You are here
Analysis of SLKED gene expression in CRISPR/Cas9-mediated gene knockouts in Tomato (Micro-Tom)
- Date Issued:
- 2019
- Abstract/Description:
- Clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas) protein system, CRISPR/Cas9, uses single-guide RNA to guide Cas9 to the target site for genome editing. In this study, the CRISPR/Cas9 system was used to knockout KED in tomato (Solanum lycopersicum). KED was first identified while screening the wounded tobacco (Nicotiana tabacum) leaves. We found that alignment of the protein sequence of SlKED (Solanum lycopersicum KED) and NtKED (Nicotiana tabacum KED) showed 55.1% identity. To investigate, we generated SlKED knockout tomato plants with a single base pair deletion, a five base pair deletion and a three base pair deletion with a single base pair insertion. We performed wounding assays and analyzed gene expression and found that the wounded SlKED knockout plant showed no gene induction. Furthermore, the biological assay results revealed that the tobacco hornworm (Manduca sexta) gained more mass when fed on the SlKED knockout plant. Our studies show that the KED gene plays a role in wound-induced mechanism and suggested it may involve in the plant defense system against biological stress and insect feeding.
Title: | Analysis of SLKED gene expression in CRISPR/Cas9-mediated gene knockouts in Tomato (Micro-Tom). |
282 views
145 downloads |
---|---|---|
Name(s): |
Vichyavichien, Paveena, author Zhang, Xing-Hai, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Science Department of Biological Sciences |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2019 | |
Date Issued: | 2019 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 51 p. | |
Language(s): | English | |
Abstract/Description: | Clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas) protein system, CRISPR/Cas9, uses single-guide RNA to guide Cas9 to the target site for genome editing. In this study, the CRISPR/Cas9 system was used to knockout KED in tomato (Solanum lycopersicum). KED was first identified while screening the wounded tobacco (Nicotiana tabacum) leaves. We found that alignment of the protein sequence of SlKED (Solanum lycopersicum KED) and NtKED (Nicotiana tabacum KED) showed 55.1% identity. To investigate, we generated SlKED knockout tomato plants with a single base pair deletion, a five base pair deletion and a three base pair deletion with a single base pair insertion. We performed wounding assays and analyzed gene expression and found that the wounded SlKED knockout plant showed no gene induction. Furthermore, the biological assay results revealed that the tobacco hornworm (Manduca sexta) gained more mass when fed on the SlKED knockout plant. Our studies show that the KED gene plays a role in wound-induced mechanism and suggested it may involve in the plant defense system against biological stress and insect feeding. | |
Identifier: | FA00013275 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2019. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Genome editing Gene expression CRISPR/Cas9 CRISPR-associated protein 9 |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00013275 | |
Use and Reproduction: | Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |