index concentration with operating pressure and 
equivalence ratio 

The variation of CO concentration with operating conditions for the annular combustor 

is identical to that of the can combustor. 
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 The can type combustor’s efficiency is satisfactory for a global equivalence ratio 

of 0.6 and drops off to unacceptable values after that.  The annular type combustor 

displays acceptable combustion efficiency throughout its operating range. 
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5. CONCLUSIONS AND RECCOMENDATIONS 

 A sudden expansion combustor was analyzed using CFD to see how the operating 

characteristics effect the NOx and CO emissions.  A can type combustor and an annular 

type combustor were tested over a range of operating conditions to see how they affected 

emission levels.  It was found that the can type combustor was able to achieve low NOx 

emissions compared to lean type combustors due to its low residence time and rich 

primary zone.  However, the exit temperature distribution, CO emission levels, and 

combustion efficiency were unacceptable.  The high CO emission levels for both 

combustor types are due to poor mixing in the primary region.  The annular type 

combustor showed higher NOx emissions, higher combustion efficiency, and lower CO 

emissions than the can type combustor due to its longer residence time.  The annular 

combustor’s NOx emissions are comparable to other RQL type combustors, but the CO 

emissions are still too high except for lean global equivalence ratios.   

 It was found that increasing the global equivalence ratio decreased NOx emissions 

due to a depletion of oxygen and lower temperatures for both combustors.  Increasing the 

pressure in the annular type combustor increased NOx emissions.  Increasing the 

operating pressure in the can type combustor had little effect on NOx from an equivalence 

ratio of 0.6 to 0.9 because most of the volume in the can type combustor is fuel-rich.  At 

an equivalence ratio of 0.5, the NOx emissions grew with pressure because the increase in 
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pressure made the primary zone close to stoichiometric conditions, which raised the 

temperature of the primary zone. 

 It is recommended that the design of both combustors be further refined via CFD 

calculations prior to experimental work.  Specifically, three design modifications should 

be considered.  The first modification is adjusting the flow of the secondary jets so that 

they strengthen the recirculation region in the primary zone to trap the vaporized fuel 

there.  The equivalence ratio within the primary zone should not fall below 1.3 or else the 

NOx emissions will increase rapidly.  The second design modification has to do with the 

dilution zone.  The cooling air in the dilution zone cannot penetrate deep into the main 

core.  As a result, the SUE contains no quick-quench step.  The air must be admitted in 

such way that the rich combustion gases are brought to lean conditions as fast as possible.  

This can be done by changing the angle of the cooling vanes, or completely eliminating 

the cooling vanes all together.  The final design modification is to shorten the length of 

the annular combustor.  Its length is far too great to be used in aircraft. 

 A question arises whether or not the SUE combustor is a viable alternative to 

combustors which utilize swirlers.  The answer is it is too early to tell.  The above 

recommendations must be implemented tested first before such a question can be 

answered. 
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