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The thesis objective is to develop protocols that provide analysis and inter-

pretation for data from a pulsed laser serial scanning lidar system for underwater

imaging. The specific focus is remotely observing marine organisms in the centimeter

size range in the poorly understood mesopelagic realm of the ocean. The Unobtrusive

Multi-Static Lidar Imager (UMSLI) system captures an expansive volume scan field

with differentiating imaging resolution per planar slice, allowing precise assignment

of location for organisms in the field of view. The multi-static highly collimated

beams are recorded by a photo-multiplier tube receiver as a time lapse waveform of

the returned energy flux, each waveform comprehensibly represents an image pixel

in spatially and temporally. Complied lidar waveforms produce an array of returns

which signify the magnitude of backscatter from varying sized particles across the

observed volume. These volume scans are uniquely evaluated and transformed for

each time bin through a processing method which extracts particle characteristics

and statistics based on adaptive spatial and temporal techniques. The post process-

ing method aims to greatly extend the capabilities of the lidar imaging system to

extract particles. Results of the processing method are presented as particle counts
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and particle size distributions of the water columns during observed vertical migration

periods. Methods are compared with other optical devices for validation, and results

are interpreted to better understand the organism distribution in the mesopelagic and

their behavior, with respect to diel vertical migrations.
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CHAPTER 1

INTRODUCTION

The ocean’s mesopelagic zone is largely unexplored despite indicators that it plays

a critical role in the ocean’s ecosystems [2, 3]. The mesopelagic is the daytime home

for organisms participating in massive diel vertical migrations throughout the world’s

oceans. Biomass in the mesopelagic is estimated to be 10 billion metric tons, accumu-

lating to approximately 90% of the planet’s biomass. The ambiguity and sheer size

of this oceanic layer has led to little understanding of the organisms and their distri-

bution throughout the water column [4]. Ultimately a lack of information about the

mesopelagic has left the scientific community without data which helps model rela-

tionships to surface productivity, fisheries, and transfer of biomass in the ocean [3,5].

To better understand this low light environment often coined the “twilight zone,” the

National Oceanic and Atmospheric Association’s (NOAA) Cooperative Institute for

Ocean Exploration, Research and Technology (CIOERT), based at Harbor Branch

Oceanographic Institute (HBOI), has committed to a number of cruises in the Gulf

of Mexico in order to test new technologies that shed light on this poorly under-

stood habitat. The intention is to explore new and unique techniques that further

develop our understanding of organism diversity in the mesopelagic, while also further

comprehending biomass distributions, patchiness and migrations.

Our approach was to perform a number of profile descents with a diverse set of

technologies that correlate in their sensing abilities. We combined several comple-

mentary acoustic and optical techniques to characterize distributions of organisms

ranging from microbes to large nekton and small fish. Such instrumentation included

an Unobtrusive Multi-Static Lidar Imager (UMSLI), Spatial PLankton Analysis Tech-
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nique (SPLAT) bioluminescence imaging system, several optical proxy sensors, and

multi-frequency acoustics. The mission of this exploration was to collect data on the

distribution and dynamics of a multi-sized spectrum of organisms ranging from mil-

limeters to meters, through the coherence of multiple technologies with overlapping

ranges and spatial scales. On the large-scale spectrum, two multifrequency acous-

tic devices were deployed, the Acoustic Zooplankton-Fish Profiler (AZFP) and the

Simrad EK80/WBAT; these instruments provide insight on mapping large-scale mi-

gration on a meter to 100’s of meter scale. Theses acoustic devices detected real time

migration from the depths of the mesopelagic to the surface as is often seen during the

evening feeding hours. In the millimeter to meter range, the SPLAT camera system

was employed for mapping kinetic interactions with bioluminescent organisms during

instrument deployment through the water column. UMSLI, the primary instrument

of this study, uses three-dimensional photo-realistic laser serial imaging for a wide

range of applications such as detection, localization and identification. UMSLI out-

puts a traceable volumetric image that gives insight to environment interaction and

distribution on a large scale. This study served to evaluate the obtained volumetric

scans from the UMSLI system and develop a processing technique of data during the

cruise to the mesopelagic.

The goal is to summarize the system’s ability to observe a dynamic range of par-

ticles and extract quality images for feature analysis. This active system employs

a narrow, highly collimated beam of light with complex optical arrangements. This

implies concern for dependent sensor configuration and scene characteristics. We dis-

cuss the advantages of laser imaging, the nature of its development in the engineering

field, and its basic principles and complexities. Often, cost and complexities discour-

age the use of laser imagers, however, for studying organisms in the mesopelagic the

use of laser imaging holds many advantages in comparison to conventional underwater

imaging which has several drawbacks.
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Conventional cameras are a commonly used technology, but are limited by re-

quirements that make it insufficient for undisturbed observation in the mesopelagic.

Cameras with ideal setups depend on artificial illumination with large separation be-

tween the light source and the camera. As with all active imager systems, images

are formed through the direct reflection of light from a target, but also consist of

scattering along the propagation path from the source to the target, and ultimately

the receiver. Scattering events of the light component that do not interact with the

target are referred to as volume scatter [6–8]. It is this volume scatter effect that

conventional cameras aim to avoid with larger separation between the light source

and receiver [9]. Otherwise, as light propagates through a common viewing field, it

scatters a number of times both before and after the target reflection as multi-scatter.

To this effect, resulting images suffer from blurring and low contrast, making targets

difficult to isolate from the background [6]. In high attenuation environments, con-

ventional cameras are limited in performance unless alternative methods are used,

such as high rate pulsating illumination and range gating [9]. Other limitations of

conventional imaging systems are methods for resolving range and dimensionality of

its target; without a means of recording transit time in link with the illuminator and

receiver, there is a lack of parameters to determine the target’s depth.

Common observations reveal artificial lighting is also problematic when observing

marine life. Multiple studies have shown unnatural lighting within a organism’s visi-

ble spectrum has behavioral effects, which consequently removes the opportunity to

observe and record natural interactions [10–13]. The approach of active imaging is

necessary in areas with little natural light; with the use of pulsating red diode lasers,

we can avoid affecting behavior while still illuminating the target. Other technologies,

such as acoustic imaging, stereoscopic imaging and holographic imaging have been

developed to meet specific requirements with different levels of success.

Acoustic-related imaging systems are inhibited by spatial resolution and con-
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trast due to naturally long wavelengths [14]. Sonar imaging of smaller organisms

requires higher frequency instruments that are unideal due to the likely interaction

of non-biological targets that give a false return. Other biological life found in the

mesopelagic have a body composition that is largely aqueous and is difficult to detect

with acoustic waves. Acoustic devices cover a large range, but provide insufficient

physical descriptions of its target. Thus, for this study we still rely on acoustic devices

for large scale observations, but resort to alternative methods for higher resolution

imaging. Conversely, specialized optical imaging systems can provide higher resolu-

tion suited for more robust object identification, however, their use has been limited

by hardware availability and platform size necessary for operation [14]. Recent ad-

vances in electro-optical sensors provides opportunity for laser imaging to be used

underwater as an alternative imaging option in the fashion of lidar (light detection

and ranging).

1.1 BASICS OF UNDERWATER LIDAR

From a general standpoint, lidar systems consist of two main components, the

transmitter and receiver. The transmitter consists of a highly collimated laser, usually

directed by a mechanical mirror device. The receiver may take many forms, but

generally consist of a light receptor that quantifies intensity per unit area. Lidar

signal is composed of an intense pulse of optical energy emitted by the transmitter,

while a sample of the interaction of optical energy is recorded by the receiver. In a

large sense, this is how all imaging systems function. Just as a conventional camera

measures the backscatter of light off of objects in dependency to the source and

receiver geometry, so does a lidar system. To further complicate the problem, the

addition of an underwater environment creates housing and power supply restrictions,

while adding a high attenuation medium. This section describes how engineering

combats these challenges as we discuss the nature of using lidar imaging underwater
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with performance enhancing techniques.

Lasers are capable of emitting light at very fast repetition rates with high energy

levels. The collimated monochromatic nature of the beam makes it ideal for probing

environments such as water. However, the interaction of light with particulates in the

water greatly affects the nature of its propagation. The governing physics of light and

attenuation plays a role in underwater sensing and is directly dependent on its ability

for imaging. We define attenuation as the combination of absorption and scattering

that adds to the total loss of light, as represented by the equation,

I(r) = I(r0)e
−c(r−r0) = I(r0)e

−(a+b)(r−r0) (1.1)

such that c, represents attenuation, a, absorption and b, scattering of a propagated

photon from the location r0 to r [6]. As a laser transmits light energy through the

scanned volume, the interaction of absorption and scattering between photons and

particles take place as a likelihood determined by the medium’s Inherent Optical

Properties (IOPs) [15,16]. In the case of absorption, a photon may not reach the re-

ceiver at all, thus, no information about the target is obtained by the receiver, which

for the case of lidar leads to a loss of signal. Scattering can take many forms. Light

that scatters in many directions distorts the propagation path of light, and conse-

quently changes the radiant light field [1, 7, 17]. For this case, the photon continues

towards the target on a now distorted path. When this happens, it is referred to as

“single scattering,” or in the case of many scattering interactions is called, “multiple

scattering.” These scattering events result to the fuzziness of obtained images. Nu-

merical models show that photons are more likely to scatter forward in small angles,

but again the scattering effect is dependent on the properties of the medium, and can

scatter at any angle [18]. We also define the exponential loss of light in irradiance as

it travels through an attenuating medium through the Beer-Lambert law as,

Iz = I0 ∗ e
−kz (1.2)
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where k, is the total attenuation coefficient, such that the beam irradiance will fall

exponentially as a function of its distance z = 1/k. Photons that are not absorbed,

but scatter forward to the target are reflected and are recorded by the receiver. Light-

particle interaction is a complex field of study ranging from developing quantum level

theory to more practical laboratory practices. The complete physical characterization

of laser transmission is beyond the focus of this study, but is well summarized in the

study of radiative transfer theory [6, 15, 16, 19–21].

The basis of lidar’s function is to actively illuminate a volume of water with a

laser transmitter, and similarly with a receiver measuring irradiance as a function of

time. The unique ranging aspect of lidar systems versus other active optical systems

is defined by its time resolved ability to determine the range of a target from the

resulting equation [22].

R =
C ∗∆t

2
(1.3)

This stands as the fundamental lidar relationship between the range from a target

given a known ∆t, as the time of arrival (TOA); defined as the time it takes for a

laser pulse to leave the transmitter, reflect from the target and return to the receiver.

The sampling capability of the receiver defines the gate time and resolvable temporal

resolution of the system. For lidar, we characterize a time dependent signal return

as a function of the intensity of the light field, L(r, θ, φ), at position r, in the given

angle (θ, φ), as the radiance measured per unit per differential solid angle [7].

Lidar uses the advantage of synchronous fields of view (FOV), collimated pulsating

beams and range gating to mitigate the effects of unwanted scattering and maximize

its ability to collect information from the receiver [1,20]. It is intuitive to realize that

this depends on the geometric relationship between the transmitter and receiver,

as well the interaction that light has on particles in the environment, or in this

case, water [23, 24]. There are numerous ways to alter the viewing apparatus of a

lidar system as better explored in the coming sections, but generally, for all cases
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the receiver coherently measures the backscatter of the volume illuminated by the

laser transmitter [9]. Different lidar systems take different approaches to the FOV

for the transmitter and receiver of the system, such as limiting the receiver to small

viewing fields to minimize scattering. Other common approaches to lidar is restricting

the instantaneous exposure time of the receiver to correlate with the transmitter

emission [17, 25]. Studies show that increased transmitter-receiver separation and

shorter pulse duration reduces common volume peak and mitigates scattering [21].

The lidar equation is the mathematical expression that represents the role of

environmental parameters and systematic design in resolving lidar signal. The basic

single-scattering equation for lidar is expressed as,

N(r) =

[

η(λ)

][

AT

r2

][

(PA(π, r)∗βA(r)+Pm(π, r)βM(r))

][

exp(−2

∫ r

0

(σ(r′)dr′
]

+BD+BS

(1.4)

where we define each term below with its corresponding dimensionality:

η(λ) = [(ETλ
hC

)∆rQE ∗ TO ∗OA(r)]

η(λ) describes the lidar performance and system specifications

λ is the laser wavelength (m)

h is Planck’s constant (J.s)

C is the speed of light in the pertaining medium (m.s−1)

∆r is the range bin length (m)

Qe is the quantum efficiency of the detector

TO is the optical efficiency

OA(r) is the transmitter and receiver FOV overlap

PA(π, r) is the backscatter function

PM(π, r) is the backscatter phase function

βA(r) is the volume scattering

βM(r) is the volume total scatter function
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σ(r) is the total volume extinction

BD is the background signal due to thermal noise

BS is the background ambient solar noise

The equation is presented in a way that breaks up the system’s main compo-

nents [22]. The first set of brackets denoted as the function η(λ), consist of parame-

ters specific to the lidar transmitter and receiver specifications. The second bracket

represent the solid angle, AT

r2
, and the scattering energy defined by the function,

P (π, r) ∗ β(r). The third term includes the exponential loss of signal and describes

the likelihood of attenuation of photons as it travels along its propagation to and from

the transmitter and receiver. It should be noted that equation 1.4 is in its simplest

form and only considers the single scatter case. Further derivation of the multi-scatter

equation can be found in [26]. Further efforts to model these physical behaviors are

undertaken by using Monte-Carlo and Small Angle Approximation methods [18, 27].

However, for the purpose of this study, the lidar equation is presented to point out

important relationships associated with lidar imaging systems.

The intensity of the lidar signal is directly related to the number of photons as

counted by the receiver. Figure 1.1 illustrates the effects of scattering on signal.

The signal demonstrated above is a lidar signal without any presence of noise, but

does exemplify the typical form of signal observed for underwater lidar. The red

line represents a less desired signal that features multi-scatter caused by very turbid

waters. This mitigates the target response which, is very small and could be lost

entirely in the presence of noise in the signal. The initial peak present in the blue

signal marks the common volume peak. The common volume peak represents the

initial flux of energy caused by the intersection of the offset configuration between

the FOV of the transmitter and receiver [28]. The downfall of the signal from the peak

of the common volume represents the signal attenuating as governed by the inverse
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Figure 1.1: Time-series response of lidar signal: red waveforms

represents multi-scatter case with small target return, blue waveform

represent ideal case of symmetrical common volume peak and large

target return peak, Dalgleish et al., 2010a.

square of the range. Further analysis of lidar signal also shows that increasing the

laser energy or field of view does not necessarily increase the lidar’s ability to detect

its target. The power of the lidar signal exponentially decreases with distance, and

most lidar systems rely on pulse accumulation and pulse interpolation techniques to

increase the signal to noise ratio [9, 25].

Different lidar systems use different approaches to decrease attenuation of signal

and increase dynamic range. Range gating, shortening pulse duration, high repetition

rate , and frequency modulation, all increase the monetary cost and complexity to the

imaging system [9]. We propose the use of a post processing methods that emphasize

thresholding and statistical analysis of waveform returns to eliminate noise and resolve

signal. As we shift this view to the case of lidar imagers, noise statistics become even

more critical, and remain a key aspect of influence when evaluating underwater lidar

signal.
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1.2 UNDERWATER LIDAR IMAGING

Underwater lidar has many applications from localization, wireless communica-

tions and under more recent research, imaging [1, 7, 9, 14, 17]. This study focuses on

laser imaging, a technique which involves the grid-like scanning of a defined volume

with a highly-collimated laser source over a wide swath paired with a photon collect-

ing receiver. There are a variety of methods used to extend laser imaging range, but

all laser imagers are ultimately limited by beam spreading and attenuation. Here we

present a brief history of the approaches HBOI has taken to improve performance

of laser imaging as it pertains to the UMSLI system. Previous research at HBOI

has focused its efforts to experimentation of multiple methods of laser imaging and

continues to explore a number of prototype systems [1, 9, 13, 21, 23,24,28–33].

A common approach to laser imaging that is widely practiced is the technique

of laser line scanning (LLS). Laser line scanning is described as using a collimated

laser source to scan a narrow instantaneous field of view (IFOV) with a coherent

narrow view receiver [1, 17, 29]. Synchronous LLS systems demonstrate scanning

capability up to 70 degrees, usually with a continuous wave laser source. The laser is

continually tracked on the target over a scan line by a narrow IFOV single element

detector [1, 29, 34]. The transmitter mechanics of the LLS systems serially scans

a target with a narrow FOV reciver, thus eliminating scattering due to the small

evaluated areas. The range of LLS systems has been shown to extend further with

a gated approach [19]. LLS systems for underwater imaging demonstrates a unique

strategy for extending imaging range while also expressing the ability to extract three-

dimensional details of its target [1,19,33]. Drawbacks of LLS systems include precise

synchronization between the laser and receiver scan field and limited coverage area.

The UMSLI system similarly uses the serial scanning technique to illuminate the

water column in a line scanning sequence. We create a more reliable system by

replacing the complex and less robust synchronously scanning receiver with a wide-
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view staring receiver. Not to be mistaken as a LLS system, the UMSLI receiver does

not synchronously scan a target area, but instead acts as a bucket photon collector.

Figure 1.2 from Subsea optics and imaging, chpt. 13 illustrates the difference in depth

of field (DOF) and volume coverage for wide view and narrow view receivers for LLS

systems.

Figure 1.2: a.) LLS geometry with narrow IFOV receiver, b.)

LLS setup with a wide IFOV Figure from Caimi and Dalgleish, 2013

Further advancement of study for LLS systems to improving underwater imaging

was in testing the waveform effect of monostatic versus bistatic receiver setups for

LLS systems in turbid environments. Just as image blurring becomes a concern for

conventional imaging, lidar suffers from the effects of scattering in the commonly

viewed field of the receiver and transmitter [4]. Transmitter and receiver geometry

is a driving factor in lidar performance and shows direct implications on the out-

putted waveforms [24,35]. For narrow angular source and receiver apertures, we find
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that imaging quality is more sensitive to random scattering inhomogeneities with a

monostatic geometry. Figure 1.3 also from Subsea optics and imaging, chpt. 13 repre-

sents the limiting effect of common volume scatter with a bistatic geometry. Results

Figure 1.3: Representive geometry from bistatic LLS system, also

showing scattering events and laser-receiver FOV across unit area

RT . Figure from [1]

have shown that increased transmitter-receiver separation with wireless synchroniza-

tion through robust imaging links demonstrate significant improvements to image

quality. However, bistatic setups restrict the imaging swath for serial imaging and

multiple platforms are a restriction specific to imaging systems with large operation

space [19, 28].

Development of laser imaging at HBOI experimented with using distributed se-

rial imaging as an alternative to more traditional LLS methods. The distributed laser

method included a 2-axis continuous wave scanning laser with a wide FOV high speed
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receiver. Field experiments of this system found that the new hybrid system was able

to resolve high contrast images over larger spans with limitations in overall range

due to high attenuation [9]. Overall, the distributed laser system was able to create

images at a much wider FOV and cover a larger target area [9]. This distributed

imaging ideology is later used to progress the development of the UMSLI system.

Acknowledgment during these studies all suggest post processing efforts are an ef-

ficient method to improve signal quality. Methods experimented during this study

suggest that interpolating multiple samples over a longer time bin returned higher

photon count per target pixel area, and multiple pulsating per temporal integration

reduces system noise for acquired signals [24].

The UMSLI system is a composition of many of these previously experimented

techniques that hold advantages and disadvantages. Similar success and results have

been found by Neptec Technology Corporation and its commercial flash lidar system

called LUCIE-3. The Underwater Time-Of-Flight Imaging Acquisition (UTOFIA)

system as developed by the European Commission Horizon has a visual range of 4.5

attenuation lengths and recent publication shows promising results for image ranging

and sizing [36]. The Electro-Optic Imaging model (EODES) by Metron Inc., has

taken a quantitative approach to answering questions about radiative transfer and

the effects of scattering and geometry on laser imaging performance [27]. Much of

this progress is well summarized in Dalgleish et al., 2013b. However, for all cases of

lidar imaging we find the use of post processing methods are necessary to improve

image quality and extract useful information.

1.3 DEVELOPMENT OF UMSLI

This method of laser imaging uses serially scanned pulsed lasers for extending

imaging range in turbid seawater [1,9,31]. The approach to the development of UM-

SLI comes from the Marine Hydrokinetic (MHK) project. The impetus for the MHK
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project was to develop a device that could unobtrusively monitor large marine life

near underwater generators. The concern for marine life’s interaction with the poten-

tially dangerous equipment provides reason for a high priority regulator. Traditional

methods of underwater surveillance instruments, such as cameras and acoustics, were

disadvantageous because of the lack of efficient ambient light and need for high reso-

lution and higher order dimensionaility.

Sufficiently available underwater cameras require artificial light that would serve

as an alternative, but were undesired because marine life is attracted to sources

that emit light within their visible spectrum. To this regard, UMSLI uses a 638-

nm wavelength red diode laser which is suitably below the maximum permissible

exposure (MPE) limit for marine wildlife [10]. This makes UMSLI’s laser invisible

to marine life and allows it to unobtrusively make observations without affecting

behavior. Unlike previously discussed laser imaging systems, such as LLS systems,

UMSLI would have to monitor a large volume, therefore, a larger FOV and alternative

sensing methods are necessary. UMSLI addresses these needs as a wide FOV imaging

system that outputs time-resolved images capable of extracting three-dimensional

features. Figure ?? demonstrates UMSLI’s ability to observe a large sample volume

around a underwater generator.

The need for an undisturbed, large volume surveillance system was the primary

design component in the development of the UMSLI system for the MHK project.

This type of design greatly relates to previous projects at HBOI that focus on near

monostatic platforms, distributed lasers and imaging capabilities of lidar. To this

regard, the UMSLI system was built with the intention of observing large marine

species, as represented in figure 1.5. The adaptive nature of the UMSLI system has

other applications.

The monostatic approach and dynamically expanding scan field make UMSLI

suitable for resolving organisms of varying size due to an adaptive resolution featured
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Figure 1.4: Illustration of a constellation of UMSLI transmitters

illuminating a complete volume around an MHK device

Figure 1.5: Image of Barracuda as captured in clear conditions by

UMSLI in the HBOI test tank for sparse and dense mode. Image of

grouper taken in waters off Fort Lauderdale.

based on the beam expansion of the laser during transmission. For this study we take

a post-processing approach to extend the ability of UMSLI to observe much smaller

organisms, such as small fish, krill and large flocs of marine snow. This effort extends
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the UMSLI system’s capability to resolve targets ranging from centimeters to meters

with a depth of field range of 1-14 meters in the scan field. It is because of this

advantage that UMSLI has been applied as a biological profiling instrument in the

mesopelagic layer. HBOI has taken the approach of using lidar for observing diel

vertical migration in the mesopelagic to evaluate suspended particle properties and

conduct organism observations [16, 37].

The use of lidar for this exploration project is motivated by using its dynamic

resolution and range to look closely at biological migrations that can not be observed

with remote acoustic techniques. On the most recent deployment in the Gulf of

Mexico, the UMSLI system was used with other optic and acoustic devices to profile

and image biological migrations. This requires an alternative processing approach

that aims to extract characteristics of smaller organisms, which defines the focus

of this thesis. This processing technique includes signal filtering and thresholding

techniques to extract images from the mesopelagic deployment.
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CHAPTER 2

UMSLI SYSTEM AND EXPERIMENT SETUP

2.1 UMSLI CONSTRUCTION

UMSLI’s concept of design is focused on surveying a large volume of water for

the use of observation and identification of targets on a wide range of size scales

(mms to ms). UMSLI’s main components includes multiple receivers (Rx), multiple

transmitters (Tx), and a digital signal processor. The transmitters serially illuminate

a volume of water by scanning a grid of pulses in a bi-directional raster pattern

using an analog micromirror device (AMD) and a scan angle expansion lens. The

scan field can be instantly configured to be either sparse or dense, concentrating a

lower density pulse grid through a wider range of angles (sparse), or once an object is

detected, concentrating a higher pulse density scan through a narrower range of angles

(dense). The receivers consist of an 18 cm diameter sphere containing a pair of bi-

directional red sensitive, high speed receptors. The volume scan field for each channel

is maximized by an overlapping FOV region between the monostatic transmitter and

receivers. The intent of the UMSLI system is to survey marine life. The system

features a multi-static setup with multiple transmitters allowing for an object to be

tracked across multiple scan volumes in a coherent direction.

The receivers, which consist of a high-speed photomultiplier module with focusing

optics and a spectral bandpass filter, are designed to collect backscatter returns from

the emitted laser pulses [11]. The returns are of either reflections from objects or

scattering events in the backward direction. A high-speed digitizer and digital signal

processor are then used to reconstruct the illuminated volume and output imagery
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waveforms. These waveforms are then transformed and processed as a volumetric

scan, with an x − y spatial plane and a temporal z plane. Figure 2.1 illustrates the

main design and geometric configuration of the UMSLI system.

Figure 2.1: Schematic of UMSLI housing and components

Figure 2.2 shows the inside compoents of the UMSLI transmitter, which features

a Sharp 638 nm red laser diode with a PICOIas laser driver that controls the voltage

input as regulated by a transmitter controller board. A separate transmitter controller

using RS-232 language communicates with the MEMS driver that adjusts the polar

and azimuthal angle of a scanning two axis (tip-tilt) MEMSmirror (or ”micromirror”).

The MEMS mirror is mechanically responsible for the serial scan-like pattern of the

system [11,32]. The reflected beam from the MEMS mirror is expanded using a small

angle expansion lens that outputs a full beam divergence of 2.80 mrad in water. The

beams radial intensity follows a circular Gaussian profile. The total scan angle of

the volume, post beam expansion, emits over a polar angle of 0.9425 radians. For

this setup, the geometry of the fully illuminated plane is consistent for both polar

and azimuthal angles. The transmitter has a 4 ns FWHM pulse duration with an

average power of 185 mW at a pulse rate of 80 kHz. The transmitter emits each
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Figure 2.2: Transmitter components

pulse in a raster-like fashion that serially illuminates the volume of water, such that,

the transmitter emits 200 lines that each consists of 200 pulses. Each line takes the

transmitter 2.50 ms to complete, which allows the system to scan a full 200 x 200

plane in 500 ms for a total of 40000 pulses. The UMSLI system’s adaptive viewing

mode emits the same number of pulses at a smaller view angle of 0.3142 radians and

0.1047 radians. This allows for a high-resolution image in narrower views. It should

be noted that the resolution for each image pixel is a function of the beam size as it

expands in time, therefore, the dynamic resolution of the UMSLI system is configured

in accordance to the beam spread.

The Photo-Multiplier Tube(PMT) receiver is responsible for mapping the light

path from the transmitter to the target as received by a single element detector.

The encompassing goal for this receiver design is to allow for a wide aperture FOV,

while also restricting the PMT from exposure to light unrelated with the target’s

reflection. The particular PMT used for this system is a Hamamatsu R11265U series,

type H11934-20. This PMT type has a spectral response from 300 nm to 920 nm,

a quantum efficiency of 19% and radiant efficiency of 78 mA/W [38]. The temporal

response of the PMT is the dominant restriction for the system response time. Figure

2.3 shows the rise time of the impulse response to be 1.3 ns and the fall time 5.8 ns.

To eliminate any ambient light, the PMT has been capped with a rectangular light

shield that concentrates the direction of received photons to only forward angles. The

light shield design allows for a 30 degrees acceptance angle; figure 2.3 demonstrates
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Figure 2.3: Ray trace and impulse response of PMT

Figure 2.4: CAD drawing of the receiver in glass sphere housing

a ray trace of the light shield rejection pattern. Light that further enters the receiver

travels through a glass prism, which is reflected into a Digital Micromirror Device

(DMD). The DMD allows for further ambient light to be reduced before reaching a

second prism and the PMT’s photocathode plate. This allows for the rejection of

unwanted photons, while desired light with correlating angles pass through to the

PMT photocathode plate.

The last restrictions to the PMT’s receptive spectrum are a Asahi Spectra long-

pass filter and a microlouver film. The long-pass filter serves to eliminate any addi-
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tional light below a 690 nm threshold, this ensures that the only light received by the

PMT is from the transmitter and not an outside ambient source. The microlouver film

contains small hair-like structures that limits the number of photons entering from

perpendicular angles. The PMT and its components described above are housed in a

Vitrovex glass sphere from Nautilus which are paired as two combined hemispheres

sealed with Terrostat sealing tape. The 187 mm outside diameter glass housing has

a total glass thickness of 14 mm and is pressure rated to a depth of 12,000 meters.

UMSLI’s third primary component is the digitizer (Figure 2.5). It is responsible for

Figure 2.5: UMSLI system control board schematic, main compo-

nents include, Digitizer, Transmitter (Tx), and Receiver (Rx)

sampling the illuminated volume and output waveforms of the illuminated areas of

interest with a sampling rate of 2 GHz [13]. This surplus of samples is linearly interpo-

lated into discrete time bins in correlation to the systems minimum pulse bandwidth

of 5 ns and resampling rate at 400 MHz.

2.2 DEPLOYMENT SETUP

During March, 2018, the NOAA Okeanos Explorer navigated to the Gulf of Mex-

ico to explore the mesopelagic region and monitor biological migration patterns. The

UMSLI system was included on the exploration cruise with a number of other in-

struments. Collectively, these sensors served to measure the distribution of subsea
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organisms as they migrate through the mesopelagic zone. The instruments included:

the SPLAT bioluminescence imaging system, a AZFP, an IOP package, a Simrad

WBAT sensor, and an acoustic EK-80 sensor that was hull mounted in the ship.

These sensors (excluding the EK-80) were mounted onto an aluminum frame with

dimensions of 1.8 x 1.2 x 1.7 (m3) as shown in figure 2.6. The configuration of the

sensors were optimized to minimize interference with each other and balanced to

ensure a stable descent. Deployments were made at seven stations(figure 2.7) in the

Figure 2.6: Profiler as deployed with configuration of UMSLI,

SPLAT CAM, WBAT, AZFP

Gulf of Mexico over a five-day period. For each station, two deployment methods were

conducted to characterize the water column and observe vertical migrations during

key periods of the day. The first deployment for each station was a downcast from the

surface to 300 meters. During the cast, select instruments profiled the water column

throughout the profiler’s descent. The second phase, following immediately after the

downcast, was a time-series log at a constant depth of 300 meters. The time-series

method allowed for a prolonged exposure of the water column that focused on the

vertical migration patterns found in deeper scattering layers. During deployment,

the EK-80 acoustic sensor on the Okeanos Explorer recorded live migration patterns
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from the surface to 600 meters. These migration patterns were expected to involve

descending organisms during the morning time-series and ascending organisms during

the evening periods, according to literature [39]. The UMSLI system only collected

Figure 2.7: Map of cruise stations

data during the time-series deployments, sitting at a stable depth of 300 meters while

scanning the water column. The UMSLI system took a sequence of 100 volumetric

scans at each stationary depth, allowing for 100 scanned volumes of the water column

to be recorded for analysis and comparison. The goal was to capture an abundance

of samples at each depth, such that when the data is processed, the samples collected

best represent the characteristics of the water column. The nature of the lidar setup

plays a critical role in the methods used to analyze the data.

The UMSLI system was placed strategically at 300 meters in order to image large

schools of small fish and krill as they were expected to move through the water

column. The EK-80 allowed for live-view of the migration process and also confirms

the upwhelling of marine organism during the period of deployment. The UMSLI

system served to provide higher resolution sensing with hope of images that give

insight to the organism migration.
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CHAPTER 3

DATA ACQUISITION

3.1 SYSTEM AND DATA CONFIGURATION

The UMSLI system relies on the active scanning and capture geometry between

the transmitter and receiver to resolve information inside their shared FOV. Based on

the setup during the deployment, the beginning of the shared cross-sectional FOVs

between the transmitter and receiver starts at 1 meter, and continues outward or-

thogonal from the transmitter optical plane to a depth of field of 14.5 meters. The

complete analysis of the signal is restricted to a maximum of 12.5 meters; beyond

this the signal is insufficient to resolve due to attenuation. The receiver acceptance

view expands horizontally and vertically in accordance to the 30 degree azimuthal

and polar angles of the receiver. This expanding FOV covers 12 meters across in

both planes (vertically and horizontally) at the maximum depth of field. The full

volume which the UMSLI system observes and scans is approximately 664 m3.

We define the volume on a Cartesian plane, such that, the x and y axis, which

we will refer to as the image spatial plane, is parallel with the face of the optical

window of the receiver, and the z-axis protrudes outward perpendicularly into the

water column. Because the transmitter emits the beam orthogonal to the z-axis, we

can also say that the z-axis correlates with time (t). In accordance to the sampling

frequency, the scanned volume is broken up into discrete time bins or ”slices,” as

sampled by the digitzer at 2 GHz (256 time bins across 14.4 m). The PMT measures

the backscatter of light temporally through the process of counting received photons

that interact with the photocathode plate. Since photon detecting sensors use the
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photo-electric effect to essentially regard photons as discrete energy packets, it is also

valid to say the PMT measures the flux of energy across the time domain. Therefore,

for each pulsed beam emitted in the z-direction from the transmitter, a temporal

waveform of the beam’s reflection is recorded by the receiver. Due to the proximity

between the reflection of the beam and the adjacent receiver, we expect to see trends of

larger signal returns during the early cross section of the commonly scanned volume.

For each volume scanned, the laser imaging system returns a 200 x 200 x 256

(x, y, z) matrix of values. If we configure the volume into ”binned” image slices,

for which a slice represents the x-y dimension, then the volume is presented as 256

individual image slices. This is also comparable to a temporal view of the volume, at

which the volume returns the time series of reflections of every beam in its path in the

z-direction. For the analysis of each image slice, we only consider every other line in

the y plane; this configuration is a correction factor for the jitter in the line scanning

mechanics of the lidar. Such that, we compose a 200 x 100 pixel image in the x-y

plane, while every pixel has a coherent temporal waveform sampled in accordance to

the digitizer’s sampling frequency. It should be noted that each pixel is defined as

the illumination of the cross-sectional area of the collimated beam. This has several

implications on the images rendered by this laser imaging system. First, the resolution

of the pixel is a function of the beam’s cross sectional area, and thus, the resolution

of an individual pixel increases with distance due to beam spreading. The scanning

grid and expansion rate of the beam for the UMSLI system was calibrated before

deployment in the HBOI test tank. We assume a linear expansion in relation to the

scan angle and depth of field. The location of each pixel spatially is a function of

the cross track scanning mode of the beam’s axis in the azimuthal angle (φ) and the

polar angle (θ) as they pertain to the x-y plane. The offset location of each pixel is

represented as,

x̄ = d ∗ ±tan(θ) (3.1)
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ȳ = d ∗ ±tan(φ) (3.2)

for which,

d =
(C ∗ 0.5 ∗ 10−9)

2
∗ zs (3.3)

where C = 2.25 ∗ 108 is the velocity of light in water, and d represents the depth of

field as sampled by the digitizer (2 GHz) at sample zs in the volume. Also, d repre-

sents the temporal resolution of samples in the z-direction. The expanding resolution

ranges from approximately 1.27 cm per pixel at the nearest evaluated slice to 6.35 cm

per pixel in the farthest evaluated slice. Other assumptions are made regarding to the

beam’s reflection from a target. Here, we assume that a target which returns a strong

reflection from a single beam also characterizes the size of the beam at its point of

reflection. This is a broad assumption considering that a particle much smaller than

the beam’s cross-sectional area can cause reflection, but this implication is essential

to approximating the target size. We assume the system can only approximate a

target size in accordance to the image resolution and ground-truth calibrated size.

3.2 NOISE CHARACTERISTICS

We classify the two major types of noise in lidar signal as random error and

systematic error. Random errors are caused by uncontrolled physical processes in the

environment and electronic components. This includes thermal noise in the signal

and speckle in the images cause by scattering. Systematic noise is a causation of

miscalibration and mechanical faults that pertain to user error. Though it is difficult

to remove systematic noise without investigation of the source, random error can be

mitigated if isolated properly. We attempt to remove noise from the PMT sensor and

digitizer that make up the main components responsible for added random error [40].

Thermal noise adds a random zero-mean white noise to the signal, when isolated this

type of noise is described to have a Gaussian distribution [11, 41]. This Gaussian
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noise is represented by the probability density function below.

N(x, σ) =
1

(
√

2πσ)
e(−x

2/(2σ2)) (3.4)

The PMT itself measures the process of counting photons that interact with the

photocathode plate and are multiplied inside the photo-multiplier tube in dependence

of the set gain factor [42]. The counting of photons as individual events is an inher-

ently random physical process which follows a Poisson distribution. This leads to the

signal dependent noise component referred to as shot noise. Such that, the number

of photons received by the sensor element over a period, T , is characterized by the

Poisson probability distribution below.

P (k, T ) =
(λ)(T k)(e−λT )

k!
(3.5)

λ is the average number of photon events per second over k events, and (λ)(T ) cor-

responds to the expected incident photon count. It should be noted that the Poisson

distribution is a single parameter distribution that is dependent on the signal. The

energy per photon is represented as E = nhv, where v is the carrier frequency, h is

Plank’s constant and n is the number of photons. For the case of the Poisson distribu-

tion, the ratio of standard deviation to the mean is represented as 1√
n
where, n = λT ,

which represents the number of photons received over an observation period [42, 43].

Through this process, shot noise grows with the square root of observed photons re-

ceived [43]. This also implies that the signal to shot noise ratio is exaggerated with

the capture of more photons, and longer exposure times [25].

Under many assumptions with image noise, the additive noise to the signal is

independent [43]. Under this imaging system, there is an underlying thermal noise

that is independent of the signal, however, there is also an added shot noise that is

dependent to the signal and varies in accordance to pixel intensity.
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For this case, let us consider a dependent signal for any pixel x ∈ X where X is

the domain of the scanned volume within R. R represents the spatial domain of the

water column. Such that, τ : X → R is the recorded signal, also y : X → R is the

unknown signal, ε : X → R is the systematic noise and σ is dependent to y, that

gives the standard deviation of the systematic noise component [44].

τ(x) = y(x) + σ(y(x)) ∗ ε(x) (3.6)

We can also say that the mathematical expectation of the independent systematic

noise of the signal, E{ε(x)} = 0, and E{τ(x)} = y(x) to be defined as the noisy signal

observed [42]. Because we define our signal-noise components as both dependent and

independent of the expected signal, we break up the Gaussian signal and Poisson

dependent signal, as such,

σ(y(x)) ∗ ε(x) = ηp(y(x)) + ηg(x) (3.7)

Where ηp(y(x)) is the Poisson distributed noise and ηg(x) is the Gaussian zero

mean white noise, as presented above [44]. Such that, ηp(y(x)) ∼ P (y(x)), ηg(x) ∼

N(0, σ). We see from equation 3.5 that the photon counts directly affect the variance

of the Poisson distribution, hence, the reason for its dependency [41]. For larger

photon counts, such as n→∞, the Poisson distribution closely relates to the Gaussian

distribution in accordance to the central limit theorem [42, 43]. It is for this reason,

shot noise in cases of longer exposure times is modeled as a zero mean Gaussian

distributions [44].

A signal anomaly that is apparent when looking at signal from the PMT receiver is

the case of photoelectric ringing. This anomaly occurs when the PMT photocathode

plate receives a surplus of many photons in a short duration, and as a result, saturates

the returned signal [45]. In this case, the sensor releases electrons at random during

the PMT response fall time and the result is a residual false return ringing in the

temporal waveform. This presents the problem of false particle counts; as a preventive
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Figure 3.1: Example of raw image waveform with ringing effect

measure to this, a spatial image mask is used to prevent this measure as discussed

further.
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CHAPTER 4

PROCESSING METHODS

Here, we present a threshold and extraction method for imaging lidar that eval-

uates volumetric data for particles of interest (POI) suspended in the water column.

We define POI as organisms or objects which give a statistically large waveform re-

turn above common noise values. For the data collected from the mesopelagic crusie,

we expect to resolve POI with a wide range of size and shape, though the expectation

is that most POI fall under the category of large nekton, small fish, and larger accu-

mulations of marine snow. The reader should note that typically the term particles

refers to much smaller objects in the water column, though here we use the term

particle, objects or POI loosely as we observe a wide range of size classes.

The focus of the presented methodology is to create an adaptive threshold tech-

nique that evaluates each set of scanned image volumes without prior knowledge of

environmental noise characteristics. The determinate thresholding step is critical to

the binarization of volume slices and the selection process of extracted POI. Our

strategy for extracting objects is not focused on a single size group, although the

study could be limited to a focus group of larger organisms or smaller particles, as

this would in effect subtly change the threshold steps chosen below. Our thresholding

approach uses statistical means in the temporal case and is adaptive to the dynamic

background and resolution of the volume field.

Lidar volumes area also presented as raw ”splatted” images. Splatted images con-

sist of the returns of the first half of the capture volume combined and re-scaled as

a greyscale image. Figure 4.1 gives examples of splatted images with notable POI

present. Splatted images give an overall idea of whether the volume scans contains
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Figure 4.1: Raw images from UMSLI system as greyscale splatted

image

POI as a form of of validation. However, due to scattering and shot noise, some

particles are difficult to distinguish from background speckle with the naked eye.

Also, objects in the splatted image are not scaled to the ground truth size, meaning

objects that appear in early sections of the volume may appear as large as objects

further in the background despite their actual size. Furthermore, the image noise

adds a fuzziness to the image, and ambient light towards the top left corner of the

image creates an uneven background. Random speckle in the background is difficult

to distinguish as POI or as undesired smaller scattering returns. A simple image

processing approach to greyscale images would be to apply smoothing filter and con-

trast enhancement [30]. For the case of lidar signal, noise is a dependent aspect of

the signal (defined in noise characteristic section), we find that contrast enhancement

methods are ineffective, as is apparent from figure 4.2. Smoothing methods, are ef-
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Figure 4.2: Ineffective attempt to exaggerate POI with increased

contrast

fective for distinguished images of larger objects, eliminating smaller particles that

hold statistical significance.

Another image processing approach was through frequency analysis. This method

considers the power spectral density of a single lidar waveform which contains a

significant return. The goal of the power spectral estimation is to isolate the band

of frequencies that contains the majority of the signal. We wish to resolve a wide

range of particle sizes, therefore, cannot focus on narrow bands of frequency. We

find in this analysis that the power of the lidar signal is very wide spread across

many frequencies, and that simple cut-off frequency methods result in a loss of signal

containing particle returns [40,44,46]. During the processing of the lidar images, the

method presented below served better than the approach of digital frequency and

image smoothing filters. The flow chart presented in figure 4.3 steps through the post

processing methods taken to resolve POI from the volumetric data. We will use an

32



Figure 4.3: Flow chart of processing steps for extracting POI

example volume scan from station 6 captured at time 17:47 on March 25th at a depth

of 300 meters. As we step through the processing methods for the UMSLI system

the image presented in figure 4.4 will be used as an example for the remaining figures

for this chapter. As shown above, this example image is a splatted image of the first

half of the volume, though we will process only the first slice of the image completely,

many of the POI are notable.

4.1 RESAMPLING

The first step in evaluating each volume scan was to perform a cubic spline linear

interpolation for each of the returned temporal waveforms in accordance to the PMT

bandwidth of 400 MHz. The interpolation step is conducted across each waveform

independently as represented by each pixel in the time domain [47]. To this effect,

the newly configured data is resampled into 52 discrete points of return in the signal.
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Figure 4.4: Splatted example image

This method is a common lidar approach, as sampling multiple pulses over a longer

time duration, reduces speckle and overall increases signal to noise. [19, 25, 40]. As

a trade-off we are increasing the bin length of each sample and therefore, capture

a larger section of volume as a discrete volume slice. This method does decrease

our temporal resolution, but in effect greatly reduces noise in the spatial domain

of the image. For the newly evaluated waveform, the cut-off samples of the signal

begins at the newly sampled 9th slice and ends at the 45th slice. Data before the 9th

sample point is before the full FOV intersection of the laser and receiver and holds

no significant information, while signals after the 45th sample point are too low to

resolve due to attenuation.

4.2 BACKGROUND SUBTRACTION

To eliminate data offsets and remove noise apparent from the background, an

average of 100 individual volume scans were subtracted from each volume sample.

This gives a statistically appropriate number of samples over a short period of time

that represents the expected background of each volume. As stated previously, at

each sampled depth, 100 volume scans were sampled consecutively. The background
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subtraction serves to reduce variation in intensities across the temporal slices in the

volume as well, account for the spatial characteristics in the signal [40]. To this

regard, temporal noise that appears to be largely shot noise dominant early in the

signal is reduced, while spatially uneven illumination and background ambiance is

dampened.

Figure 4.5: Average background image slice

Figure 4.5, shows a intensity plot of the residual intensity of an average background

volume slice. Here we display the 9th sample slice of the average background from

the raw volume data, revealing the spatial characteristics of the noise in relation to

the transmitter and receiver geometry. In monostatic lidar layout, we witness high

signal returns on the volume plane closest to the transmitter. As is apparent in the

figure, the top left corner on average reflects higher return intensity. The background

subtraction method is a correction factor for this uneven power distribution. Since

signal is lost as the laser propagates through the water, we observe more signal in the

earlier sections of the volume. However, the signal noise dependency creates a larger

variance of noise in sections of the volume with higher average returns. Image slices

have a large range of pixel intensity values ranging from 2000 to -50. The result from
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Figure 4.6: Image slice 7 with scaled return values

negative values are from the pulse ringing and are described in the previous section.

Going forward, we focus on the volume slices rendered as images. Figure 4.6

shows the 9th volume slice from a scan volume after the background subtraction.

The volume slices are treated as single images, though they actually represent the

signal return as observed by the PMT during the time bin designated by the impulse

response of the receiver. This image slice is used as an example because it contains

both large and small particles. Also, we use the 9th slice because it is the first

evaluated slice in a volume and typically returns more particles due to a higher signal

intensity. It should be noted that earlier sampled slices contain the sections of lidar

waveform with higher intensity, while slices further in the volume have lower returns.

This creates a large variation of return values that vary greatly depending on their

distance from the transmitter. This makes an adaptive threshold imperative when

we consider each image slice individually. The next step in the data processing is to

determine what range of return values for a particle constitutes it as a POI and what

returns are considered environmental noise.
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4.3 THRESHOLDING

Our approach for determining an optimal threshold for image slices is to evaluate

each temporal slice independently. This method was chosen due to the large variation

in background intensity across the temporal domain. Though the average background

subtraction removes much of this effect, we still consider the returned signal to carry

a statistical variation due to its noise dependence and the exponential loss of signal.

The remaining signal is represented as a histogram of pixel intensity returns for an

image slice. As seen in figure 4.7, the majority of the returns are centered around zero,

and show characteristics of white Gaussian noise. We see that a large portion of the

Figure 4.7: Distribution of return values across whole potential scale.

return values fall on the low end of the intensity spectrum. This is expected because

of the obviously dark background, our concern is what we characterize as a particle.

We expect a low end distribution to represents the noise floor of the image slice. The

pixels with values close to zero we characterize as pixel values of insignificant returns

and assume they are least probable to be POI values. MATLAB presents multiple

automated binarization methods of images through the isolation of background and

foreground pixels [48, 49]. Most of these methods, such as Otsu’s method, segments
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the image pixels into classes of foreground and background and choose a threshold

that minimizes the intraclass variance of the thresholded black and white pixels. This

method requires a more defined double mound histogram between lighter and darker

pixels, and is less effective with images containing smaller objects [48, 49]. As shown

in figure 4.7, the lidar images do not have a defined foreground and only contain a

very obvious background peak [48]. To determine image slice thresholds, we set a

boundary cutoff value based on normal distribution statistics of the noise floor as

represented by the lower bound peak. This is to ensure our threshold value is as close

to the noise floor as possible to maximize the number of resolved particles, while still

eliminating the computation of false POI.

Figure 4.8: Left side of pixel return histogram with half Gaussian

fitted curve.

After isolating the left side values of the noise floor (figure 4.8), a half Gaussian

curve is fit to the left side of the bin points using a least squares error function. The

statistical definition of the half Gaussian curve gives reference to the lower bound noise

of the histogram. The standard deviation of the Gaussian curve is used as the basis

for setting a threshold value for turning each image slice into a binary image that only

contains POI. This threshold is based on the standard deviation of the lower bound
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histogram of each temporal image slice. Henceforth, we define the optimal threshold

value as 5 ∗ (mode + 3 ∗ std). The extra scale factor was found as the value that

best prevented the counting of false POI and is justifiable based on the large dynamic

range of the lidar waveforms. From this process the returned threshold serves as a

cut-off value for the binarization process of each image slice. Values greater than the

threshold in the slice are kept and considered POI, while returns lower are neglected

and set to zero.

When evaluating the image post threshold in figure 4.9, we see that pixels pre-

viously hidden in the background are extracted. As a result of high reflection from

Figure 4.9: Image slice 9, post threshold reveals POI for extraction.

larger particles, we witness a halo effect in the resolved image. We expect that larger

POI give saturated signal return in the pixel waveforms are over estimated in size.

This overestimation we predict to be an effect of higher returns due to scattering

caused by initial reflection from highly reflective objects or close proximity to the

receiver. Efforts to eliminate this effect were explored but not resolved and further

research of water-shedding techniques are still being considered [50].
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4.4 MASKING

As previously mentioned, when the PMT receiver records a large number of pho-

tons, the returned signal will have a ringing effect. This ringing anomaly for select

cases causes the same particle to appear in multiple image slices. In order to pre-

vent an inflation of particle counts, we apply a binary mask to each image slice in

accordance to the slice before it [50]. The binary mask compares each counted pixel

and compares it to the previous slice. If the two slices share a pixel at the same

address, then that pixel is removed from the current evaluated slice. This method

assumes that two particles cannot exist in consecutive slices, and the masking method

is a preventive measure from counting particle returns for the remaining volume. In

order to compare consecutive slices we use a binary subtraction method. Consider

the simple 2 x 2 identity matrix, which we say represents as a 4 pixel binary image,

such that a zero signifies a background pixel and a one is a counted pixel. We will

call this the first slice of the volume.





1 0

0 1





Similarly, we can identify the second slice as the matrix.





1 0

1 0





For the first slice of the volume we assume there are no repeating particles and can

evaluate it normally, however the following slice we compare to the slice before it

to identify a repeating particle. To evaluate the 2nd slice, we multiply the previous

slice (1st slice in this case) by a factor of two and then subtract the current slice as

demonstrated.




2 0

0 2



−





1 0

1 0



 =





1 0

−1 2




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Thus, we can identify the 4 possible outcomes where: a return value of 1 is a repeating

pixel that should be masked , 0 is counted as a repeating background pixel, -1 is a

newly counted particle for the evaluated slice, and 2 is a previously counted pixel from

the first slice and is disregarded. When comparing the 3rd slice, the 2nd slice takes its

original form as it is presented before being masked itself. If a particle continuously

appears in three slices, it will still be eliminated by comparison of the original second

slice, thus again eliminating the reoccurred particle across multiple slices. In this

morphological approach, if a particles occupies a pixel address, it is not counted for

the remainder of the volume. This process is further exemplified in figure 4.10.

Figure 4.10: Example of consecutive image slices with repeating

particles. Red circle: example of ghosting caused by ringing in wave-

form of represented pixels; masking process removes these objects

before evaluation of image slice. Orange rectangle: example of new

particles still present after the masking process. Note: Other masked

regions not marked.
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For each pixel masked, the remaining volume that it occupies is subtracted from

the whole, we find in the results that the ringing waveform is an anomaly, and only

occurs during cases of saturation of the PMT. The calculated volume subtracted due

to the masking process, is continuously less than 10% of the total volume.

4.5 EXTRACTION AND RESIZING OF POI

After the masking process, the binary image slices contain only POI as remaining

white pixels. From these images we extract information about size and shape of the

POI using image processing tools from MATLAB. These include the major and minor

axis lengths and ”filled area” of the pixel regions. The major and minor axis length

is measured as the per pixel count of the major and minor axis of a set of connected

pixels that has the same normalized second central moments as the pixel region. From

the major and minor axis length, we calculate the aspect ratio of each POI. The filled

area returns a scalar number of pixels that make up a POI region, where the region is

defined as any number of pixels connected adjacently to another. If the pixel region

encloses an area with consecutive connected pixels, then the filled area includes the

holes of the pixel group. We define the filled region as the cross sectional area of

the particle of interest, we assume evaluated POI to be a sphere [50]. We found this

approximation to be acceptable as the aspect ratios reveals the pixel regions to be

dominantly 1:1.

After the cross sectional area of each pixel region is counted, the particle is resized

to the ground truth size of each image slice in accordance to calibration measurements

taken before deployment. Also, calculated is the total volume scanned with the

masked volume removed and the thresholds calculated for each image slice, as shown

in figure 4.11 and table 4.5.
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Major

Axis

Length

(pixels)

Minor

Axis

Length

(pixels)

Filled

Area

(pixels)

Mean In-

tensity

Min

Intensity

Major In-

tensity

Calculated

Diameter

(cm)

11.00 8.56 72 819.28 173.01 1913.15 12.16

12.70 1.15 11 1593.18 227.17 1931.70 4.75

4.43 2.88 9 762.25 172.59 1603.67 4.30

4.49 1.72 5 1898.52 1871.05 1912.03 3.20

5.77 1.15 5 423.00 217.42 655.30 3.20

5.36 1.38 4 389.91 327.97 483.57 2.87

2.58 1.76 3 800.44 182.06 1851.74 2.48

2.58 1.76 3 272.00 193.25 381.97 2.48

3.05 1.15 2 568.93 546.08 591.79 2.03

2.30 1.15 2 643.33 493.31 793.35 2.03

2.30 1.15 2 1891.03 1881.03 1902.91 2.03

2.30 1.15 2 1021.77 175.45 1868.10 2.03

2.30 1.15 2 606.94 603.75 610.13 2.03

2.30 1.15 2 486.69 450.70 522.68 2.03

Table 4.1: Table of POI characteristics from figure 4.11
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Figure 4.11: Example image slice with extracted particle charac-

teristics.
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CHAPTER 5

RESULTS AND DISCUSSION

The data sets shown in this chapter are from two stations during the mesopelagic

cruise. The focus of the data presented is from stations 5 from 5:00-7:00 and sta-

tion 6 from 17:00-19:00, both on March 25, 2018. For both stations, we characterize

the water column using CTD data from the downcast deployments, and examine

data captured during extended time-series deployments. We aim to make observa-

tions for particles counts and particle size distributions (PSD) that characterize the

mesopelagic zone during prime migration periods. Using the methods outlined above,

we process the data set and present results that both validate protocols that provide

insight in characterization of extracted particles. From the lidar data, we demonstrate

the fluctuation of particles counted in time as it relates to the migration patterns ob-

served. The presentation of PSDs gives insight on size distribution and abundance,

however, it does not include detail about the identification of these particles. We

recognize the original purpose of the UMSLI system is for identification. The aim

here is to test a new method to extract particle characteristics, such as shape, size

and spatial proximity. We expect distributions with relevance to a large range of or-

ganisms, floc aggregations and particulates alike. This chapter interprets the results

rendered from the methods described above, as it pertains to the processing steps

and the assumptions used.
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5.1 WATER COLUMN PROFILE

Figure 5.1 shows the CTD data for stations 5 and 6, which depicts the temperature

and density measurements taken during the downcast before the time series deploy-

ments. For both stations 5 and 6, the decrease in temperature and density follows a

similar slope from the surface to 100 meters. There is a steep decline in temperature

down to 100 meters indicating the presence of a thermocline and halocline. The slope

for both stations shows a more gradual decline as it approaches the sampling depth of

300 meters. During the time series scans for both stations 5 and 6, the temperature

was consistent, only varying a few degrees throughout the recording. We expect the

water characteristics for station 5 and 6 to vary considering their spatial differences

and levels of biological activity in proximity to the Mississippi delta [39].

Figure 5.1: Downcast profile of Temperature (red) and density

(blue) for station 5 and 6.

The time of the sampling at both of these stations also varied. Station 5 samples

were taken during the early morning, while station 6 samples were taken in the late

evening. These sampling periods are critical to the expected migrations of marine

organisms with respect to the particle size range of the lidar. We expect a rise and
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fall of particle counts in correlation with the migrations periods, and assume that

during periods of little activity, the particle counts remain stable. We also consider

the aggregation stages of marine snow as it pertains to the bio-activity to the euphotic

layer above, as we expect its abundance to be a constant background.

5.2 PARTICLE CONCENTRATIONS

Figure 5.2 presents the particle counts for station 5 and 6 as a stem plot. Each stem

represent a lidar sample that contains 100 consecutive volumetric scans, each sample

set is captured at 5 minute intervals. The particle count for each sample represents

the sum of all size class POI resolved from the volumes during the sampling period.

For station 5, 1800 volume scans were processed, these scans spanned approximately

from 5:15 to 6:33 local time. Similarly, for station 6, a total of 1700 volume scans

were collected in the evening from 17:42 to 18:56 local time.

Station 5 had an average of 2259 particle counts across the span of the sampling

period; its largest count of 2482 particles followed its smallest count of 2078 particles

consecutively. There is a drop in particle counts from the start time until 5:40 and

then a plateau until the jump to around 6:20. The counts for station 5 showed more

variation than station 6. Station 6 is relatively consistent for the first half hour of

sampling. Overall, station 6 showed a higher average particle count of 2347, and

showed less variance during the entire sampling period. The highest particle count

was 2542 at time 17:47 and the lowest was the last sample at 18:46.

Starting at 18:21 there is a steady decline until the end of the sampling period.

This steady decline may represent the falling end of a migration period, but without

a longer sampling period it is difficult to make any conclusive argument. A prolonged

sampling period at which a full migration cycle is evident would be ideal; for this case,

we would expect to see a large flux in particle counts during the migration period

and then a drop back to normal level.
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Figure 5.2: Particle counts from stations 5 and 6.

Ideally, during the deployment of the imaging system, we hoped to collect images

of schools of fish and krill. The instruments deployed did not capture these large

congregations as hoped. The ship EK-80 did record a migration mass moving through

the water column during the evening period of station 6, as shown in the acoustic

time lapse in figure 5.3

In figure 5.3, the time lapse recorded from 17:00 to 21:00 hours shows a mass

moving through the water column as marked in green, this is in coherence with the

time series recording for the lidar imager at station 6. The profiler was positioned

in the middle of the mass congregation to give the best opportunity of observing the

migration. The mass consistently fluctuated between 200 and 300 meters across the

same period shown in figure 5.2 for station 6. The acoustic data supports the recorded

consistency in particle counts, but analysis of the images themselves and PSDs show

a lack of large congregation. This could imply that large schools avoided the profiler,

though the lidar itself does not emit a visible beam to marine life. Other instruments

include blinking lights and the frame itself is an obstacle, and may have contributed

to marine life avoidance.

The priority of the processing method for the UMSLI system is to consistently ex-
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Figure 5.3: EK-80 acoustic time series.

tract significant particles while eliminating the counting of noise and small scattering

returns. During experimentation of alternative processing methods, particle counts

were conducted that did not include the step of excluding single pixels as extracted

particles. This raised particle counts for both stations, the maximum particle count

for station 5 reached up to 8000. After further evaluation of the processed image, it

was concluded that a single pixel is unlikely a POI and should not be included for

evaluation. Further evidence that led to the exclusion of single pixel particles was

found in the PSDs as well.

It was found that for particle size bins that equated to the slice resolution of

a single pixel showed a very large increase that served as an outlier to the normal

PSD trends. Though elimination of single pixel particles also increases the smallest

resolvable objects for the system, the particle counts are more reliable with their

exclusion. Confidence in this processing approach is also affirmed with the consistency

in the particle counts across two different locations.
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5.3 PARTICLE SIZE DISTRIBUTIONS

Here we present the distribution and abundance of POI counts across a time series

of scans. In order to show the sizing distribution for each sample, we use a particle

size distribution (PSD) plot. This method best represents particle abundance for

resolvable size resolutions for the UMSLI system. For most cases of underwater

optics, PSDs are used to measure much smaller particles, the Sequoia LISST-100X

instrument, for example, uses the refraction properties of an intersecting particle

through two collimated beams to measure the approximate size of a particulate on

the scale of micro-liters per liter [45, 51, 52]. We note here that the path length of

the beam in this case is constant, as well the volume observed is unchanged over

time. More common optical devices used to generate PSDs that function similarly to

the LISST-100X include the Coulter Counter and Flowcam [52,53]. For the imaging

lidar, we observe POI across a dynamic volume and present a sizing distribution on

a scale of 2 cm to 50 cm per 650 m3. We observe in the case of imaging lidar, a

larger observable volume that expands in space and range of expanding size. Here we

aim to express the full spectrum of observable sizes for the UMSLI system and shift

the focus to the processing methods ability to accurately size distinguished POI. To

do this, we make the assumption that extracted POI are spheres with an equivalent

spherical diameter, D, which is measured as
√

4A/π where A is the extracted filled

area as demonstrated in the method section [51,54]. Note that A is a measure of the

image pixel count for a POI and the calculated diameter is scaled in accordance to

the sizing correction. Thus, the resolution for the discrete sizing bins of the PSDs

are presented in accordance to the minimal change in equivalent spherical diameter

between two slices. We present the PSDs on a log scale, modeled as a power law or

Junge distribution which is mathematically represented below,

n(D) = no(D/Do)
−γ (5.1)
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where, Do is the reference diameter, no is the differential particle concentration at

Do(m
−3.cm−1) and −γ is the slope of the distribution [37,51, 54–56].

Most studies when considering PSDs take great interest in the slope, γ, of the

distribution, as it indicates to the dominance of smaller or larger particles. We ex-

pect to see a larger slope for smaller particle dominance and a smaller slope for larger

particles. Typical slopes for small marine particles has a range of −3.5 to −4 with

variability depending on the size class [37, 51, 55]. Other expected variations in the

slope are caused by high concentrations of bioactivity, seasonal variation and varying

size ranges such is the case for the lidar imager [5, 39]. The analysis for the PSDs

generated from the imaging lidar does not give high enough particle counts to con-

fidently make any conclusions about the quantitative slope of the distribution, but

does allow insight to general trends.

From the PSDs we observe the largest abundance and stability in slope are ob-

served only in the first few size classes. We expect these to be mostly large aggre-

gations of marine snow that are ever present in the water column as they present a

stable slope. This is the size class that would typically show a larger fluctuation if

noise is present. Stability is an indicator that noise that usually causes image speckle

is removed and not analyzed as a POI. More noticeable clumping and variation in

the size classes from 5 cm to 10 cm depict the beginning of organisms with trans-

port capability. The slope for this section of data still shows a defined negative slope,

slightly smaller than that of smaller size classes. Resolved POI beyond 10 cm are only

counted on rare occasions and often form a row on the bottom of the plot. These are

expected to be smaller marine organisms such as fish that we expect to be present

due to the vertical migration during the morning and evening periods.

The PSDs presented in figure 5.4 are generated from 100 consecutive volumetric

scans as they represent the particles in the water columns over a 5 minute period for

stations 5 and 6. The presented PSDs are only a few of the 17 samples taken for each
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station. The sample chosen for this figure serves to demonstrate similarities as well

differences in the PSDs.

One of the immediate concerns with the PSDs are outlier points that do not

follow the general slope. For example, in the presented PSDs for station 6, there is a

consistent point at 6.8 cm that is considerably lower than its neighboring size classes.

Though this size class has a very low concentration and could be a error caused by

sample size, its consistency is a concern. This could be caused by size gap between

the lidar slices. Between each lidar slice in the volume, there is a discrete resolution

change of 0.22 cm. The breaking up of the scanned volume into discrete slices leads

to discontinuity in sizing due to assumptions that a volume slice shares a discrete

resolution. This is a limitation of the PMT impulse response and not the digitizer for

most lidar systems. Station 6 also shows more cases of larger POI, the largest particle

recorded was up to 38.07 cm. In general, we find that station 6 recorded larger POI

while still showed similar abundance in smaller size classes. The reader may also

recall that for many larger POI, we witness a halo effect around the object caused by

large reflections. This leads to an over approximation during the calculation of the

particle size. Also, select images show long objects that do not fit the approximation

as a sphere and in PSDs represent much larger particles. Figure 5.5 accumulates all

1700 volumetric scans for both stations and superimposes the cumulative PSD data

together for comparison. When comparing the two stations we observe very similar

patterns in the small size classes where there is a significant sample size. Also, we

see a reflection of gaps in size class as mentioned above, which is equally apparent for

both stations. Station 6 cumulatively recorded larger POI in more abundance, but

station 5 and 6 are similar data set in the 10 to 15 cm size classes.

Station 5 shows more linearity in the slope in the mid-range size classes, though

there are signs of grouping for size classes of 8-9 cm. Grouping is caused by the

logarithmic scales, but it may also suggest a larger population of POI in this size
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Figure 5.4: Select PSDs from stations 5 and 6.
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Figure 5.5: Cumulative PSDs from stations 5 and 6.

range. Studies suggest that flat sections in PSDs are indicators of an abundance in

organisms of a certain size class and is a sign of bio-activity [37,51]. Again, the sample

size for this data set does not allow for any conclusive statement to this regard, though

the flux of larger particles at station 5 is evidence that this deployment captured more

activity in the water column. In general, the consistency seen in the smaller class size

supports consistency using the method for POI extraction, while there is still larger

possibility for error caused by assumptions that gives rise to fluctuation in slope.

Larger POI are very few, as is expected when observing open ocean waters, though

the expectation for larger migrations of fish and krill was not met.
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Typically, large sample numbers are easy to accumulate when considering particles

on a micrometer scale, as they naturally occur in greater abundance [4]. When

conducting particle statistics on objects in the centimeter range, there is a drastic

drop of observation per unit volume of water. The UMSLI system does provide

an insightful look into PSD for larger particles. The large sample volumes creates

opportunity to observe larger particles, while its dynamic resolution extends across a

broad size class.

Imaging lidar follows the same principle of measuring scattering to approximate

the particle size as many PSD generating instruments. Here, to accommodate the

large viewing field, we assume that particle size is a function of not only scattering

but its distance from the receiver, as governed by the beam diameter. As previously

mentioned, a particle smaller than the beam diameter with a high reflectivity can

cause a large response in the recorded waveform that insinuates a larger particle.

This is further exaggerated if this occurs in a later volume slice, for which its size is

scaled proportionally.

The threshold step in the processing methods is the last time a particle is evalu-

ated in terms of its irradiance intensity. This information is still obtained for every

extracted particle, as it could serve to better characterize specific POI, but for this

study was not fully utilized statistically. Characterization about the particles com-

position and shape could be made in relation to its intensity, however, this would

require a modeling effort that is specific to this lidar system and experimentation

with a larger sampling population of known particulates. Typical particle counter

instruments use embedded fixed boundary conditions in the control volume such as,

particle size and sampling limit. Here, we extend the capability of a simple elastic

lidar to observe an area in the ocean that we largely do not understand, and thus need

to engineer a system that is capable of imaging a large range of marine organisms.
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CHAPTER 6

CONCLUSION

When considering the performance of the UMSLI system in creating PSDs, we

must recognize several disadvantages that are largely due to the system design. The

UMSLI system’s original design purpose is to survey a large volume for large marine

species in the size range of meters. As highlighted in the Development of UMSLI

section, the system is capable of resolving images with enough clarity to identify

a barracuda or grouper from several meters away. The intentions of the imagers

deployment on the cruise to the mesopelagic was to image schools of fish and krill

to further demonstrate its imaging capability and provide an overlapping ranging

capability between the other optical and acoustic devices. The expected observation

of these schools of fish were not met as planned, but the system did provide insight to

larger particle distributions. The effort to develop a protocol for evaluation of these

observe particles was conducted to exemplify the capabilities of lidar imaging to the

limit of its hardware components. The UMSLI system has now opened the door

to explore the observation of a particle size class that is largely understudied, and

generate PSDs for a much larger observation volume. The imaging system exemplifies

its potential for future deployments in the mesopelagic that would provide statistical

evidence to validate image processing methods, and extend opportunity to capture

images of larger species.

In regard to the construction of PSDs from the lidar images, the number of parti-

cles for the captured size class would require a longer sampling duration to accumulate

enough particles to validate a distribution model. This system, as a PSD generat-

ing instrument, adds many dynamic factors to the PSD processing stage that are
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otherwise, consistent in common devices that generate PSDs. For example, devices

such as the LISST-100X calculates its particle concentrations over a control volume

of one liter, while in the case of the lidar, we observe a much larger volume that is

expansive in time. Also, we observe a much larger dynamic size class with the UMSLI

system. The focus of most PSDs are in the size range of 1-100 micrometers, which

naturally carries a larger abundance of particles in a smaller volume. The abundance

of particles in the range of centimeters is not usually considered in the realm of cre-

ating PSDs [3, 53, 57]. The path length of the beam for these types of instruments

are generally very short in order to avoid beam expansion. For most particle count-

ing devices, the exact size of a particle is based on refractive index, shape, size, and

composition. [37, 45, 53,56].

Before future deployments, technical changes are suggested. The understanding

of the rate of beam spreading plays a direct role in the sizing of particles. Extensive

study of the point spread function and distortion behavior for highly collimated beams

has been conducted in the past, and experimentation to validate a modeling effort of

the beam spread for this system would greatly eliminate systematic error [14]. Air

and bench top characterization would provide the PMT noise scale factor and give

validation of the expected noise scale. Experimentation with differentiating target

size and reflection would give baseline estimates for threshold levels and expected

noise amplification. Similarly, this same test could be conducted with uniformly

sized particle beads at a close range. Just as this experiment can be geared to larger

or smaller targets with varying size classes, so can the protocol for POI extraction.

When considering the distribution of POI extracted among image slices, we find

the highest abundance of POI counted were in the first 10 evaluated slices. This is

expected because of the exponential loss of signal due to attenuation. However, this

also often causes saturation in the PMT, ringing, halo effects, and limits accountable

information from the waveform. To mitigate this effect, the system could feature a
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range gating capability.

Range gating would greatly eliminate unwanted scattering to the system, and

give the user control over which size classes are of interest with greater contrast.

However, range gating adds complexity and cost to a system, and would in effect

create discontinuity between image slices and result in loss of the observable volume.

A shorter pulse duration is an optional improvement, as is a PMT with a faster

impulse response allows for a faster sampling rate of the system. These upgrades

come with extra cost and less reliability. This would be an imporvement of the

system’s imaging ability, but the focus of this study was to extend capability of the

imaging system, not improve its hardware and components.

The UMSLI system also features other denser FOVs that were not analyzed with

the processing method outlined. The same processing steps could be applied to the

denser viewing modes with little changes to the original code and hold potential to

resolve smaller particle size classes. The geometry of the beam overlap may allow

for multiple points of inflection and more detail on smaller object as demonstrated in

figure 1.5. This data is largely un-evaluated and is an extended study of this project.

Other un-addressed problems are the jitter effect caused during the scanning process

that degrades the original 200 x 200 image into a 200 x 100 image, and calibration

to mitigate blurring on the edges of images. These issues are further evaluated and

considered with the continued development of lidar imaging systems at HBOI.
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[12] Z. Cao, J. C. Pŕıncipe, B. Ouyang, F. Dalgleish, A. Vuorenkoski, B. Ramos,

and G. Alsenas, “Marine animal classification using UMSLI in HBOI optical

test facility,” Multimedia Tools and Applications, vol. 76, no. 21, pp.

23 117–23 138, Nov. 2017. [Online]. Available: http://link.springer.com/10.

1007/s11042-017-4833-4

[13] F. Dalgleish, B. Ouyang, A. Vuorenkoski, B. Ramos, G. Alsenas, B. Metzger,

Z. Cao, and J. Principe, “Undersea LiDAR imager for unobtrusive and eye

safe marine wildlife detection and classification,” in OCEANS 2017 - Aberdeen.
Aberdeen, United Kingdom: IEEE, Jun. 2017, pp. 1–5. [Online]. Available:

http://ieeexplore.ieee.org/document/8085029/

[14] B. M. Cochenour, L. J. Mullen, and A. E. Laux, “Characterization of

the Beam-Spread Function for Underwater Wireless Optical Communications

Links,” IEEE Journal of Oceanic Engineering, vol. 33, no. 4, pp. 513–521, Oct.

2008. [Online]. Available: http://ieeexplore.ieee.org/document/4769674/

[15] F. R. Dalgleish, J. J. Shirron, D. Rashkin, T. E. Giddings, A. K.

Vuorenkoski Dalgleish, I. Cardei, B. Ouyang, F. M. Caimi, and M. Cardei,

“Physical layer simulator for undersea free-space laser communications,”

Optical Engineering, vol. 53, no. 5, p. 051410, Apr. 2014. [Online].

Available: http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.

1117/1.OE.53.5.051410

60



[16] M. S. Twardowski, F. R. Dalgleish, A. Tonizzo, A. K. Vuorenkoski Dalgleish,

and C. Strait, “Development and assessment of lidar modeling to retrieve

IOPs,” in Ocean Sensing and Monitoring X, W. W. Hou and R. A. Arnone,

Eds. Orlando, United States: SPIE, May 2018, p. 32. [Online]. Avail-

able: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10631/

2309998/Development-and-assessment-of-lidar-modeling-to-retrieve-IOPs/10.

1117/12.2309998.full

[17] L. De Dominicis, “Underwater 3d vision, ranging and range gating,” in

Subsea Optics and Imaging. Elsevier, 2013, pp. 379–410e. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/B9780857093417500157

[18] T. E. Giddings, “Numerical simulation of the incoherent electro-optical

imaging process in plane-stratified media,” Optical Engineering, vol. 48,

no. 12, p. 126001, Dec. 2009. [Online]. Available: http://opticalengineering.

spiedigitallibrary.org/article.aspx?doi=10.1117/1.3274936

[19] L. Mullen, A. Laux, and B. Cochenour, “Propagation of modulated

light in water: implications for imaging and communications systems,”

Applied Optics, vol. 48, no. 14, p. 2607, May 2009. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=ao-48-14-2607

[20] L. E. Mertens and F. S. Replogle, “Use of point spread and beam spread

functions for analysis of imaging systems in water,” Journal of the Optical
Society of America, vol. 67, no. 8, p. 1105, Aug. 1977. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=josa-67-8-1105

[21] F. R. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, W. B. Britton, B. Ramos,

T. E. Giddings, J. J. Shirron, and C. H. Mazel, “Efficient laser pulse dispersion

codes for turbid undersea imaging and communications applications,” W. W.

Hou and R. A. Arnone, Eds., Orlando, Florida, Apr. 2010, p. 76780I.

[Online]. Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?

doi=10.1117/12.854775

[22] D. Matthew, “NASA Goddard Space Flight Center,” p. 40.

[23] F. R. Dalgleish, A. K. Vuorenkoski, G. Nootz, B. Ouyang, and F. M. Caimi,

“Experimental imaging performance evaluation for alternate configurations of

undersea pulsed laser serial imagers,” W. W. Hou and R. Arnone, Eds.,

Orlando, Florida, United States, May 2011, p. 80300B. [Online]. Available: http:

//proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.888640

[24] F. Dalgleish, F. Caimi, Y. Wan, W. Britton, J. J. Shirron, T. E. Giddings, C. H.

Mazel, J. M. Glynn, and J. P. Towle, “Experimental Validation of a Laser Pulse

Time-History Model,” p. 8, 2010.

61



[25] G. R. Fournier, “Range-gated underwater laser imaging system,” Optical
Engineering, vol. 32, no. 9, p. 2185, 1993. [Online]. Available: http:

//opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/12.143954

[26] R. Measures, Laser Remote Sensing fundamentals and applications. John Wiley

& Sons.

[27] T. Giddings, J. Shirron, and A. Tirat-Gefen, “EODES-3: An Electro-Optic

Imaging and Performance Prediction Model,” in Proceedings of OCEANS 2005
MTS/IEEE. Washington, DC, USA: IEEE, 2005, pp. 1–8. [Online]. Available:

http://ieeexplore.ieee.org/document/1639947/

[28] F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved

LLS imaging performance in scattering-dominant waters,” W. W. Hou, Ed.,

Orlando, Florida, USA, May 2009, p. 73170E. [Online]. Available: http:

//proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.820836

[29] F. M. Caimi and F. R. Dalgleish, “Performance considerations for continuous-

wave and pulsed laser line scan (LLS) imaging systems,” Journal of the European
Optical Society: Rapid Publications, vol. 5, p. 10020s, Apr. 2010. [Online].

Available: https://www.jeos.org/index.php/jeos rp/article/view/10020s

[30] B. Ouyang, F. R. Dalgleish, F. M. Caimi, A. K. Vuorenkoski, T. E.

Giddings, and J. J. Shirron, “Image enhancement for underwater pulsed

laser line scan imaging system,” W. W. Hou and R. Arnone, Eds.,

Baltimore, Maryland, USA, Jun. 2012, p. 83720R. [Online]. Available: http:

//proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.920710

[31] F. Dalgleish, B. Ouyang, and A. Vuorenkoski, “A unified framework for

image performance enhancement of extended range laser seabed survey

sensors,” in 2013 IEEE International Underwater Technology Symposium
(UT). Tokyo: IEEE, Mar. 2013, pp. 1–7. [Online]. Available: http:

//ieeexplore.ieee.org/document/6519906/

[32] “MEMS Mirrors.” [Online]. Available: https://www.mirrorcletech.com/wp/

products/mems-mirrors/

[33] B. Ouyang, F. R. Dalgleish, F. M. Caimi, T. E. Giddings, J. J. Shirron,

A. K. Vuorenkoski, W. Britton, B. Metzger, B. Ramos, and G. Nootz,

“Compressive sensing underwater laser serial imaging system,” Journal
of Electronic Imaging, vol. 22, no. 2, p. 021010, Mar. 2013. [Online].

Available: http://electronicimaging.spiedigitallibrary.org/article.aspx?doi=10.

1117/1.JEI.22.2.021010

[34] M. Massot-Campos and G. Oliver-Codina, “Optical Sensors and Methods for

Underwater 3d Reconstruction,” Sensors, vol. 15, no. 12, pp. 31 525–31 557,

Dec. 2015. [Online]. Available: http://www.mdpi.com/1424-8220/15/12/29864

62



[35] J. Schulz, “Geometric optics and strategies for subsea imaging,” in Subsea
Optics and Imaging. Elsevier, 2013, pp. 243–276e. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/B9780857093417500108

[36] P. Mariani, I. Quincoces, K. Haugholt, Y. Chardard, A. Visser, C. Yates,

G. Piccinno, G. Reali, P. Risholm, and J. Thielemann, “Range-Gated Imaging

System for Underwater Monitoring in Ocean Environment,” Sustainability,
vol. 11, no. 1, p. 162, Dec. 2018. [Online]. Available: http://www.mdpi.com/

2071-1050/11/1/162

[37] M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard,

and J. R. V. Zaneveld, “A model for estimating bulk refractive index from

the optical backscattering ratio and the implications for understanding particle

composition in case I and case II waters,” Journal of Geophysical Research:
Oceans, vol. 106, no. C7, pp. 14 129–14 142, Jul. 2001. [Online]. Available:

http://doi.wiley.com/10.1029/2000JC000404

[38] “R11265u SERIES / H11934 SERIES.” [Online]. Available: http://dtsheet.

com/doc/1279384/r11265u-series---h11934-series

[39] A. B. Burd and G. A. Jackson, “Particle Aggregation,” Annual Review of
Marine Science, vol. 1, no. 1, pp. 65–90, Jan. 2009. [Online]. Available:

http://www.annualreviews.org/doi/10.1146/annurev.marine.010908.163904

[40] Z. Liu, W. Hunt, M. Vaughan, C. Hostetler, M. McGill, K. Powell, D. Winker,

and Y. Hu, “Estimating random errors due to shot noise in backscatter lidar

observations,” Applied Optics, vol. 45, no. 18, p. 4437, Jun. 2006. [Online].

Available: https://www.osapublishing.org/abstract.cfm?URI=ao-45-18-4437

[41] P. R. Prucnal and B. E. A. Saleh, “Transformation of image-signal-dependent

noise into image-signal-independent noise,” Optics Letters, vol. 6, no. 7, p.

316, Jul. 1981. [Online]. Available: https://www.osapublishing.org/abstract.

cfm?URI=ol-6-7-316

[42] S. W. Hasinoff, “Photon, Poisson Noise,” in Computer Vision, K. Ikeuchi,

Ed. Boston, MA: Springer US, 2014, pp. 608–610. [Online]. Available:

http://link.springer.com/10.1007/978-0-387-31439-6 482

[43] J. Minkoff, “Shot Noise and Optical Receivers,” in Signal,Noise, and Active
Sensors Radar, Sonar, Laser Radar. John Wiley and Sons, INC.

[44] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian-

Gaussian Noise Modeling and Fitting for Single-Image Raw-Data,” IEEE
Transactions on Image Processing, vol. 17, no. 10, pp. 1737–1754, Oct. 2008.

[Online]. Available: http://ieeexplore.ieee.org/document/4623175/

[45] R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements
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