You are here
REGULATION OF CASPASE-3 ACTIVATION BY PHOSPHORYALTED Ab-CRYSTALLIN AND ITS ROLE IN DIFFERENTIATION
- Date Issued:
- 2019
- Abstract/Description:
- The lens is responsible for focusing light into the retina. It accomplishes this through its maturation from an epithelial cell into a fiber cell. A large amount of research has been done on cellular differentiation. Nevertheless, we still lack knowledge on many different aspects of differentiation, including a complete theory on the mechanism behind differentiation. Due to the lens’ unique structure and cell types, this is an ideal model for studying differentiation. Our research has shown that αB crystallin, a small heat shock protein, is able to modulate cytochrome C levels and protect the mitochondria under oxidative stress. Also, cytochrome C release is often followed by caspase 3 activation. In addition, research has shown that low levels of caspase 3 activation is essential in driving differentiation. My work examined if αB crystallin could modulate cytochrome C to lower caspase 3 levels to allow for differentiation rather than apoptosis.
Title: | REGULATION OF CASPASE-3 ACTIVATION BY PHOSPHORYALTED Ab-CRYSTALLIN AND ITS ROLE IN DIFFERENTIATION. |
![]() ![]() |
---|---|---|
Name(s): |
Cherubin, Patrice, author Kantorow, Marc, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Medicine Department of Biomedical Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2019 | |
Date Issued: | 2019 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 36 p. | |
Language(s): | English | |
Abstract/Description: | The lens is responsible for focusing light into the retina. It accomplishes this through its maturation from an epithelial cell into a fiber cell. A large amount of research has been done on cellular differentiation. Nevertheless, we still lack knowledge on many different aspects of differentiation, including a complete theory on the mechanism behind differentiation. Due to the lens’ unique structure and cell types, this is an ideal model for studying differentiation. Our research has shown that αB crystallin, a small heat shock protein, is able to modulate cytochrome C levels and protect the mitochondria under oxidative stress. Also, cytochrome C release is often followed by caspase 3 activation. In addition, research has shown that low levels of caspase 3 activation is essential in driving differentiation. My work examined if αB crystallin could modulate cytochrome C to lower caspase 3 levels to allow for differentiation rather than apoptosis. | |
Identifier: | FA00013293 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2019. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Caspase 3 Cell differentiation Crystallins Phosphorylation Cytochromes C |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013293 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |