You are here
Optimization of Computed Tomography Calibration Curve for Proton Therapy Treatment Planning
- Date Issued:
- 2019
- Abstract/Description:
- The accuracy of proton dose computation in the treatment planning system relies on the conversion from the Hounsfield units (HU) of each voxel in the patient CT scan to the proton stopping power ratio (SPR). The aim of this study is to investigate the potential improvement in determining proton SPR using single energy computed tomography (SECT) to reduce the uncertainty in predicting the proton range in patients. Factors which may cause CT number variations in the calibration curve have been examined. The HU-SPR calibration curve was determined based on HU of human body tissues using the stoichiometric method. The uncertainties in SPR were divided into two major categories: The inherent uncertainty, and the CT number uncertainty. The root mean square errors of the inherent uncertainties were estimated 0.02%, 0.61% and 0.26% for lung tissues, soft tissues (excluding Thyroid), and bone tissues, respectively. The total uncertainties due to the inherent uncertainty and CT imaging errors were estimated 1.50%. The average calibration curve of two sized phantoms (head and body) were used in the treatment planning system to mitigate beam hardening effect through the attenuating media. A higher accuracy of the SPR prediction using the stoichiometric method is suggested through comparison with the predicted SPRs that derived from the direct calibration approach.
Title: | Optimization of Computed Tomography Calibration Curve for Proton Therapy Treatment Planning. |
91 views
33 downloads |
---|---|---|
Name(s): |
Ghasemi Ghonchehnazi, Maryam, author Shang, Charles, Thesis advisor Leventouri, Theodora, Thesis advisor Florida Atlantic University, Degree grantor Department of Physics Charles E. Schmidt College of Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2019 | |
Date Issued: | 2019 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 59 p. | |
Language(s): | English | |
Abstract/Description: | The accuracy of proton dose computation in the treatment planning system relies on the conversion from the Hounsfield units (HU) of each voxel in the patient CT scan to the proton stopping power ratio (SPR). The aim of this study is to investigate the potential improvement in determining proton SPR using single energy computed tomography (SECT) to reduce the uncertainty in predicting the proton range in patients. Factors which may cause CT number variations in the calibration curve have been examined. The HU-SPR calibration curve was determined based on HU of human body tissues using the stoichiometric method. The uncertainties in SPR were divided into two major categories: The inherent uncertainty, and the CT number uncertainty. The root mean square errors of the inherent uncertainties were estimated 0.02%, 0.61% and 0.26% for lung tissues, soft tissues (excluding Thyroid), and bone tissues, respectively. The total uncertainties due to the inherent uncertainty and CT imaging errors were estimated 1.50%. The average calibration curve of two sized phantoms (head and body) were used in the treatment planning system to mitigate beam hardening effect through the attenuating media. A higher accuracy of the SPR prediction using the stoichiometric method is suggested through comparison with the predicted SPRs that derived from the direct calibration approach. | |
Identifier: | FA00013374 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2019. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Proton Therapy Tomography Calibration Tomography, X-Ray Computed |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013374 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |