You are here

Synthesis and Bioactivity Investigation of Bridged Bicyclic Compounds and a Mechanistic Investigation of a Propargyl Hydrazine Cycloaddition Catalyzed by an Ammonium Salt

Download pdf | Full Screen View

Date Issued:
2018
Abstract/Description:
We report the development of a general route to the synthesis of [4.3.1], [3.3.1], an especially [3.2.1] bicyclic compounds structurally related to vitisinol D, a natural product. This allows for diastereoselective synthesis of bicyclic compounds with five adjacent chiral centers. This route was employed in a preliminary SAR investigation into the neuroprotectant effect of small molecules in an in vivo experiment measuring the degree of restorative effect of synaptic transmission in the neuromuscular junction of Drosophila melanogaster larvae under acute oxidative stress. One of the compounds exhibited intriguing potential as a neuroprotectant and outperformed resveratrol in restoring synaptic function under oxidative stress. The hypothesis that bridged bicyclic compounds may hold promise as drug scaffolds due to their conformational rigidity and ability to orient functional appendages in unique orientations is developed. The second focus is a mechanistic investigation into a tetrabutylammoniumcatalyzed cycloaddition as evidence of a novel ammonium-alkyne interaction. A carbamate nitrogen adds to a non-conjugated carbon–carbon triple bond under the action of an ammonium catalyst leading to a cyclic product. Studies in homogeneous systems suggest that the ammonium agent facilitates cyclitive nitrogen–carbon bond formation through a cation–π interaction with the alkyne unit. Using Raman spectroscopy, this cation–π interaction is directly observed for the first time. DFT modeling elucidated the mechanistic factors in this cycloaddition. A teaching experiment was developed based on this mechanistic investigation. Control experiments were employed to demonstrate the testing of two alternative mechanistic hypotheses. Cyclization reactions were performed with a soluble base (sodium phenoxide) with and without tetrabutylammonium bromide under homogeneous conditions. Students observed that ammonium salt accelerates the reaction. They were encouraged to develop a testable hypothesis for the role of the ammonium salt in the cyclization mechanism: typical phase transfer or other. IR spectroscopy was used to directly observe a dose dependent shift of the alkyne stretching mode due to a cation−π interaction. Undergraduates were able to employ the scientific method on a contemporary system and see how data are generated and interpreted to adjudicate between rival hypotheses in a way that emulates authentic and current research in a lab setting.
Title: Synthesis and Bioactivity Investigation of Bridged Bicyclic Compounds and a Mechanistic Investigation of a Propargyl Hydrazine Cycloaddition Catalyzed by an Ammonium Salt.
147 views
101 downloads
Name(s): St.Germain, Elijah, author
Lepore, Salvatore D., Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Science
Department of Chemistry and Biochemistry
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2018
Date Issued: 2018
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 206 p.
Language(s): English
Abstract/Description: We report the development of a general route to the synthesis of [4.3.1], [3.3.1], an especially [3.2.1] bicyclic compounds structurally related to vitisinol D, a natural product. This allows for diastereoselective synthesis of bicyclic compounds with five adjacent chiral centers. This route was employed in a preliminary SAR investigation into the neuroprotectant effect of small molecules in an in vivo experiment measuring the degree of restorative effect of synaptic transmission in the neuromuscular junction of Drosophila melanogaster larvae under acute oxidative stress. One of the compounds exhibited intriguing potential as a neuroprotectant and outperformed resveratrol in restoring synaptic function under oxidative stress. The hypothesis that bridged bicyclic compounds may hold promise as drug scaffolds due to their conformational rigidity and ability to orient functional appendages in unique orientations is developed. The second focus is a mechanistic investigation into a tetrabutylammoniumcatalyzed cycloaddition as evidence of a novel ammonium-alkyne interaction. A carbamate nitrogen adds to a non-conjugated carbon–carbon triple bond under the action of an ammonium catalyst leading to a cyclic product. Studies in homogeneous systems suggest that the ammonium agent facilitates cyclitive nitrogen–carbon bond formation through a cation–π interaction with the alkyne unit. Using Raman spectroscopy, this cation–π interaction is directly observed for the first time. DFT modeling elucidated the mechanistic factors in this cycloaddition. A teaching experiment was developed based on this mechanistic investigation. Control experiments were employed to demonstrate the testing of two alternative mechanistic hypotheses. Cyclization reactions were performed with a soluble base (sodium phenoxide) with and without tetrabutylammonium bromide under homogeneous conditions. Students observed that ammonium salt accelerates the reaction. They were encouraged to develop a testable hypothesis for the role of the ammonium salt in the cyclization mechanism: typical phase transfer or other. IR spectroscopy was used to directly observe a dose dependent shift of the alkyne stretching mode due to a cation−π interaction. Undergraduates were able to employ the scientific method on a contemporary system and see how data are generated and interpreted to adjudicate between rival hypotheses in a way that emulates authentic and current research in a lab setting.
Identifier: FA00013100 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2018.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Bicyclic compounds.
Ammonium salts.
Cycloaddition Reaction.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00013100
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.