
MINING AND FUSING DATA FOR OCEAN TURBINE CONDITION

MONITORING

by

Janell A. Duhaney

A Dissertation Submitted to the Faculty of

The College of Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Florida Atlantic University

Boca Raton, FL

December 2012

Copyright by Janell A. Duhaney 2012

ii

ACKNOWLEDGEMENTS

Foremostly, I thank God for giving me the strength and perseverance to com-

plete this research. I can do all things through Him who strengthens me.

I would like to express my deepest gratitude to my advisor, Dr. Taghi M.

Khoshgoftaar, for his guidance and encouragement throughout my doctoral studies

at Florida Atlantic University. His many years of research experience, excellent advice

and never tiring attitude made completion of this degree possible. Thanks also to

Dr. Martin K. Solomon, Dr. Xin Wang, and Dr. Bassem Alhalabi for serving on my

dissertation committee.

I wish to thank the Southeast National Marine Renewable Energy Center

(SNMREC) for supporting and funding this research. I also acknowledge Randall

Wald, Dr. Amri Napolitano, and Dr. John C. Sloan, who I had the pleasure of

working alongside in the Data Mining and Machine Learning Lab, as well as the

graduate students, faculty and staff in the Department of Ocean and Mechanical

Engineering at the Dania Beach campus who also worked on the SNMREC ocean

turbine project.

iv

ABSTRACT

Author: Janell A. Duhaney

Title: Mining and Fusing Data for Ocean Turbine Condition
Monitoring

Institution: Florida Atlantic University

Dissertation Advisor: Dr. Taghi M. Khoshgoftaar

Degree: Doctor of Philosophy

Year: 2012

An ocean turbine extracts the kinetic energy from ocean currents to generate

electricity. Machine Condition Monitoring (MCM) / Prognostic Health Monitoring

(PHM) systems allow for self-checking and automated fault detection, and are integral

in the construction of a highly reliable ocean turbine. MCM/PHM systems enable

real time health assessment, prognostics and advisory generation by interpreting data

from sensors installed on the machine being monitored.

To effectively utilize sensor readings for determining the health of individual

components, macro-components and the overall system, these measurements must

somehow be combined or integrated to form a holistic picture. The process used to

perform this combination is called data fusion. Data mining and machine learning

techniques allow for the analysis of these sensor signals, any maintenance history and

other available information (like expert knowledge) to automate decision making and

other such processes within MCM/PHM systems.

Our research investigates the feasibility of various data mining, machine learn-

v

ing and data fusion techniques for an MCM/PHM system. Studies conducted on ex-

perimental data aim to reveal the optimal approach for fusing and interpreting sensor

data. Also considered in these studies is the possibility of imperfect data and other

challenges that could negatively affect the efficiency of our techniques. Specifically,

we assess the robustness of our techniques to changing environmental conditions, class

imbalance (i.e., the relative lack of fault data as compared to data collected during

normal operation that will be available to construct state detection models) and data

incompleteness (e.g. missing values in the data).

This dissertation proposes an MCM/PHM software architecture employing

those techniques which were determined from these experiments to be ideal for this

application. Our work also offers a data fusion framework applicable to ocean ma-

chinery MCM/PHM. Finally, it presents a software tool for monitoring ocean turbines

and other submerged vessels, implemented according to industry standards.

vi

DEDICATION

I dedicate this degree to my parents, Mr. and Mrs. Lansvill Duhaney, my

brothers, Lansville and Kevon, and closest friends Tajheim, Monique and Ingrid, who

kept me grounded over the past years. I also dedicate my efforts to my late aunt,

Carmen Smith, whose love for God, life, family and education will never be forgotten.

MINING AND FUSING DATA FOR OCEAN TURBINE CONDITION

MONITORING

List of Tables . xiii

List of Figures . xiv

1 Introduction . 1

1.1 Motivation . 2

1.2 Contributions . 6

1.3 Dissertation Structure . 7

2 Background . 9

2.1 Components of the Dynamometer . 11

2.2 MCM/PHM . 14

2.2.1 Data Acquisition (DA) . 15

2.2.2 Data Manipulation (DM) . 15

2.2.3 State Detection (SD) . 16

2.2.4 Health Assessment (HA) . 16

2.2.5 Prognostics Assessment (PA) 16

2.2.6 Advisory Generation (AG) . 16

2.3 Overall Architecture . 16

3 Related Work . 20

3.1 Data Mining & Machine Learning . 21

vii

3.1.1 Data Stream Mining . 22

3.1.2 Data Stream Management . 27

3.2 Data Fusion . 30

3.2.1 Uncertainty . 32

3.2.2 Imprecision . 32

3.2.3 Vagueness . 33

3.2.4 Incompleteness . 33

3.2.5 Inconsistencies . 34

3.2.6 Correlation . 34

3.3 Data Fusion Techniques . 35

3.3.1 Bayesian Theory . 37

3.3.2 Possibility Theory . 38

3.3.3 Fuzzy Set Theory . 39

3.3.4 Evidence Theory . 40

3.3.5 Other . 42

3.4 Conclusion . 44

4 Methodology . 46

4.1 Data Acquisition . 46

4.2 Data Manipulation/Transformation & Feature Extraction 48

4.2.1 Streaming Wavelet Transform 50

4.2.2 Short Time Wavelet Transform 52

4.3 Fusion Techniques . 53

4.3.1 Data-Level Fusion . 53

4.3.2 Feature level fusion . 54

4.3.3 Decision level fusion . 54

4.4 Classifiers . 55

viii

4.5 Feature Selection . 59

4.6 Data Imputation . 61

4.7 Performance Measures . 61

4.8 Performance Evaluation . 63

5 Data and Knowledge Fusion Framework for MCM/PHM in Inac-
cessible Ocean Systems . 65

5.1 Introduction . 65

5.2 Chapter Contributions . 65

5.3 Related Work . 66

5.3.1 Data Fusion . 67

5.4 Framework . 69

5.5 Case Study: Ocean Turbine MCM/PHM 70

5.5.1 Applying the Framework . 71

5.5.2 Barrier Synchronization . 72

5.5.3 Inter-Sensor Data Fusion . 75

5.5.4 Intra-Component Data Fusion 76

5.5.5 Inter-Component Data Fusion 78

5.6 Experimental Setup . 80

5.6.1 Results . 84

5.7 Chapter Summary . 86

6 Preliminary Analysis of Data Mining & Sensor Fusion Techniques
on Fan Data . 88

6.1 Introduction . 88

6.1.1 Contributions . 89

6.2 Experimental Setup . 90

6.2.1 Fan Experiment 1 . 91

ix

6.2.2 Fan Experiment 2 . 91

6.2.3 Pre-Processing and Fusion . 92

6.3 Empirical Results . 95

6.3.1 Results for Fan Experiment 1 96

6.3.2 Results for Fan Experiment 2 97

6.4 Conclusion . 98

7 State Detection From Imperfect Data 100

7.1 Introduction . 100

7.2 Contributions . 101

7.3 Case Study 1 – Missing Data . 102

7.3.1 Experimental Design . 104

7.3.2 Pre-Processing . 105

7.3.3 Classifiers . 108

7.3.4 Classification . 109

7.3.5 Performance Measures . 110

7.3.6 Results . 111

7.3.7 Data Imputation Results . 114

7.4 Case Study 2 – Feature Selection . 116

7.4.1 Feature Selection on SWT Data 117

7.4.2 Results . 118

7.4.3 Feature Selection on STWTB Data 119

7.4.4 Results . 121

7.5 Conclusion . 124

8 MCM/PHM In The Presence of Class Imbalance 127

8.1 Introduction . 127

x

8.2 Contributions . 129

8.3 Background . 130

8.3.1 Data level approaches . 131

8.3.2 Algorithmic level approaches 132

8.4 Related Work in Reliability Analysis Applications 133

8.5 Methodology . 135

8.5.1 Learners . 135

8.5.2 Feature Level Fusion . 136

8.5.3 Decision Level Fusion . 136

8.6 Experimental Setup . 137

8.6.1 Data Acquisition . 137

8.6.2 Data Transformation . 138

8.6.3 Class Distributions . 139

8.6.4 Performance Measure . 140

8.7 Results & Analysis . 141

8.7.1 How does class imbalance in these datasets affect the results us-
ing the specified waveform analysis and machine learning tech-
niques? . 142

8.7.2 Which learners are affected most and least by class imbalance
in these datasets? . 145

8.7.3 Which data fusion approach is better suited for this problem? 146

8.7.4 Which learners perform best regardless of the speed at which
the training data was collected? 149

8.7.5 What is the optimal combination of data fusion type (feature
level or decision level) and learner? 149

8.7.6 Analysis of Results . 150

8.8 Chapter Summary . 153

xi

9 Condition Monitoring Software System (CMSS) 156

9.1 Introduction . 156

9.2 CMSS . 158

9.2.1 Requirements . 158

9.2.2 Architecture . 159

9.2.3 Implementation . 163

9.3 Conclusion . 166

10 Conclusion and Future Work . 167

10.1 Conclusions . 167

10.2 Future Work . 170

Bibliography . 172

xii

LIST OF TABLES

7.1 Summary of Feature Selection Techniques Per Classifier 120

7.2 Classification Accuracies per Feature Selection Technique, Learner and
of Features . 122

8.1 Training Set Distributions . 139

8.2 ANOVA – 25RPM . 151

8.3 ANOVA Results – 50RPM . 151

xiii

LIST OF FIGURES

2.1 Closeup of nacelle . 9

2.2 Turbine and its moorings . 10

2.3 Picture of the Dynamometer . 10

2.4 Dynamometer Diagram Showing Sensor Locations 12

2.5 High Level MCM/PHM Architecture Showing Data Flow 19

3.1 Data Level Fusion . 36

3.2 Feature Level Fusion . 36

3.3 Decision Level Fusion . 37

4.1 Wavelet Transform Filter Bank (Credit: Wikimedia Foundation, Inc.) 51

5.1 JDL Process Model for Data Fusion 66

5.2 Data Fusion and MCM Model . 68

5.3 Barrier synchronization of timed data streams 73

5.4 Intra-component fusion diagram . 76

5.5 Inter-component fusion diagram . 78

5.6 Results . 83

6.1 Fan Experiment 1 - AUC per Learner and Fusion Technique 96

6.2 Fan Experiment 2 - AUC per Learner and Fusion Technique 98

7.1 Example of Applying Haar Wavelet Transform Showing Missing Values 106

7.2 Sample Output of Wavelet Transform 108

xiv

7.3 Average Classification Results Per Learner 112

7.4 Average accuracy by learner before and after imputing data for Exper-
iment A - BL vs HH and BL vs SH 114

7.5 Average accuracy by learner before and after imputing data for Exper-
iment B - BL vs SH where BL and SH recorded 3 times at different
speeds . 115

7.6 Average accuracy by learner before and after imputing data for Exper-
iment C - BL vs 40% Load . 116

7.7 AUC per Learner and Feature Selection Technique 126

8.1 Classification Results (AUC) For All Learners With 25RPM Training
Set . 143

8.2 Classification Results (AUC) For All Learners With 50RPM Training
Set . 144

8.3 Change in AUC For All Learners On Balanced and Imbalanced Fused
Data . 146

8.4 Error Rates . 148

8.5 Optional caption for list of figures . 155

9.1 Data Flow through MCM/PHM system 160

xv

Chapter 1

Introduction

Finding clean, renewable alternative energy sources has become a worldwide initiative

due to the increase in world energy consumption over the past years, the growing

concerns for waning fossil fuel reserves and the environmental impact associated with

the use of these fossil fuels. One such alternative involves using turbines to extract

the natural energy from the steady unidirectional flow of ocean currents such as the

Gulf Stream. It is estimated, for example, that if only 0.1% of the potential energy in

the Gulf Stream is captured, it would satisfy 35% of the energy demand in Florida,

U.S.A. [104].

Currents in the Gulf Stream are driven primarily by wind stress and equatorial

solar heating. The opposing forces of the trade winds (blowing westward) and the

westerlies (blowing eastwards) apply a stress to the subtropical ocean surface; this,

together with a process known as western intensification, makes the resulting Gulf

Stream a strong ocean current and an excellent candidate for hydrokinetic energy

production (the generation of renewable electricity from the kinetic energy of a body

of water). The Gulf Stream itself is roughly 100 kilometres in width and between

800 and 1,200 metres in depth. Due to these depths, fixed structure installations are

highly infeasible making floating tethered structures (such as the turbine prototype

design described in later chapters) the optimal design choice.

1

1.1 MOTIVATION

To harness underwater ocean currents, ocean turbines operate unattended below the

ocean’s surface, which in itself creates unique reliability concerns [4]. Reliability is a

particularly important issue for several reasons. Firstly, retrieval of the turbine for

manual inspections is accompanied by high expeditionary costs. Also, these turbines

are subject to harsh and unpredictable environmental conditions which may induce

additional faults. Finally, ocean turbines are required to meet output and uptime

requirements. Some of the reliability issues related to development, maintenance and

deployment of an ocean turbine are:

1. Bio-Fouling – While submerged, the ocean turbine is susceptible to biologi-

cal fouling, or bio-fouling, which is the gradual but undesired accumulation of

animals and plants on the turbine. Sensors on a buoyancy-driven underwater

glider developed in 2003 as a part of the UCSD Spray Project to observe oceano-

graphic features stopped functioning within a mere four weeks of deployment

in the Monterey Canyon due to bio-fouling [132].

2. Corrosion – The salinity of the ocean water behaves as a corrosive agent for

parts of the turbine, with cabling being an easy target. Destruction of cabling

leads to a loss of communication between the turbine and any components on

the ocean surface, while corrosion of the nacelle could eventually cause a breach.

Also, because these turbines are tethered, corroded cabling could also result in

the detachment and loss of the turbine itself.

3. Turbidity – Oceanic wildlife or debris could impact or obstruct the turbine.

Also, larger objects could tilt the turbine or cause it to lean on its mooring line.

4. Cavitation – Cavitation, or the formation of bubbles, is also possible at any

2

point on the structure where the local pressure level on that section is reduced

to (or below) the level of saturated vapour pressure of the ambient water. This

phenomenon has been known to cause significant wear, erosion of the structure,

shaft vibration and possible performance degradation [155].

Reliable and timely detection of problems is a must to avoid damage to these

expensive machines. However, frequent manual inspections are infeasible due to high

expeditionary costs to access the machines, and thus problems which occur between

inspection intervals can go undetected until the next maintenance visit. The com-

plexity of the turbine along with the previously named factors demand an automated

monitoring and self-checking process. One such automated solution is a machine

condition monitoring / prognostics health monitoring (MCM/PHM) system.

MCM/PHM systems provide automated monitoring and other capabilities, such

as predicting the likelihood of future faults and estimating time to failure under given

operational conditions. Another added benefit of using an MCM/PHM system is that

it allows for predictive maintenance of a machine (where maintenance tasks are per-

formed as needed) versus routine (or time-based) preventative maintenance (where

maintenance activities are scheduled at predetermined intervals). In a preventative

maintenance scheme, one challenge is ascertaining how frequently such maintenance

activities should be performed. Too frequent visits could end up wasting money and

resources while infrequent visits run the risk of faults developing between scheduled

visits which may damage the machine and cause unnecessary downtime. By per-

forming automated monitoring of the ocean turbine, potential faults can be detected

and identified at an early stage allowing for quick remediation, such as self adjust-

ment or shutdown, to minimize damage to the turbine and in turn, reduce downtime

due to failure. In this way, an MCM/PHM system instills high assurance of turbine

3

reliability and increased productivity.

MCM/PHM systems employ a network of sensors to record data about the be-

haviour and operational environment of the systems they monitor. Such systems

record and interpret data from sensors attached to different components of the ma-

chine to detect faults, predict future failures and generate advisories for improving the

lifetime of the machine. This automated self-checking can be made possible through

the use of vibration analysis, data mining and data fusion techniques [39].

One physical phenomenon that tells a great deal about the state of a machine is

its vibration. Vibration signals contain a lot of useful information, but in their raw

form, these signals cannot be easily interpreted. Raw vibration data are a time-series

of amplitude/magnitude/displacement data, which take the shape of waves when the

amplitude values are graphed on the y-axis against time on the x-axis. Vibration

analysis is the field of study dedicated to understanding these waveforms and to

detecting and analyzing patterns in the signals.

Data mining and machine learning, which collectively refer to techniques for infer-

ring knowledge from raw data by analyzing patterns, provide an avenue for automated

interpretation of the sensor data and problem classification. In this setting, data min-

ing and machine learning techniques can help automate fault detection, identify failure

states and extract patterns in operational state and environment from the massive

amount of data generated from the sensors. These techniques can also predict life

and future health of the machine.

While most mechanical defects can be determined through analysis of the vibration

data generated from sensors known as accelerometers, the data gathered from the

remaining sensors are necessary to fully assess the state, life expectancy and potential

failure modes of the machine [105]. The data from these various sensor types are

usually generated with differing frequencies and with dissimilar representations. Data

4

fusion techniques are needed to combine data from multiple sources to get a complete,

more accurate picture. These techniques are especially useful in an MCM/PHM

system for combining sensor data at different stages of the monitoring process to

produce more accurate and complete results.

The challenge behind constructing an MCM/PHM system is determining the op-

timal approach to integrating hardware and software components and manipulating,

processing, analyzing, recording, combining and interpreting the sensor data (along

with historical data, expert information and data from other sources) so as to perform

the required diagnostic and prognostic functions. Fortunately, the International Orga-

nization for Standardization (ISO) devised a template for doing just thus. Designing

an MCM/PHM system that satisfies the ISO standards (specifically ISO-13374 [74])

offers many benefits including the production time and dollars saved by integrating

existing solutions which also satisfy the ISO-13374 standard.

There are several challenges involved in building a reliable MCM/PHM system

for ocean turbines. These include:

1. Determining when and how to combine data and information within the system.

Data fusion, the process of combining information from multiple sources to gain

a unified perspective, is a cross cutting concern in MCM/PHM as it is needed at

various points within the system to integrate data and information which may

be in different formats, may arrive late or out of sequence or may be conflicting,

incomplete or inaccurate [41].

2. Data characteristic of faulty or abnormal states may be lacking or unavailable.

Machine learning algorithms rely on a sample of data representing the various

classes/categories/states of interest to build classifiers which can distinguish

each state. Class imbalance – the relative lack of examples in one or more classes

5

compared to the others – is an issue plaguing many real world applications as

classifiers usually tend to label all examples (or instances) as being of one of the

majority classes to maximize overall accuracy (percentage of correctly identified

examples) [72]. This means that rare events or faults, which are usually the most

severe, will go undetected possibly causing damage to the turbine.

3. Ever-changing environmental conditions may mask fault signatures, making

problem detection difficult. Some sensors, like the vibration sensor, capture

data which are representative of both the machine’s health and its operating

environment. Sometimes, those parts of the sensor signal that are unrelated

to the machine’s health (e.g. vibrations due to the rotational velocity of the

turbine) complicate the interpretation of the sensor signal. It is therefore im-

perative that the techniques and algorithms employed within the MCM/PHM

system are tolerant of the turbine’s environmental state and can be effective

regardless of the operating conditions.

1.2 CONTRIBUTIONS

The contributions of this research relate to the development of a MCM/PHM system

for ocean turbines. To the author’s knowledge, there were no prior publications related

to the design and implementation of a software tool for ocean turbine monitoring.

Research contributions are listed below.

• We address data fusion as a cross cutting concern of a condition monitoring

system. To do so, we propose a data fusion approach to MCM/PHM systems

designed according to the ISO-13374 standard.

• Some sensors, like the vibration sensor or accelerometer, emit thousands of

readings per second possibly in the form of a continuous data stream. When

6

fusing these signals, one needs to consider the possibility that the data streams

being combined may arrive at different times although they were generated at

the same time. This research also proposes a formalization of barrier synchro-

nization as a technique for coordinating sensor data streams prior to fusion.

• We empirically investigate machine learner performances and data fusion for

reliable ocean turbine state detection from vibration data. In these studies, we

also analyze the effect of missing data on classifier performance and consider

the use of feature selection to reduce the training dataset size on feature level

fused data.

• As previously mentioned, faulty or abnormal data are relatively rare compared

to data characteristic of normal operation. Comprehensive experimental studies

investigating the impact of class imbalance on machine learner behavior (with

and without data fusion) in the condition monitoring context are also performed.

• Finally, we offer a Condition Monitoring Software System (CMSS) tool for ocean

turbine MCM/PHM. In its current state, the CMSS tool performs data ma-

nipulation and state detection – two basic requirements of a condition based

monitoring system per the ISO-13374.

1.3 DISSERTATION STRUCTURE

This dissertation is organized as follows. In Chapter 2, a background into the SNM-

REC ocean turbine prototype and into MCM/PHM is provided. That chapter also

describes a computer-controlled 20kW dynamometer designed for testing the com-

ponents of that ocean turbine prototype. Related work regarding data mining, data

stream management and data fusion in a reliability analysis context is surveyed in

7

Chapter 3. An overview of the data collection process, vibration analysis techniques,

machine learning algorithms, data mining techniques and performance measures uti-

lized in our experiments is given in Chapter 4.

The following chapter (Chapter 5) presents the proposed data and knowledge fu-

sion framework as well as the barrier synchronization approach. Preliminary studies

analyzing and comparing multiple data mining and data fusion techniques for en-

abling reliable state detection from sensor data are presented in Chapter 6 while

more intricate experiments involving more sensors, missing values, feature selection

and class imbalance follow in Chapters 7 and 8. In Chapter 9, we unveil the CMSS

software tool for ocean turbine MCM/PHM and finally, in Chapter 10, conclusions

and opportunities for future work are given.

8

Chapter 2

Background

A turbine is a rotary device with propeller-like blades which are driven by a continuous

stream of a fluid (e.g. gas, wind, water) converting the kinetic energy of that stream

into mechanical energy to produce electricity. Research and development of a 20-

kilowatt ocean turbine prototype for harvesting ocean current energy from the Gulf

Stream is underway by the Southeast National Marine Renewable Energy Center

(SNMREC) at the Florida Atlantic University [4]. The goal of the center is to provide

solutions for Florida’s clean energy initiative by assessing the potential of converting

ocean currents and ocean thermal energy into a reliable source of electricity while

minimizing environmental impact.

Figure 2.1: Closeup of nacelle

In this prototype, the turbine is housed within a pressurized enclosure called a

nacelle (component b in Figure 2.1) which is connected to two pressure buoys (to con-

9

Figure 2.2: Turbine and its moorings

trol its pitch, yaw and roll) (2.1c) and a three blade propeller (2.1a). This structure,

depicted as component (e) in Figure 2.2, is connected via cabling to component (b) –

a monitoring and telemetry buoy (MTB) which is empty in the middle for buoyancy –

and a barge for keeping the system upright (c). The underwater structure is tethered

to the ocean floor (d). The northbound flow of the Gulf Stream is shown as (a) in

Figure 2.2.

Figure 2.3: Picture of the Dynamometer

As a part of its research efforts, the center has developed a computer-controlled

20 kW dynamometer (Figure 2.3) for the purpose of testing the components of the

ocean turbine [30]. A dynamometer is a device used for measuring force, torque or

10

power. They have been widely used in many industries, where applications include

testing brake wear and friction for airplanes [27] and automobiles [2], measuring tool

wear based on cutting force signals in machining systems [87], load testing for gas

turbines [125] and wind turbine testing [129]. The structure of the dynamometer is

discussed in greater depths in Section 2.1.

Careful and complete testing must be done to ensure the success of the ocean

turbine project. System tests such as drive-train endurance testing, component test-

ing, gear-box testing and fault simulation testing are made possible through the dy-

namometer. Additionally, data gathered from the dynamometer during testing can

be used for designing and fine tuning an MCM/PHM system necessary for monitoring

the turbine.

2.1 COMPONENTS OF THE DYNAMOMETER

The structure of the dynamometer under development at SNMREC is shown in Figure

2.4. In this diagram, we see four main components: a motor (MTRX), two gearboxes

(GBXA and GBXB) and a generator (GENX).

The motor (MTRX) is a 3-phase induction motor which simulates the effects of

ocean current on the machine. This component is powered by the electrical signal

from the grid which is conditioned by two variable frequency input drives (not shown

in Figure 2.4) via a multi-step process. First, a rectifier converts the AC signal to

DC. A series of capacitors and bridges then feed the DC signal into an inverter to

determine the frequency, voltage and current to the motor. The DC signal is then

converted back to AC, which is then fed into the motor as the input signal.

The motor MTRX is connected to a gearbox GBXA which reduces the rotational

speed of MTRX by a 21.8:1 reduction ratio. This reduction is necessary because

11

Figure 2.4: Dynamometer Diagram Showing Sensor Locations

the MTRX delivers torque and power at rotational speeds which greatly exceed that

which can be handled by the shaft [148]. The dynamometer side drive shaft SFTA

couples to turbine drive shaft SFTB via couplings MSC1 and MSC2. Both SFTA and

SFTB rotate at this reduced rate. Planetary step-up gearbox GBXB has a 1:25 gear

ratio and supplies an increased rotation speed to the AC induction motor GENX. By

supplying sufficient torque to GENX, an electrical current is produced. ANA VAC

and ANB IAC are phasor measurement units for measuring power quality.

Components labeled 001 through 004 to the left of driveshaft SFTA and 004

through 007 to the right of driveshaft SFTB in the same figure represent the bearing

assemblies. These are numbered relative to the prime mover. Torque transducer TT

records the torque of the driveshaft. Velocity transducer VL (i.e., encoder) measures

12

the rotational velocity of the input force to the MTRX. Motor shaft coupler MSC1

joins the dynamometer to a portion of the driveshaft that functions as a test sleeve

for the torque transducer. MSC2 joins the test sleeve to drive shaft SFTB for the

machine under test. Once power curves have been developed, the test sleeve will be

replaced with the brake assembly.

Six single-axis accelerometers (2 high frequency AC104 sensors and four low fre-

quency AC136-1A sensors) were mounted in different places on the dynamometer to

allow for the acquisition of raw vibration data. Locations of these sensors are shown

in Figure 2.4. For our experiment, we refer to these accelerometers as channels. The

four low-frequency accelerometers, AC LF4, AC LF3, AC LF2 and AC LF1, are lo-

cated closest to the prime mover and are channels 1 through 4 respectively. AC HF1

and AC HF2 are the high frequency vibration sensors which record the vibration from

more rapid rotations by GENX, and are denoted as channel 6 and channel 5, respec-

tively. All sensors except AC HF1 were installed at or around 90 degrees relative

to axial view of the unit circle with prime mover in the foreground (i.e., MIMOSA

Convention). AC HF1 was placed at 180 degrees. Other types of sensors, including

leak sensors, oil quality sensors and thermometers, are not shown in the diagram and

were not included in the experiments as configuration and testing of these sensors is

still underway.

The forces exerted on the dynamometer will be similar in nature to those that

would act on the turbine during an ocean deployment, thus sensor readings recorded

from the dynamometer will be useful in developing an MCM/PHM system for mon-

itoring the ocean turbine once deployed. The proposed MCM/PHM system will be

data-driven, meaning that the collection and analysis of data and relevant background

information (including historical information and expert knowledge) support the de-

cisions made regarding the health of the turbine. The following section discusses

13

MCM/PHM in greater detail.

2.2 MCM/PHM

Machine Condition Monitoring / Prognostics Health Monitoring (MCM/PHM) sys-

tems are widely used in many domains to continuously assess the health and remaining

useful life of complex machinery. Such systems record and interpret data from sen-

sors attached to different components of the machine to detect faults, predict future

failures and generate advisories for improving the lifetime of the machine.

To determine the condition of the machine, measurements such as the mechanical

vibration levels, oil debris, temperature, pressure, angular velocity and flow around

the ocean turbine need to be constantly recorded and analyzed. This is made possi-

ble by many types of sensors including submerged video cameras, pressure sensors,

temperature sensors, leak sensors, an inertial mass unit (IMU), a tachometer, vibra-

tion sensors and electrical output sensors. In one sense, non-vibration data allows

for quicker detection of new faults since vibration readings are typically sampled

intermittently in bursts. In another sense, non-vibration data trails vibration data

since vibration data reflects immediate physical forces while non-vibration data like

oil temperature reflect convection processes that have occurred only after the rolling

element had been damaged.

One way in which these sensor signals are used is for intelligent problem detection

(i.e. automated fault localization, detection and classification). Fault detection is the

process of identifying when a fault has occurred. Pinpointing the type and determin-

ing the location of the fault are the goals of fault classification and fault localization

respectively. By providing information about the type and location of a fault, an

operator can determine whether a maintenance expedition is necessary and exactly

14

which tools or parts are required to correct the problem. Also, detecting faults as

soon as they occur allows for quick remediation (such as self adjustment or shutdown)

which prevents damage to the turbine.

Proposed by the Machinery Information Management Open Standards Alliance

(MIMOSA), the Open Systems Architecture for Condition Based Monitoring (OSA-

CBM) specification 1 [103] implements the ISO-13374 [74] standard which defines six

key functional areas of a condition monitoring system along with the data structures

and interfaces required for each. The six blocks or modules in the OSA-CBM model

are described below.

2.2.1 Data Acquisition (DA)

The first step in the condition monitoring process – data acquisition – refers to the

collection and digitizing of the data from sensors attached to the machine being

monitored. Sensors such as thermometers, thermocouples, leak sensors and oil quality

sensors produce a single reading periodically, while others like the vibration sensor

(or accelerometer) output thousands of measurements per second. All data must be

appropriately timestamped and calibrated. The output of the DA block, therefore, is

timestamped, synchronized, digitized data.

2.2.2 Data Manipulation (DM)

In the data manipulation block, the digitized sensor output from the DA block are

transformed into the desired format. Typically, signal processing (using techniques

like Wavelet transforms [152], Fast Fourier Transforms [154], cepstrum analysis, fil-

tering and windowing), time synchronous averaging [114], algorithmic computations

1Available for download on the Machinery Information Management Open Systems Alliance
(MIMOSA) website - http://www.mimosa.org/

15

and feature extraction are performed here.

2.2.3 State Detection (SD)

At this stage, the output from DM and DA are compared against the anticipated base-

line profile values to determine the current state of the system as one of a predefined

enumerated set of states (e.g. system normal, level high, alarm, alert, etc.).

2.2.4 Health Assessment (HA)

Health Assessment (HA) involves combining the outputs from the DA, DM and SD

blocks with the output from other HA blocks to diagnose system faults and determine

the health of the overall systems.

2.2.5 Prognostics Assessment (PA)

The life expectancy and future health of the system are projected, and the probability

of future faults and failures is predicted in the Prognostics Assessment phase.

2.2.6 Advisory Generation (AG)

In the Advisory Generation block, reports on existing or predicted conditions along

with advice on how to optimize the life of the machine are generated.

2.3 OVERALL ARCHITECTURE

Figure 2.5 graphically depicts the architecture and data flow through the MCM/PHM

system for this ocean turbine prototype. In the diagram, yellow arrows represent the

current links among the components of the system while gray arrows are tentative

links. The ocean turbine itself is depicted in pink in the lower right corner of the

16

diagram. An onshore test platform for the components of the ocean turbine is also

shown; the gray box labeled Ocean Current Emulator refers to this dynamometer

testbed. Once development and testing of the turbine components is completed, the

Ocean Current Emulator box will no longer be included as a part of the MCM/PHM

system architecture.

There are three main sub-systems: the wetside system (bottom of the diagram),

the topside system (center) and the shore-side system (top of the figure). The wetside

system will be attached underwater to the turbine and is comprised of sensors, a

Wavebook Data Acquisition (DAQ) unit and a safety controller. The sensors are

mounted at different points along the turbines and are of different types. There are:

five motor temperature sensors, a water temperature sensor, leak sensors, an RS232 oil

quality sensor, multiple vibration sensors and a tachometer. The vibration sensors and

tachometer are connected via Ethernet to the Wavebook DAQ which is responsible

for the acquisition of vibration data. The remaining sensors are connected to a Wet

Safety Controller, which is a part of a larger system, namely the Safety Control and

Monitoring System (SCMS).

The SCMS is a dual data acquisition and control system which consists of two

safety controllers – one of which resides wetside (Wet Safety Controller) and the

other located topside at the turbine’s power converter (Top Safety Controller). These

controllers were designed so that they operate together with a single serial commu-

nications link but can act independently if there is a break in that link. The SCMS

is responsible for performing state detection based on input from up to 24 sensors

(12 sensors maximum per controller). It is compatible with thermocouples, thermis-

tors, leak detectors, contact sensing, incremental encoders, load cells, IMU, pressure

sensors, GFI, oil condition sensors, embedded circuits (RS485/422/232), voltage sen-

sors and current sensors. If the sensor output exceeds safety limits (predetermined

17

by engineers and domain experts), the SCMS will trigger an alarm and can safely

disconnect the power and shut down the machine.

Topside, a Data Gateway and wireless communication equipment for transmit-

ting data back to shore will reside alongside the second SCMS controller. Cabling

will allow the transfer of data between the topside and wetside subsystems. The Data

Gateway sub-system captures data and instructions from the SCMS, Power Quality

System and other such sources, providing a unified access interface. It will also be

responsible for time-stamping and synchronizing sensor signals. A RAID (redundant

array of independent disks) data buffer will be used within the Data Gateway provid-

ing redundancy to prevent data loss due to disk failure and enhancing performance.

Voltage and current sensors (sampled at high speed) will interface with the Data

Gateway via a voltage and current acquisition board (VIAB) within the Power Qual-

ity System. Additional sensors such as ambient and water temperature sensors and

more leak sensors will also be located topside.

As the name implies, the shore-side components reside on land; they communicate

with the topside system via an oversea wireless communication link. Further details

regarding the communications infrastructure can be found in [12]. The Data Store

(for storing raw and processed data along with maintenance, alarm and advisory

history) and the MCM/PHM software can be situated either shore-side or topside. If

topside, the Data Store and MCM/PHM software will be connected via the Ethernet

hub. User interfaces allowing engineers to monitor feedback from the MCM/PHM

system and to adjust operational parameters will be on land.

18

Figure 2.5: High Level MCM/PHM Architecture Showing Data Flow

19

Chapter 3

Related Work

Reliability analysis is the study of the ability of a component or system to operate un-

der given conditions for a specific period of time according to some set of performance

requirements. It involves determining the possible points of failure within a system

and identifying those components which detract most from the system’s reliability.

This field encompasses multiple research domains including software reliability (the

measure of the quality of a software design), reliability prediction (the forecast of

the failure rate of a system) and failure analysis (the determination of the cause and

consequence of a system failure). The failure rate or failure ratio, according to [73],

is the proportion of the number of failures to a given unit of measure, such as fail-

ures per unit of time, failures per number of transactions, or failures per number of

revolutions. The use of the term “reliability analysis” will henceforth pertain only to

failure analysis and reliability prediction.

Automated reliability analysis has been made possible by the availability of cost

effective sensor technology and increased computing performance. Continuing reduc-

tions in cost and increases in functionality of sensors offer unprecedented opportunities

to measure multiple aspects of a system to assess its reliability based on a wealth of

data. Machine Condition Monitoring / Prognostics Health Monitoring (MCM/PHM)

systems utilize sensors attached to the machine being monitored to enable real time

20

health assessment, prognostics and advisory generation. To process and analyze this

data, a combination of machine learning and data fusion are needed. The concept

behind data mining and machine learning is defined in Section 3.1 where a litera-

ture review of issues pertaining to handling sensor data streams (which are produced

by some types of sensors) is also included. A discussion on data fusion follows in

Section 3.2.

3.1 DATA MINING & MACHINE LEARNING

Machine learning is a field of study focused on the design and development of algo-

rithms, called classifiers or machine learners, that allow computers to predict a value

for or classify/label new instances (or observations) based on patterns discovered in

data supplied to those algorithms. The training set is the set of observations that

are used to initially train or build the classification models. In some cases, the actual

class to which each observation belongs is already known. The test set consists of new

observations that the models are applied to. Each observation is then labeled by the

model as being representative of one or more states (classes) from the set of possible

classes C. The machine learning algorithms and data mining techniques employed in

the various experiments will be discussed further in Chapter 4.

In the next section, however, we consider a branch of data mining dedicated to

inferring knowledge from a continuous stream of data. Data stream mining, as this

sub-branch is called, is also an integral part of MCM/PHM as some sensors, such as

vibration and current sensors, produce a continuous feed of measurements, called a

data stream, instead of a single periodic reading. These data streams can be analyzed

to determine the state of the component being measured and the presence of faults.

21

3.1.1 Data Stream Mining

Over the years, data stream mining [38] has been the focus of many research papers

and is used in many domains including fraud detection [110], medical monitoring [78]

and stock market analysis [139]. This section examines the challenges associated with

mining and storing data streams and surveys research efforts which address some of

these issues. By exploring these issues and possible solutions, we hope to highlight

additional research opportunities in this area.

Data stream mining techniques can be applied in several ways in reliability anal-

ysis. One way in which data stream mining is used in reliability analysis is in the

mining of changes in the sensor data. Mining changes in sensor data may provide

useful information regarding the state of that sensor and reduce conflicts in knowledge

fusion systems [40]. Knowledge fusion systems attempt to integrate data from mul-

tiple sensors to deduce the state of a component in a system or of the entire system

itself. Another important aspect of reliability analysis for which data stream mining

has proved itself useful is survivability. The survivability of a system is its ability

to operate efficiently in the presence of catastrophic failures [100]. Survival analysis

is used to represent the time to an event, such as the failure time of a mechanical

system.

Data stream mining encompasses techniques which utilize information gathered

from past cases to label incoming data for prediction or classification of faults, and

those which identify faults based on their similarity to a previous case using clus-

tering. In the following section, we review issues plaguing data stream mining and

management as it relates to reliability analysis.

22

Concept drifts and model updates

Knowing when to update a mining model is one of the challenges in data stream

mining. A mining model could be updated periodically, incrementally (with every

change in data) or reactively (rebuild the model only when it no longer suits the

data) [161]. Frequent updates of the mining model wastes resources on insignificant

changes while infrequent updates risk model inaccuracy and the resulting system

degradation [161].

To complicate this issue, the underlying concepts in a data streams have a ten-

dency to change over time. Mining concept-drifting data streams has been the focus

of many articles, including [53, 68, 88, 158]. Algorithms adapted to concept drift-

ing streams include incremental decision trees such as the concept-adapting very fast

decision tree [68] and ensemble classifiers such as the streaming ensemble algorithm

(SEA) [68].

Adjusting the mining model to adapt to changes in the state of the system being

monitored must also be considered. Inaccessible machines, for example, may have to

operate with non-critical faults until a scheduled maintenance date when the system

state would revert to normal. If the classifier was trained based on data generated

while the system was in an abnormal state, a recurring fault introduced after the

system has been returned to normal may not be correctly classified by the mining

model since the classifier may now consider the existence of that fault as a part of

the normal operation of the system.

Selecting an appropriate mining method

In general, data stream mining approaches generate a model from historical records

and use this model to classify new instances in the data stream. Such a method

23

permits only a single pass through the training data since a second scan of the data

is infeasible due to the high rate of incoming data, and will need to incorporate new

data from the stream as appropriate. Some data mining techniques such as decision

trees do not adapt well to handle continuous data [5], but others such as ensemble

classifiers [92, 156], one-versus-all classifiers [68], and k-means clustering [113] have

been applied successfully to data stream mining.

The possibility of redundancies within ensemble classifiers and the inability of

single components of incremental classifiers to be updated independently when a

concept has changed are challenges which must be addressed. Redundancies within

ensemble classifiers can be avoided using pruning techniques such as instance based

pruning [156] to identify the subset of classifiers that produce the same results as the

entire ensemble. The challenge of determining which classifier within an ensemble is

to be updated is discussed in [68] but remains an open issue.

Model over-fitting

Model over-fitting, which occurs when a mining model is too specific or is too sensitive

to the training dataset that was used to generate that model, is more likely to occur

in streaming environments. This may be because of a lack of training data and

possible biases in the training dataset resulting from the data originating from a

single source [158]. Traditional data mining techniques such as cross validation are

not well suited for data streams because they require more than a single pass over

the training data. The framework proposed by Wang et al. [158] addresses the over-

fitting problem by harnessing concept drifting patterns. Efficient feature selection

algorithms such as [80] will also reduce the risk of over-fitting.

24

Cost sensitive learning

In reliability analysis, the cost of a false positive (or false alarm) is typically not equal

to the cost of a false negative. Inaccessible systems, for example, have a low tolerance

to false alarms because of the expenses associated with retrieving the equipment for

repair. One approach to cost sensitive learning from data streams involved weighting

classifiers within an ensemble based on their mean square error [156].

Imbalanced datasets in classification problems

In reliability analysis, it is typical for the dataset to be imbalanced, meaning that the

ratio of positive (faulty) instances to negative (no fault) instances is skewed in favor of

the negative instances. Learning algorithms such as decision trees have been known to

perform poorly on imbalanced dataset problems because of their tendency to classify

all instances as negative to maximize accuracy. Hashemi et al. [68] investigated the

use of a novel under-sampling scheme for their ensemble classifier which restricts each

negative instance in the training set from being used in the models of more than two

classifiers within the ensemble. This scheme, along with techniques such as [146] and

[140], could address this issue.

Missing or incomplete data

Missing or incomplete data is not uncommon in sensor networks, so any stream mining

algorithm or framework should make provisions for handling missing, delayed or out-

of-sequence data. Budhaditya and colleagues [8] proposed a framework based on a

compressed sensing (CS) theory [29] for detecting anomalies in incomplete data by

either sampling a subset of the sensors or of the number of frames in a temporal

stream. Three techniques for substituting values for missing data points, namely

25

Bayesian multiple imputation, k-Nearest Neighbour imputation and Mean imputation

were investigated by [85] as solutions to the missing data problem.

Modeling changes in mining results

Observing temporal changes in data streams may provide useful information about

the system. By sensing the fluctuation in the data stream from a particular sensor,

for example, it may be possible to identify that a sensor is failing based on increasing

variances as time progresses. Algorithms such as MAIDS [11] have been designed for

this purpose.

Data preprocessing

The design of a lightweight preprocessing technique which can guarantee the quality

of the mining results remains as an open problem in data stream mining [58].

Formalizing data stream computing

Formalizing data stream mining within a theory of stream computation enables the

design and development of mathematically sound stream mining algorithms [57]. A

formalization of data streams in signal processing traditionally [56] uses Z-transforms

– a discrete version of Laplace transforms. An approach geared to the composition, or

the gluing together, of software components was more recently proposed in [127]. Us-

ing coinductive stream calculus to define signal flow graphs, this approach may make

integration of learners into a stream processing environment easier to implement.

26

3.1.2 Data Stream Management

Centralized vs. decentralized processing

Processing live data may be either centralized or distributed (i.e. permitting some

computation to take place at the individual sensor site). With centralized processing,

the amount of bandwidth required to transmit all the data continuously (and in

real time, in most cases) to a central storage system for immediate querying must

be considered. With a distributed approach, each sensor node has the capability of

processing its own data and then transmitting the results to a centralized location for

further analysis. In distributed sensor data management, it is important to consider

the possibility of data loss during transmission as well as how processing and storing

its own data will affect the power consumption at a node. These concerns can create

a bottleneck for the performance of the entire system.

Data aging

Another challenge to data stream management is the timely identification of stale

data. An optimal data aging strategy would need to determine which data in the

training set is no longer relevant, such as those pertaining to previous concepts in a

concept drifting stream. As explained in [156], discarding data after a predetermined

length of time may lead to some interesting problems. If the selected lifespan L is

large, then the possibility of having outdated instances within the training dataset

is high; if L is small, the risk of overfitting is greater since there may be insufficient

instances in the training dataset. The aging strategy presented in [156] provides a

workaround by considering the class distribution in addition to the arrival time when

selecting the data lifespan.

27

Storage space restrictions

The continuous flow of a data stream demands an unlimited storage system to hold

unprocessed streaming data and/or the results of the mining operation. In most

cases, there is minimal storage at sensor nodes, so data storage may be centralized.

Novel stream management systems (e.g. StonesDB [25], DIMENSIONS [59], TinyDB,

Cougar and Diffusion) were designed to provide efficient storage solutions for data

streams.

Limited availability of resources

One of the biggest stream management issues relates to the lack of available resources

including storage space, processing power, network connectivity and energy. In some

domains, including ocean systems, available network connectivity may be limited,

spotty and incapable of sustaining high data transfer rates. More reliable network

connections tend to be difficult to acquire or expensive, and may not be feasible

offshore in the case of oceanic systems. An ideal solution would therefore need to

minimize communication overhead.

Because of the constant transmission of data, the lifetime of the battery in a

battery-operated sensor is greatly reduced. A novel approach to resolving this issue

in an ocean turbine is to wire the sensors in to the turbine’s battery pack which can be

recharged by the flow of ocean currents. Other solutions attempt to conserve energy

consumption by reducing the quantity of data to be transferred or by transmitting the

data in batches. By reducing the volume of data, the amount of time the sensor spends

transmitting data is also decreased. The volume of a data stream can be reduced

via well known summarization methods: sampling, load shedding, aggregation and

approximation.

28

Sampling techniques in general involve altering the number of data points to

achieve desired results, and are typically used in class imbalance problems to alter

the class distributions. Under-sampling techniques, which involve preserving only a

subset of the negative (not faulty) instances from the original data stream, reduces

the size of the data stream by ignoring or discarding some of the original data points.

In load shedding, a sequence of items within the data stream are discarded. While

it has been applied successfully to data streams, it presents the same problems as

sampling [58]. Aggregation employs statistical measures such as average, maximum,

minimum, etc. while approximation techniques [23, 24, 112] involve replacing the

original data stream with an approximated signal (with error bounds) which is tailored

for the application domain [24].

Handling the continuous flow of data streams

Passive systems such as traditional database systems typically have high latencies due

to the cost of a database storage operation and constant polling for data [139]. Active

stream processing engines (SPE) which utilize specialized primitives and constructs

like time sliding windows to perform on-the-fly processing of streaming data but store

data only when necessary are popular solutions to this problem. The querying lan-

guage used within an SPE typically resembles SQL for databases, and often includes

constructs permitting joins and cross querying of multiple streams. StreamSQL is one

of the most popular variants of SQL and was specifically designed to express queries

on continuous data streams.

Another issue pertaining to the continuous flow of data streams is the inconsis-

tency in data transfer rates. Algorithm output granularity (AOG) is a resource-aware

data analysis approach capable of handling very high data rates which performs data

analysis locally on a resource constrained device. AOG works by performing mining

29

operations, followed by adapting to the data stream rates and resource availability,

and then by merging knowledge structures when the memory is filled past a certain

capacity [58].

Merging distributed streams

Typical monitoring systems consist of sensors installed in different locations on the

machine or system being monitored. The resulting data streams must be merged,

sometimes in real-time, to allow an overall system analysis. One approach to merging

distributed streams was based on a common key [102]. Associated with merging of

data streams is the topic of data fusion which is surveyed in the next section.

3.2 DATA FUSION

Finding an appropriate and effective means of aggregating data and/or information

from multiple sources is a challenge arising in many applications today. The term

data fusion may have been coined as early as the 1970s to represent the process of

combining data from multiple sources for the sake of building a more complete and

accurate picture, while typically reducing the quantity of data or information that is

returned as output. The usage of the term data fusion here encompasses multi-sensor

data fusion, data integration and knowledge fusion.

As the name implies, multi-sensor data fusion (MSDF) is the fusion of multiple

sensor signals, whether physical (real) or virtual. A physical sensor directly records

and transmits measurements of some physical process. By contrast, a virtual sensor

produces a signal by using mathematical models to estimate readings for a particular

property or process condition based ultimately on data from physical sensors.

The term data integration as it is used in this study refers to the process of merging

30

data or information from multiple sources to form a complete view. The challenge here

involves combining data from multiple sources which may have differing conceptual,

contextual and typographical representations so that all the data in the input is

somehow reflected in the output in a unified format.

Knowledge or information fusion is the combination of predetermined facts, states

or situations to produce a complete, more accurate interpretation of the available in-

formation. Fusing higher order information poses unique problems, including varying

source credibilities and conflicting information. This type of fusion is often used to

support human decision about the system or to enable automated decision making.

Systematic implementation of the entire data fusion process typically follows a

particular design or architecture – such as those discussed in [39, 50, 99] – and in-

corporates mathematical algorithms (implemented in “fusion engines”) for combining

the data. We will review some of these algorithms in the next section. A well-designed

data fusion system should consider the likelihood of imperfections in the data such

as uncertainty, imprecision, vagueness and incompleteness while considering possible

inconsistencies and data correlation among sources.

Consider a set of p possible outcomes or classes C = {c1, c2, ..., cp} and a set S

of n sources where si(t) is the output from source i at time t. For discrete valued

si(t), commonly encountered in knowledge fusion problems, si(t) ⊆ C, meaning that

the output of the source is some single class or subset of classes. For continuously

valued si(t) such as in MSDF of sensors that produce numeric readings, si(t) =

Vi = {v1, v2, ..., vq} such that ∀v ∈ Vi, v is a real number and q depends on the

type of source or sensor. If source si is a global positioning system sensor (GPS),

for example, q = 3 and the vector Vi would represent the location triple – latitude,

longitude, and altitude. Given the above convention, we can define the four previously

listed characteristics of data as follows:

31

3.2.1 Uncertainty

Uncertainty in a source’s output is that source’s inability to state without a doubt

that its statement or output is accurate. If ϑsi represents the certainty of source si,

that source is said to be uncertain if ϑsi < 1. This can be represented in the discrete

case as: ∃c ∈ si(t) ⊆ C where there is some doubt that c is true; for the continuous

case, we get: ∃v in si(t) where there is some doubt that v is an accurate reading.

Uncertainty may differ for each observer or source. So, it is possible that for any

two sources si and sj in S, the uncertainty in the set of statements or data output

by si at time t is different from the uncertainty that sj has in its observations at that

same point in time, meaning that the uncertainty in si is not necessarily equal to that

of sj.

3.2.2 Imprecision

Imprecision occurs when the information contained within a statement or source could

have multiple possible values for one physical phenomenon. It can therefore be defined

as either a lack of exactness or of a proper definition.

The imprecision of a source whose output is a continuous value can be defined

as a single value ε, such that the output of that source is expected to fall within

±ε of the true value. In mathematical terms, the imprecision of a source’s reading

si(t) = {v1, v2, . . . , vq} at time t is represented by: {v1 ± ε, v2 ± ε, . . . , vq ± ε}.

In a discrete case, this is represented as si(t) ⊆ C where |si(t)| exceeds the ex-

pected number of outcomes or statements that a source should produce. The degree

of imprecision is therefore representative of how much |si(t)| exceeds the expected

number of outcomes or statements. For example, say we have a standard die with 6

faces; if rolled, the possible values of the die are C = {1, 2, 3, 4, 5, 6}. Assuming that

32

the die is not allowed to fall on its side (such that multiple values are exposed), an

observer of the die being rolled at time t is expected to state the single face value of

the die after it was rolled. An example of an imprecise statement that can be made

by an observer si about that particular roll of the die would be that the die stopped

on either a 4 or a 5, or in mathematical notation, si(t) = {4, 5}. Imprecision occurred

here because the observer was unable to distinguish between the two values 4 and 5.

3.2.3 Vagueness

Vagueness is a specific type of imprecision where a decision or statement from a

source only has a partial degree of truth. Mathematically speaking, vagueness occurs

whenever there is a one-to-many relationship between the observations made by the

source si(t) and the set of all possible outcomes C. This is only apparent in discrete

cases. For example, if a source si is to make a determination of the state of a glass of

water (i.e., is the glass full or empty or C = {full, empty}) where the capacity of the

glass is 16 millilitres and the volume of water in the glass is 4 millilitres, this source

may output that the glass is 1/4 full (or alternatively, the glass is 3/4 empty). So,

si(t) = {full, empty}.

3.2.4 Incompleteness

Incompleteness occurs when a source cannot provide all the required information. For

example, a video camera may provide incomplete data about a room where a part or

all of its view is obscured. For continuous cases, incompleteness in data from source

si at time t is given by si(t) = Vi = {v1, v2, ..., vq} ,∃v ∈ Vi, where v is undefined, i.e.

v =?.

For discrete cases, incompleteness can be represented as si(t) ⊆ C where |si(t)|

is less than the expected number of outcomes or statements that a source should

33

produce. Incompleteness also occurs if ∃c ∈ si(t) ⊆ C where c is undefined, i.e. c =?.

3.2.5 Inconsistencies

Inconsistencies in data arise when multiple sources present conflicting or discordant

information on the same phenomenon. This is especially a problem in knowledge

fusion where information produced by multiple, possible disagreeing sources must be

combined.

We can define the inconsistency between sources si and sj at time t as follows. If

si(t) = cf , sj = cg, and cf 6= cg, then sources si and sj are said to be inconsistent.

Similarly, for continuous cases, given that si(t) = Vi = {vi1, vi2, ...viq} and sj(t) =

Vj = {vj1, vj2, ...vjq}, there exists one or more data points in Vi having a value differing

from the corresponding data point in Vj by some threshold ε, i.e. ∃k < q, vik ∈ Vi

where vik > vjk + ε.

The degree of inconsistency between sources can be represented as (1−h), where h

is the level of concordance between the sources. Inconsistency (1−h) can be reduced

or removed by increasing the amount of imprecision [79].

3.2.6 Correlation

Sources si and sj are said to be correlated if some relationship exists between their

outputs. They are fully correlated if all the observations made by source si are

represented in some form in the output from sj; in such case, data fusion is not

needed [18]. A problem in many applications [111, 149], data correlation can occur

especially in applications having multiple sensors measuring the same aspect of a

system. Correlation can also occur within a source, such as among data points of its

output data vector or among features in the output feature vector. When there is no

correlation among sources, data points or features, these are said to be independent.

34

Researchers aiming to address the challenges associated with data fusion have

developed and utilized numerous fusion frameworks and techniques over the years.

Their work spans many domains including medical diagnosis [162], military defense

and tracking systems [136], navigation systems for autonomous vehicles [22], remote

sensing [13] and intrusion detection for cyber security [63].

This literary review focuses on data fusion in the context of reliability analysis.

More specifically, we present approaches to data fusion which have been or could be

adapted to reliability analysis. Several surveys of data fusion techniques have already

been done, but these were specific to other domains such as image fusion [28] and

target tracking [136] or to a particular application [10, 98].

3.3 DATA FUSION TECHNIQUES

Data fusion algorithms or techniques are often grouped by the level at which they are

applied:

1. Data level fusion techniques [128] are applied on the raw data. Sometimes

called pixel-level or signal-level fusion, this level of fusion involves combining raw

sensor signals prior to performing any data transformations, feature extraction

or data manipulation. In order to combine sensor signals at the data level, they

must have originated from sources which produce the same type of signal.

2. Feature level fusion [64, 128] is performed after features or attributes, which

are individual measurable characteristics of the data, are extracted from the

raw data. After extracting the feature set, a set of features from each signal

are combined to produce a fused signal. Unlike data level fusion, feature level

fusion can be applied to data from both homogeneous and heterogeneous sensor

types.

35

Figure 3.1: Data Level Fusion

Figure 3.2: Feature Level Fusion

3. Decision level fusion [17, 64, 128] occurs while or after a local decision has

been made from each source. It involves making a local decision from each

signal and then combining the decisions to get the final output, usually with

the aid of a mathematical model. This can be done by combining the decisions

themselves or by combining the probabilities of class membership for each class

and selecting the class with the highest probability [149].

Data fusion techniques can also be categorized based on the underlying theory or

approach that is used to combine the data. In the following sections, we will discuss

five approaches, some data fusion techniques which follow each approach, and how

these techniques can be or have been applied to reliability engineering and analysis.

36

Figure 3.3: Decision Level Fusion

3.3.1 Bayesian Theory

In probability theory, each statement or event is assigned a probability. In data fusion

problems, techniques based on probability theory are typically associated with Bayes’

rule [51] – a special application of conditional probability where belief is quantified

in a specific way. Probabilistic models are often used to model uncertainty in data.

The Bayesian-based techniques discussed in this paper are a Bayesian fusion rule,

hierarchical Bayes and Bayesian networks.

A class-specific Bayesian approach to fusion was applied to combining machine

learners for fault diagnosis in automotive systems [20]. This technique involved sum-

ming the posterior probability produced by each machine learning algorithm or clas-

sifier for each class to determine the overall posterior probability of that class. This

approach is based on the idea that different machine learners or classifiers may be

better at identifying a particular class or fault than others.

A recursive substitution rule based on Bayes’ rule, known as hierarchical Bayes,

was applied to reliability analysis in [116]. In that study, hierarchical Bayes was used

to model the probability of failure within a specified time span (failure intensity) and

the effectiveness of repair for multiple manufacturing (assembly) lines.

37

A Bayesian network is a graphical representation of the probabilistic model where

the Bayesian random variables are encoded as nodes and the conditional dependencies

between these nodes as edges. They have been applied to data fusion for risk analysis

[108], reliability analysis of military vehicles [107], reliability analysis of software in

consumer electric products [109] and for modeling and analysis of the reliability of

dynamic systems [6]. A commercially available tool for modeling these networks is

the Bayesian Network software tool AgenaRisk by Agena Limited [1].

3.3.2 Possibility Theory

In some fusion problems, the a priori information that is required by the probability

model is unavailable. The possibility theory model [31] is one alternative that does

not require prior knowledge. Like probability theory, possibility theory is based on

set functions and can model incomplete data. It differs from probability theory in its

ability to model imprecision.

Four modes of combining data from multiple sources according to the possibility

theory are typically used:

• Conjunctive: This mode of combination can only be used if all sources are

considered to be equally reliable and non-conflicting. In this case, the source

that is considered to be most informed about an outcome or event is the one

which assigns the smallest possibility degree to that value [31].

• Disjunctive: This mode applies when the sources are not equally reliable, or

are highly conflicting, and allows coverage of the entire domain provided by the

individual inputs. This mode yields a less specific and logically weaker result

than the conjunctive mode [115].

• Adaptive: To overcome the challenges associated with choosing an appropriate

38

mode of combination, adaptive modes of combination were created. The Dubois

adaptive combination rule [31] is a progressive mode of combination whose

behavior shifts gradually from conjunctive to disjunctive as the degree of conflict

among sources increases or from disjunctive to conjunctive as the degree of

conflict among sources decreases.

• Progressive: The progressive rule of combination [115] is a modification to the

adaptive combination rule which gradually takes conflict into account.

Mourelatos and Zhou [106] apply a possibility-based approach for assessing re-

liability in system design and for performing reliability-based design optimization,

which is a technique used for optimizing the design of an engineering system while

accounting for reliability constraints.

3.3.3 Fuzzy Set Theory

Fuzzy sets are sets whose elements can have different grades or levels of membership to

a class [96]. Features, sensors or classifiers are examples of elements. In contrast to a

classical bivalent set or crisp set where an element will either belong to the set or not,

fuzzy sets define a membership function which allows for a degree of membership to

be assigned to each element, thus allowing for the modeling of incomplete or imprecise

data.

Fuzzy set models have been widely used for data fusion in many domains over the

years [96]. An instance of its usage for reliability analysis is given in [96], where a

model based on a Choquet fuzzy integral and fuzzy measures was applied at both the

feature level and decision level for fault diagnosis in rotating machinery.

Fuzzy c-means is a method of clustering where instead of belonging to a single

cluster, each data point has a degree of membership to multiple clusters. It is similar

39

to the k-means algorithm [92], and shares the problem of the result being dependent

on the initial choice of weights.

A study by [76] discussed the use of the fuzzy c-means clustering algorithm for

fusing data from multiple sensors measuring the same phenomenon so as to sepa-

rate faulty readings from normal ones. This eliminates inherent inaccuracies due to

operational problems from sensor measurements.

Matlab R© provides support for fuzzy sets through its Fuzzy Logic Toolbox.

3.3.4 Evidence Theory

Evidence reasoning, evidence theory, belief theory or Dempster-Shafer theory is a

generalization of Bayes’ rule (see Section 3.3.1) which can model impreciseness and

uncertainty in data. Subjective probabilities – a probability that is derived from a

source’s determination of the likelihood of an event or outcome – are used to deduce

a degree of belief in the source and a belief that an event or outcome occurred based

on the reliability of that source [131].

Fabre, Appriou and Briottet [51] discussed using evidence theory for modeling

sensor reliability in operational contexts that affect data acquisition, such as metere-

ological conditions, noise and surface variations. They then applied the Dempster-

Shafer Rule of Combination (DS-ROC) [131] to combine this contextual information

from multiple sensors during the decision making process.

A hybrid form of the DS-ROC was used by [116] for fault diagnosis. In this hybrid

approach, the researchers use fuzzy theory to represent evidence sufficiency, which,

based on their results, improved the performance of the DS-ROC algorithm for their

application.

Transferable Belief Model. Suppose a machine condition monitoring (MCM)

system employs two techniques, A and B, to identify faults as they occur and to

40

classify the type of fault as being either x, y or z. According to approach A, at time

t, there is a 90% certainty that fault x occurred and a 10% chance that y occurred.

For the same time t and given the same data, approach B produces a 95% probability

that the fault z occurred and a 5% chance that y occurred. Intuitively, one would

say that it is possible that none of the faults were present, but have a high degree of

certainty that fault y did not occur. And yet, based on the DS-ROC and Bayesian

theory, fault y certainly occurred. This counterintuitive result stems from the fact

that y was the only fault type in common between techniques A and B.

Motivated by such pathological cases, the Transferable Belief Model (TBM) was

developed by Smets in [134]. The TBM extends the evidence theory to allow for

scenarios such as the one presented where, due to non-random uncertainty (caused

for example, by partially reliable sources), an event not described within the power

set of all classes, outcomes or events is possible.

In later work, Smets posed TBM as a data fusion approach and discussed three

modes of combination – conjunctive, disjunctive and cautious conjunctive – of the

degrees of belief assigned to some data or statement within the TBM [135]. The

ideas behind the conjunctive and disjunctive modes remain the same as previously

discussed. The cautious conjunctive mode, on the other hand, is used when the same

thought or piece of evidence is conveyed by multiple sources, i.e., the sources are

correlated. This approach was applied in [49] for determining sensor reliability.

Matlab R© functions for the TBM are currently available on-line for download at

http://iridia.ulb.ac.be/~psmets/.

41

http://iridia.ulb.ac.be/~psmets/

3.3.5 Other

Neural Networks

An artificial neural network, or ANN, is a machine learning technique inspired by

the way the human nervous system processes information. It consists of a number

of interconnected neurons or nodes, each of which produces an output according to

some function of its inputs.

An instance of the use of neural networks for reliability analysis is given by Fan et

al., who implemented Radial Basis Function Neural Networks (RBF-NNs) for MSDF

of sun sensors, infrared earth sensors and gyros within a Satellite Attitude Measure-

ment System (SAMS) to detect hardware faults in the sensors themselves and improve

the measurements output by the SAMS [52]. RBF-NNs are included in the WEKA

Data Mining Software Tool [67] and in the Neural Network toolbox for MATLAB R©.

Kalman Filter

Typically used for data level fusion, the Kalman Filter (KF) is a mathematical model

which uses the physical laws of motion, sensor or other type of measurements and

known control inputs to a system to recursively estimate its state (such as a posi-

tion) while minimizing the mean square error. A popular technique, it is included in

MATLAB R© release 7.0.1. KF assumes a priori knowledge of the process and mea-

surement noise covariances and cannot be used when there is no specific statistical

model of uncertainty [136]. A bank of Kalman Filters were used in [86] for fault

detection and isolation for an aircraft gas turbine engine.

42

Voting & Summing

Voting and summing are two simple approaches to data fusion usually involving mul-

tiple machine learners.

In a voting approach, sources vote on the expected outcome and the outcome with

the highest number of votes is selected as the output. A voting scheme was used in

[120] for aggregating the outputs from four independent object tracking modules to

create a more reliable approach for tracking a moving object.

Summing approaches involve applying a mathematical sum or average of weights,

probabilities, etc. Summing typically outperforms voting if the error distribution

is Gaussian but under-performs voting if the estimation error has a heavy tailed

distribution [136].

Classifier Combination

As previously mentioned, decision-level fusion can be applied to merging information

from multiple experts. When these experts are machine learning algorithms, such as

in [20], this approach is called classifier combination (CC). This technique of com-

bining machine learners to harness their individual strengths and reduce errors in

classification or prediction is the foundation behind ensemble classifiers [81], and is

sometimes referred to as stack generalization. The way this is done depends on the

richness or level of information produced by the machine learner or classifier. These

information levels are:

• Abstract: Learner outputs a single element out of the set of possible out-

comes C. At this level, a Behavior-Knowledge Space method [126] or a voting

technique (see Section 3.3.5) can be applied.

43

• Rank: Learner outputs an ordered list of elements with the topmost element

being first choice. Class set reduction methods such as Intersection of Neigh-

borhoods which aim to eliminate those elements that are least likely to occur

and class set reordering methods such as the Borda Count method and Logistic

Regression which combine the rankings from the different learners to produce

an overall ranking can be applied at this level [126].

• Measurement: Learner assigns a numeric value to each element of C which de-

picts a degree of certainty or the degree that the sample has the label. Bayesian

fusion was applied in [20] for the fusion of classifier output within the fault diag-

nosis system of an automobile. Parikh, Pont and Jones [117] applied Dempster-

Shafer Rule of Combination to CC of three classifiers, namely Multi-Layer Per-

ceptron, Radial Basis Function Neural Network and k-nearest neighbor, for

condition monitoring and fault diagnosis of a diesel engine cooling system.

3.4 CONCLUSION

In this chapter, we reviewed relevant research pertaining to data mining and data fu-

sion. This discussion was meant to provide any reader with an understanding of the

fundamentals of these two crucial concepts and how they can be applied to reliability

analysis in various contexts. For further reading as to how these techniques can be

applied in other reliability analysis applications, refer to one of our published works

[32]. A more extensive discussion of data fusion and applicable techniques was pre-

sented in another survey paper [41]. In the next chapter, we describe how data fusion

and data mining are applied in our studies. More specifically, we give an overview

of the data acquisition, manipulation, mining and fusion techniques employed while

experimenting to find the optimal approach to the construction of a reliable ocean

44

turbine MCM/PHM system.

45

Chapter 4

Methodology

This chapter describes the methodologies utilized in the experiments conducted as a

part of this research. More specifically, we discuss the data collection experiments,

vibration analysis (data manipulation) algorithms, classifiers, data fusion approaches,

data mining techniques including data imputation algorithms and feature rankers as

well as the performance measures.

Experiments conducted during this research revolve around vibration data. Vi-

bration readings of rotating machinery contain distinct signatures which can be used

to determine the state of a machine. Irregular vibration signals within a mechani-

cal system could be indicative of imbalance, looseness and distortion, misalignment,

defective bearings, bad drive belts, misalignment, gearing and coupling inaccuracies,

critical speeds, various form of resonance, reciprocating forces, hydrodynamic forces,

oil whirl, friction whirl, rotor/stator misalignments, bent rotor shafts, defective rotor

bars, etc [77].

4.1 DATA ACQUISITION

Data used in these experiments were collected from two types of rotating machinery:

a typical 120 volts AC 50 cm box fan and the ocean turbine dynamometer described

in Chapter 2. In both cases, vibration sensors mounted on the machine are used to

46

measure its vibration a certain number of times per time interval, called the sam-

pling rate. These sensors are connected to a WaveBook Data Acquisition Unit which

records the data and performs time synchronous averaging (TSA) [90] – a process

which segments the data into equal length blocks related to the different rotational

phases and averages the blocks to reduce noise – of the vibration signals. In TSA,

interpolation is used to introduce new data points to the time series. The data is

then divided into equal-sized blocks related to the synchronous signal being provided

by the tachometer, and these blocks are averaged together. The current block would

start on the leading edge of the tachometer signal and end on the corresponding

point preceding the following tachometer pulse. By taking sufficient averages, an im-

proved estimate of the desired signal can be determined since any random noise will

be eliminated [90].

Data from both machines were sampled intermittently in bursts, a fixed length

time block, for our experiments. The amount of time per burst is called the burst

duration or burst length. Intermittent sampling reduces the volume of vibration

data that needs to be processed and/or stored, and consequently, overcomes storage

space restrictions and minimizes communication overhead which are known issues

accompanying the management of continuous streaming data [38].

Like a turbine, the rotation of the blades in a box fan result in vibration patterns

that are representative of the state of the fan. To record its vibration, two accelerom-

eters were attached at different angles to the enclosure of an ordinary 50 cm box fan.

The accelerometers used were both low noise, low frequency accelerometers (model

AC136-1A) with a sensitivity of 500 mV/g and a low noise power spectral density

(PSD) of 1.7 (µg)2/Hz at 10Hz. The first accelerometer, represented by Channel 1,

was mounted to the fan using a mounting pad. The second accelerometer, Channel 2,

was glued to the surface of the fan. The sensor data were sampled at a rate of 1,000

47

Hz (one thousand readings per second).

Upon completion of the dynamometer, six single-axis accelerometers – 2 high

frequency AC104 accelerometers and four low frequency AC136-1A accelerometers –

were mounted in different places on the dynamometer to allow for the acquisition of

raw vibration data. The locations of these sensors are shown in Figure 2.4. In our

experiments, we refer to these accelerometers as channels. The four low-frequency

accelerometers, AC LF1, AC LF2, AC LF3 and AC LF4, are located closest to the

prime mover and are channels 4, 3, 2, and 1 respectively. AC HF1 (channel 6)

and AC HF2 (channel 5) are the high frequency vibration sensors which record the

vibration from more rapid rotations by GENX. All sensors except the AC HF1 sensor

at channel 6 were installed at or around 90 degrees relative to axial view with prime

mover in the foreground (i.e., MIMOSA Convention). AC HF1 was placed at 180

degrees. The sampling rate for these sensors was 5,000 Hz.

A low-pass filter at 2,000 Hz removes aliasing which would have otherwise made

sensor signals indistinguishable from each other at frequencies greater than half the

sampling frequency. A high-pass filter at 0.1 Hz removes the effects of DC frequencies.

4.2 DATA MANIPULATION/TRANSFORMATION & FEATURE EX-

TRACTION

Once the vibration data is collected from the accelerometers, it needs to be trans-

formed to find the frequencies with the greatest amount of signal. Unlike some sensor

types (oil, temperature, leak, etc.), it is not sufficient to examine the latest state

of the accelerometer. Vibrations are composed of waves, with each frequency tak-

ing a different amount of time to register and providing different information about

the health of the dynamometer. Transformations from the time-displacement domain

48

(the raw waveform data) to other domains including the frequency-amplitude domain

(showing the degree to which different frequencies contribute to the signal) and the

time-frequency-amplitude domain (a three dimensional plot showing which frequen-

cies contribute to the signal and how the relative contribution of these frequencies

changes over time) are used to extract information useful for classification. The time-

frequency-amplitude domain is difficult to produce using Fourier-based methods, as

these require choosing a fixed-width time window in advance for analysis. Hence, we

chose to employ wavelet transforms, an increasingly popular technique in machine

condition monitoring [118, 141].

Wavelet analysis provides distinct advantages over other preprocessing methods

such as Cepstrum analysis and Fourier transforms, and is highly efficient on streaming

data. Unlike Fourier Transforms, wavelet analysis works on a multi-scale basis (on

both time and frequency domains), is suitable for non-stationary signals, and has

varying window sizes which allows for higher frequency bands to be sampled more

frequently and lower frequency bands less often. Thus, by using wavelet transforms,

we are able to preserve the time domain and allow for analysis of possible patterns

within each burst.

As the name suggests, wavelet transforms are based on wavelets, functions which

exhibit wave-like properties but which are only non-zero for a small portion of their

domain (hence wavelet, “little wave”). The analyst first chooses a so-called “mother

wavelet,” and then creates a family of “child wavelets” by sliding (translating) and

scaling (dilating) the mother wavelet. Each of these child wavelets is individually

multiplied with the original signal, showing how much of that signal can be explained

by oscillations of that child wavelet’s translation and dilation. These values, repre-

senting time and scale respectively, can be assembled into a scalogram which shows

how much of the original signal is explained by each scale for each point in time.

49

Due to the computational complexities of creating a large number of child wavelets

and multiplying each with the signal, a simplified form of wavelet transformation

known as the discrete wavelet transform was introduced. This employs a “father

wavelet”, similar to a low-pass filter, in addition to the mother wavelet (which acts as

a band-pass filter). In the first round of transformation, both the mother and father

wavelets are applied separately to the signal, producing two vectors: a detail vector

which which contains information found at the current level of resolution (produced

by the mother wavelet) and another, the approximation vector, which contains all

information found at lower resolutions than the current one (produced by the father

wavelet). These wavelets are then recursively applied to the approximation vector

from the previous level, as seen in Figure 4.1 (e.g., the approximation vector from

level 1 is used to produce the approximation and detail vectors on level 2, then the

approximation vector from level 2 is used to produce the approximation and detail

vectors on level 3, etc.). Note that in this figure, g[n] represents the father wavelet

and h[n] represents the mother wavelet.

The ↓ 2 functions indicate that each vector contains only half as many values

as the vector used to produce it. The output of the wavelet transformation is a

collection of detail vectors from each scale (level), as well as the final approximation

vector from the lowest level of the transform. (The extraneous approximation vectors,

although essential to calculating the wavelet transform, do not constitute part of the

output.) As with the traditional wavelet transform, these can be combined to create

a scalogram.

4.2.1 Streaming Wavelet Transform

One downside of the traditional wavelet transform approaches is that they require

all data to be present before transformation can begin. This is not always the case,

50

Figure 4.1: Wavelet Transform Filter Bank (Credit: Wikimedia Foun-
dation, Inc.)

especially for streaming data where new information is arriving from a live sensor

and must be transformed and processed in real time. For situations such as this,

a streaming wavelet transform (SWT) is needed. Such an algorithm was proposed

in [152], with its implementation used in these experiments. This takes an approach

similar to the discrete wavelet transform, but lazily evaluates each vector, only using

the information which has been seen so far. As new input becomes available, the

algorithm checks if there is enough information to produce values for the deeper

levels of the transform, and calculates these only when the new information is ready.

To gain additional efficiencies, each vector only stores the most recent value calculated

for that level and vector type (approximation or detail); when a new value is found,

it replaces the old one. Overall, the output of the SWT will be a collection of vectors,

one for every other time instance (due to the pairing nature of the transform, adjacent

time instances have identical values and only one of each pair need be reported in the

output). In other words, there are half as many data points in the output as there

were in the input. Each vector contains the latest values for all levels of the transform

which were available at that time.

One side effect of this SWT algorithm is that for the earliest time instances,

some of the values within their output vectors were not computed, thus resulting in

missing values. For example, for the first fifteen time instances, there is not enough

data to compute the fourth level of decomposition (i.e. the fourth data value in the

51

output vector) since sixteen time instances have not yet elapsed. So for all of those

instances, the fourth level of decomposition is missing. Overall, the first 2k−1 − 1

instances will have no values for depth level k of the decomposition. Thus, the

output of this algorithm has relatively large number of missing values, and some

attributes (in particular, the ones for larger values of k representing low frequencies)

will have more missing values than others. These are not noise or error, but a known

consequence of the algorithm, and classification must take this into account. This

seeming shortcoming could be remedied by continuous streaming rather than – as in

these experiments – sampling in bursts. The problem with that, however, would be

the software and bandwidth limitations when processing waveform data streamed at

5,000 Hz from eventually twelve sensors (six phasor measurement sensors for power

quality in addition to the six accelerometers).

4.2.2 Short Time Wavelet Transform

The Short Time Wavelet Transform with Baseline-Differencing (STWTB) methodol-

ogy, which is fully defined in Wald et. al [153], is a second technique (used in our

more recent work) to derive features from the raw vibration signals. Through further

experimentation as presented in the referenced publication, it was determined that

the applied wavelet transforms did not produce the necessary information to allow

learners to build models robust enough to detect problems if the turbine’s current

operational speed is different from the speed at which the data used to build the

models was gathered. This motivated the change to the STWTB approach.

The STWTB is a two step process where the first step is the application of a Short

Time Wavelet Transformation (STWT) algorithm which converts the time series of

amplitude readings into a time-frequency representation of the signal. The second step

is the use of “baseline-differencing” to normalize the data relative to a given operating

52

condition. Like the SWT described above, the STWT algorithm implemented as a

part of the STWTB uses a Haar wavelet – a simple but well-known wavelet [137, 152].

Each instance or observation in the file output by this algorithm is a vector of n

features where each feature says how much of the original signal can be represented

by oscillations at a given wavelength.

The second step in the STWTB process is to generate a baseline from the data

gathered during a specific “normal” operational condition, and then to subtract the

baseline from the current observations made by that source regardless of the current

operational conditions of the machine. This baseline-differencing step was deemed

necessary to remove those portions of the vibration signals that are characteristic of

the machine’s environment and/or operational conditions (in this case, its rotational

velocity), so that the remaining signal only depicts the vibrations caused by actual

abnormalities in the machine (and not its operating conditions).

4.3 FUSION TECHNIQUES

In our experiments, we employ three data fusion techniques, one from each fusion

level defined in Section 3.3. These techniques are described in greater detail below.

4.3.1 Data-Level Fusion

In order to combine sensor signals at the data level, they must have originated from

sources which produce the same type of signal [40]. Our case studies employ a simpli-

fied data level fusion algorithm which takes the arithmetic mean of corresponding data

values between each sensor channel. This was performed on the raw accelerometer

data (i.e., prior to wavelet transformation).

53

4.3.2 Feature level fusion

Feature level fusion [42] involves first extracting features or attributes which describe

the data, and then combining the features from each signal to produce a fused signal.

To fuse the sensor data at the feature level, a set union of the features produced

by the wavelet transform from all channels was performed, which, intuitively, should

improve a classifier’s ability to perform state detection since all the available data is

being taken into account during the data mining process.

For a given experimental setup and a set S = {S1, S2, ..., Sm} of sensor sources, n

features are extracted from each source Si. We will use Sij to denote the jth feature

extracted from the data from source Si. The fused output from all m sources is given

by:

F (S) =
n⋃

j=1

m⋃
i=1

Sij

Simply put, the output of the fusion process will be a file containing all the features

from all sources, or a total of n×m features. For simplicity, each source is considered

equally reliable and thus its observations are considered no more or less important

than any of the other sources.

4.3.3 Decision level fusion

Decision level fusion [36] involves making a local decision from each signal and then

combining the decisions to get the final output. This can be done by combining the

decisions themselves or by combining the probabilities of class membership for each

class and selecting the class with the highest probability [149]. We use the latter

approach.

Given the set S = {S1, S2, S3, ..., Sn} where n is the number of sources and si is

the observation of the ith source as well as the set of possible classes C = {c1, ..., cm},

54

a model di is generated from the observations in the training set made by source Si

using a predetermined machine learning algorithm. We will therefore have n models,

one generated from each source’s observation.

Each model di is then applied to each instance j in the test set. Each model

produces measurement level details about the predicted class of j, meaning that it

also outputs the probability of instance j belonging to each class ck. For each instance,

we have n × m probabilities: the probability given by each of n models for each of

m classes. The overall probability that instance j belongs to class ck is computed by

averaging the probabilities given by all n models for that class. The class with the

highest average probability is selected to be the predicted state for instance j.

The classifiers generated on each subset of data could originate from the same

machine learning algorithm, as is done here, or from a combination of different learn-

ing algorithms, which can be done in a future experiment. Learners used for our

experiments are described next.

4.4 CLASSIFIERS

The WEKA (Waikato Environment for Knowledge Analysis) software package1 is

an open source collection of data mining and machine learning algorithms [67]. Its

graphical user interface allows for ease of use and the vast array of data mining related

tasks it supports makes it a popular choice for researchers in the field. These tasks

include data preprocessing (e.g., data imputation), classification, regression (useful

for prognostics) and feature selection. The nine machine learning algorithms used in

our studies are all implemented in the WEKA workbench. These are:

1. C4.5 Decision Tree (C4.5O and C4.5N): The Decision Tree is a tree-like ma-

1Available on http://www.cs.waikato.ac.nz/ml/weka

55

chine learning model. Decision rules comprised of comparisons of attributes to

numeric thresholds are coded as branches, and the predicted values (which in a

classification problem would be the class labels) are coded as leaves. The C4.5

algorithm [122] generates decision trees recursively, computing each of its com-

parison thresholds based on the information gain (i.e., the difference in entropy)

of the independent attributes at each level. We built two decision tree classi-

fiers using J48, the WEKA implementation of the C4.5 decision tree algorithm.

The first one was constructed using default parameters (labeled C4.5O); for the

second, denoted C4.5N, we disabled pruning, enabled Laplace smoothing and

used default values for remaining parameters.

2. Naive Bayes (NB): A simplified form of a Bayesian network, the Naive Bayes

learner applies Bayes’ rule of conditional probability and an assumption of inde-

pendence among the features to predict the probability that an instance belongs

to a specific class. Previous studies have demonstrated the effectiveness of this

classifier even when dependencies exist among the features [26].

3. Multi-Layer Perceptron (MLP): The Multi-Layer Perceptron (MLP) neural net-

work [14] is a form of feed-forward neural network which maps input values to

an output. It uses a learning technique known as back-propagation, a general-

ization of the least mean squares algorithm, which involves continually updating

the weights it assigns to individual connections within the neural network based

on the amount of error in the output compared to the expected outcome. Two

parameters were changed: the hiddenLayers parameter (the number of nodes

in the intermediate, or hidden, layers in the network) was set to ‘3’ and the

validationSetSize (percentage of the training dataset reserved for validating the

MLP model during back-propagation) was set to ‘10’.

56

4. Repeated Incremental Pruning to Produce Error Reduction (RIPPER): The

RIPPER algorithm [21], an inductive rule learner, performs classification of

new instances based on a set of rules generated from a learning dataset. Rule

generation involves greedily adding antecedents based on information gain and

then pruning the resulting rule to optimize the rule set and minimize errors.

Our experiments used the default parameters for the JRip algorithm, which is

the WEKA implementation of RIPPER.

5. k-Nearest Neighbor algorithm (2NN and 5NN): In the k-Nearest Neighbors

algorithm (abbreviated kNN), the predicted class of an instance is determined

by a majority vote of the k closest training examples in the feature space,

where the distance is defined in terms of the feature space. In the WEKA

implementation, called IBk, the default search algorithm for the kNN algorithm

is a brute force algorithm which finds the examples with the shortest Euclidean

distance. Default values were selected for all parameters of the IBk algorithm

with the exception of the value of k which was set to 5 for the 5NN classifier

and 2 for the 2NN classifier.

6. Support Vector Machine (SVM): The simplest form of the Support Vector Ma-

chine (SVM) is a hyperplane which divides a set of instances into two classes

with maximum margin. Its support vectors are a subset of instances which are

used to find this hyperplane. While there are many forms of SVMs, WEKA im-

plements John Platt’s sequential minimal optimization (SMO) algorithm [121]

which uses analytic quadratic programming to solve the Lagrange multipliers

and a heuristic function for determining which multipliers are to be optimized.

Two parameters for SMO algorithm were changed: c (representing the complex-

ity constant of the SVM) was set to 5.0 and buildLogisticModels (which allows

57

the SVM to obtain proper probability estimates) was set to ‘true’.

7. Random Forest (RF10 and RF100): The Random Forest (RF) classifier [7] is

an ensemble of randomly generated unpruned decision trees. The output of this

classifier is the mode of the decision of the individual trees, each trained based

on a random selection of features and a random sampling of instances. The

classifier using default values is denoted RF10 while the one constructed when

the parameter for the number of trees is set to 100 is denoted as RF100.

8. Radial Basis Function Neural Network (RBF): A Radial Basis Function Net-

work (RBF) [9] is a simple neural network containing a single layer of nodes

where the activation function is a radial basis function. In WEKA, the RBF

is implemented as a normalized Gaussian radial basis function network, which

learns logistic regression over a k-means clustering algorithm to provide the ba-

sis functions. No changes were made to the default WEKA parameter values

for this learner.

9. Logistic Regression (LR): In standard logistic regression (LR), maximum likeli-

hood estimation is used to perform binary classification based on the calculated

probability of having a given output as a function of the values of the attributes.

The probabilities are based on a parametric model having parameters estimated

from the training data. The WEKA implementation uses a multinomial logistic

regression model, while allow multiple classes, with a ridge estimator [89] to

improve parameter estimates and minimize error. Default WEKA parameters

were used.

Parameter values were tuned in accordance with findings from previous studies

[3, 157].

58

4.5 FEATURE SELECTION

Feature selection techniques aim to reduce the dimensionality of the feature space by

removing unnecessary features. We apply these techniques in some of our feature-

level fusion experiments to reduce the quantity of data that the classifiers would need

to process. Our feature selection experiment(s) employed eight different techniques

– described below – based on results of previous experiments conducted by our team

[3, 157] on different datasets. Of these eight, the first two techniques are available in

the WEKA tool. The remaining six were proposed and implemented in the framework

of the WEKA tool by our team.

• The Chi-squared method (χ2, or CS) [19] – based on the χ2-statistic – ranks

the features according to their statistical dependency to that class. A feature

is considered to be more relevant to a class for larger Chi-squared values.

• The Information Gain (IG) [3] technique determines the relevance of a feature

by calculating the amount of information that is gained about a class when that

feature is used.

• The ReliefF algorithm [61] estimates the rank of a feature based on how well its

values distinguish between instances (or rows of data) if they are from different

classes while showing no difference if the instances are of the same class.

• The Mutual Information (MI) is a measure of the mutual dependence between

two random variables; lower values of the mutual information statistic indicate

a greater degree of independence [157].

• The use of Kolmogorov-Smirnov (KS) as a feature ranking/selection technique

was first proposed in [84] by a member of our team. This method works by

59

using the KS statistic to measure the maximum differences between the empir-

ical distribution function of the attribute values of instances in each class. A

feature is said to be better able to distinguish between two classes for larger dis-

tances between the calculated distribution functions. Our case study is its first

application as a feature selection technique in the reliability analysis context.

• The Deviance (Dev) is a measure of the residual sum of the squared errors ac-

cording to some pre-defined threshold. Smaller values of deviance are preferred

since it is representative of the degree of error.

• Also used as a performance measure, the AUC [71] is a single numeric value

representing the area under the Receiver Operating Characteristic (ROC) curve

(TPR versus FPR). AUC values range from 0 to 1, where a value of 1 indicates

perfect performance.

• The feature ranking method based on the area under the Precision-Recall Curve

(PRC), which is also called the average precision, is similar in nature to the one

based on the AUC. The main difference here is the use of the PRC (graph of

PPV against TPR) instead of the ROC.

• The Signal-To-Noise (S2N) [3] is a less popular technique. It ranks features

according to how well each feature discriminates between two classes. For each

feature, the S2N of that feature is calculated by dividing the difference between

the mean value of the features from the positive and negative classes by the

sum of the standard deviations of that feature for both classes.

60

4.6 DATA IMPUTATION

To remove the missingness factor in the streaming wavelet transform data, we consider

two dissimilar approaches – Expectation-Maximation Imputation (EMI) and Mean

Imputation (MI).

The EMI algorithm [140] is a popular tool for statistically estimating values that

are missing in the input dataset. It is a deterministic iterative algorithm which deter-

mines the maximum likelihood estimates of the parameters of the distribution which

the complete (missing and observed) data are assumed to follow. It starts with an

initial guess of the value and performs two steps (the expectation and maximization

steps) during each iteration; after several repetitions, the algorithm converges. In

the first step, the expectation step, the conditional expectation of the log-likelihood

evaluated using the current estimate for the parameters is computed. The maxi-

mization step involves computing new estimates for the parameters by maximizing

the expected log-likelihood from the expectation step. These parameter-estimates are

then used to determine the distribution of the latent variables in the next expectation

step.

MI is quite simple compared to EMI. In MI, missing values are replaced by the

mean value of the non-missing values of that attribute for that class. Its simplicity

makes this algorithm quite fast, but typically less effective than EMI because of its

tendency to under-estimate the sample variance [83].

4.7 PERFORMANCE MEASURES

In a binary classification problem, a classification model is trained to output one

of two possible values or classes based on the input values for that instance in the

dataset. The class of interest (the abnormal state) is dubbed the positive class while

61

the normal class is considered the negative class. The number of instances that

are correctly identified by a classifier as being positive are the true positives (TP)

and the number of negative instances that the classifier labeled as positive are the

false positives (FP). Conversely, the true negatives (TN) are the number of instances

correctly identified as being normal or not faulty while the false negative (FN) count

is the number of incorrectly labeled positive instances – positive instances labeled

incorrectly as negative. Given the total number of positive instances P and the total

number of negative instances N, the true positive rate (TPR), false positive rate

(FPR) and accuracy (ACC) can be computed from the TP, FP and TN counts as

follows:

TPR = TP
P

FPR = FP
N

Accuracy = TN+TP
P+N

(4.1)

Four performance measures used in the experiments are the False Positive Rate

(FPR = FP
N

), the False Negative Rate (FNR = FN
P

), accuracy and the area under the

ROC curve (AUC). The ROC (Receiver Operating Characteristic) curve is a graph of

the False Positive Rate on the x-axis versus the True Positive Rate (TPR = 1−FNR)

on the y-axis. Each point on the curve represents the TPR and FPR at a different

decision threshold. The decision threshold is used by classifiers when assigning a class

label to a new instance; if the confidence in labeling an instance as being faulty or

abnormal exceeds this threshold then the instance is labeled as faulty. Lowering this

threshold increases the TP and decreases the TN, making the classifier more biased

to the faulty (or positive) class. Varying the threshold, therefore, affects the FPR

and FNR and the optimal value of this parameter depends on the class distribution

and the data itself.

62

A single, numeric value ranging from 0 to 1, the AUC summarizes the information

contained within the ROC curve and combines information about how well a classifier

performs on both the positive and negative classes. Perfect classification models

produce an AUC of 1. For high assurance systems such as the ocean turbine, an ideal

state detection module must maximize this value, and even small differences in this

value could mean a significant loss or gain in performance and in turn, the reliability

of the condition monitoring system.

4.8 PERFORMANCE EVALUATION

Once a classification model is built from a set of training data, its performance can

be evaluated in one of two ways: using n-fold cross validation or using a test set. The

former approach evaluates the model on data similar in nature to the data used to

build the model; the latter allows the researcher to test the possibility that certain

characteristics of the data may have changed since training. Earlier experiments [32,

40, 42, 45, 43, 48] evaluate models use some form of n-fold cross validation while our

more recent work [33, 35, 37, 36, 47] employ a training set.

In n-fold cross validation, the dataset is randomly split into n subsets. Subsets 1

through n−1 are used as the training set and the last subset as a test set. Each model

is built on the training set and evaluated on the test set. This process is repeated

by using each of the n subsets exactly once as the test set, and using the remaining

subsets each time as the training set. The average result across all n iterations is

computed as the output.

For feature selection experiments, we implemented n-fold cross validation with

feature selection as a methodology for selecting the subset of p features and training

the classification models. Instead of selecting features from the entire dataset, feature

63

selection is done on the n−1 training folds for each iteration during the cross validation

process. So, for each of the n iterations, a subset of features are re-computed on the

n−1 folds of training data using the feature selection technique. Once these p features

are selected, a classification model is built using this reduced set of features from the

n − 1 folds of training data and then evaluated on the remaining fold that was put

aside for testing.

64

Chapter 5

Data and Knowledge Fusion Framework

for MCM/PHM in Inaccessible Ocean

Systems

5.1 INTRODUCTION

Research on data fusion techniques, architectures and approaches spans many do-

mains including medical diagnosis [162], military defense and tracking systems [136],

robotics [115], navigation systems for autonomous vehicles [22] and remote sensing

[13]. To the author’s knowledge, however, little work had been done in data fusion for

MCM/PHM in unattended, inaccessible1 systems such as ocean turbines. The ma-

jority of research effort invested in data fusion for autonomous systems (whether on

land or sea) has been related to designing vehicle navigational systems. Our research

is, therefore, not only unique in the target system (ocean turbines) but also in the

intuition behind a mathematical data fusion model for MCM/PHM systems that it

provides.

5.2 CHAPTER CONTRIBUTIONS

The main contributions of this chapter are:

1With a goal of a one year maintenance free operation with annual preventative maintenance

65

1. A data fusion approach to MCM/PHM systems whose architecture satisfies the

OSA-CBM specification.

2. A formalization of barrier synchronization as a technique for coordinating sensor

data streams prior to fusion

3. A case study showing preliminary results of simple data fusion performed on

vibration data

The OSA-CBM specification was described in Section 2.2. In Section 5.4, we will

present a data fusion model which can be applied to MCM systems designed based

on the ISO-13374 standard. We will apply this model to a case study in Section 5.5,

present results of preliminary analysis in Section 5.6, and summarize our findings in

Section 5.7.

5.3 RELATED WORK

Figure 5.1: JDL Process Model for Data Fusion

66

5.3.1 Data Fusion

Data Fusion is considered a cross cutting concern of an MCM/PHM system because

the data to be integrated can be provided by several entities and layers in the OSA-

CBM architecture [123]. To streamline and standardize the design and codification

of data fusion systems, experts in the area have proposed more than 30 fusion archi-

tectures over the years. Some of these models are discussed in [50]. Of these, one of

the most widely cited model is that of the American Joint Directors of Laboratories,

or JDL [136], which was initially developed for military applications. The JDL model

[138] divides the processes, functions and techniques applicable to data fusion into

five levels (as seen in Figure 5.2). These are:

Level 0. Pre-Processing – A level 0 data preparation/estimation process estimates

entity features from one or more entity signal observations [99].

Level 1. Object Assessment – In this phase, an attempt is made to locate and/or

identify the object of interest by fusing information about this object which was

gathered from multiple sources. The object assessment level is itself broken down

into four sub-steps, namely:

1. Data Alignment – Data processing occurs to align the data into a common

frame of reference (e.g. spatial or temporal).

2. Data Association – Relationships among data points are identified. For exam-

ple, in surveillance systems, a data association function would attempt to group

all the measurements from different platforms (that is, any object that is car-

rying a sensor) which are associated with the same target. In an MCM/PHM

system, oil, temperature and vibration measurements could be associated with

the component they are measuring.

67

Figure 5.2: Data Fusion and MCM Model

3. State Estimation – The target’s state is calculated from the measurements ob-

tained from the previous levels.

4. Identification – An attempt is made to predict the identity or classification of

an object.

Level 2. Situation Assessment (SA) – The results from the previous level are in-

terpreted to establish a relationship between the reconstructed entity and an observed

event [50].

Level 3. Threat Assessment – In the threat assessment stage, the outcomes of

different plans to remedy the situation are analyzed and the best course of action is

predicted.

Level 4. Process Assessment – The process assessment phase is a global level in

which the effectiveness and performance of the overall process (both hardware and

software) are reviewed to identify possible means of improving the system. This phase

in the JDL process involves planning and control.

68

5.4 FRAMEWORK

Knowing where and when fusion should be performed is considered a primary issue

of data fusion [66]. In this section, we will relate the JDL data fusion model to the

OSA-CBM model and present a unified perspective on data fusion within the context

of MCM/PHM systems for ocean turbines.

Our fusion model, shown in Figure 5.2, presents the data fusion process of the JDL

model as an overlay on the layers in the OSA-CBM system architecture to indicate

how and where fusion is occurring within the MCM/PHM system. By identifying at

what points in the OSA-CBM architecture data fusion is occurring, we are addressing

data fusion as a cross cutting concern.

A Plant block has been added to the MCM/PHM architecture to represent the

actual hardware portion of the system including its sensors and relays. This Plant

will produce the raw data which will be used to drive this PHM system.

The proposed model was adopted from the JDL model which has been slightly

modified to include both a Detection phase and an Action phase (as shown in the

diagram). The Detection phase replaces the State Estimation and Identification steps

in the JDL Model. Since there is no clear-cut distinction between these two sub-

steps of the Object Refinement phase for MCM/PHM systems, these steps have been

combined to form the Detection phase. In this Detection phase, any anomalies in data

will be identified and associated with the component which generated that fault. A

new phase – Action – has been added to correspond to Advisory Generation. In this

phase, advisories from all the other phases will be consolidated and interpreted to

determine if and how the machine can self-adjust to optimize its current state.

The Process Assessment phase remains at a global level and can retrieve data from

and provide feedback to other phases in the data fusion model. This phase needs to

69

be able to measure the efficacy of the data fusion process and trigger any adjustments

(for example, to fusion parameters) to ensure optimal performance while satisfying

system requirements. One researcher pointed out the inherent difficulty in evaluating

a data fusion process in terms of the intended objectives [66], thus creating the need

for a viable evaluation technique that can be used within the Process Assessment

phase. This remains an open issue.

As discussed in Section 5.3.1, data fusion can occur at many different levels in the

MCM/PHM architecture. Determining the type of data fusion algorithm suitable for

each fusion level requires an analysis of the type of sensor data available as well as

the type of inference that is desired. In other words, a fusion algorithm that would

compute the system state based on the feedback from multiple sensors and output

the system state as either “operational” or “malfunctioning” would differ from one

needed to coordinate and integrate two homogeneous waveforms.

5.5 CASE STUDY: OCEAN TURBINE MCM/PHM

Inaccessible ocean machinery such as ocean turbines are highly intolerant to false

alarms due to the high costs of equipment retrieval. Also, fault detection must occur

within a reasonable time-frame to minimize damage to the turbine. An MCM/PHM

system for ocean turbines must, therefore, satisfy response time requirements and

minimize occurrence of false alarms and silent failures. Data fusion is useful in meeting

these requirements as it will allow for more efficient fault diagnosis. We will discuss

detailed treatment of silent failures or false negatives in future work.

Because of the continuous nature of the data flow from some of the sensors used

within the Plant of the MCM/PHM system, the data fusion sub-system must be

capable of handling real time data streaming from multiple, usually heterogeneous,

70

sensors. In this section, we will apply the data fusion model presented in Section

5.4 and discuss the application of data fusion to an MCM/PHM system for ocean

turbines.

5.5.1 Applying the Framework

The Plant block of the model shown in Figure 5.2 represents the hardware components

within the MCM/PHM system. In an ocean turbine, this Plant block consists of sen-

sors and relays. Some examples of sensors that can be included within this block are

accelerometers, tachometers, oil sensors, pressure sensors, leak sensors, thermometers,

atmospheric pressure sensors and electrical output sensors.

Within the Data Acquisition (DA) block of the architecture, data is acquired for

different physical phenomena such as vibration, temperature and oil quality. The first

level of data fusion (as will be discussed in Section 5.5.3) can be implemented here

to accomplish data alignment.

While the model of Figure 5.2 indicates when data fusion is occurring, it provides

no notion of how fusion will occur. Zooming down to the data fusion processes which

are occurring at the different levels in the MCM/PHM architecture, we identified 3

unique types of data fusion that can occur within this architecture. These are labeled

F1, F2 and F3 in Figures 5.4 and 5.5, and will be discussed in Sections 5.5.3, 5.5.4

and 5.5.5 respectively. From discussion in this section, it is clear that a single fusion

process will occur across multiple levels of the hybrid framework proposed in Section

5.4.

Before sensor streams can be fused, we need to ensure that the data items being

fused are properly coordinated. A formalization of barrier synchronization for co-

ordination of timed sensor data streams relevant to this domain is given in Section

5.5.2.

71

5.5.2 Barrier Synchronization

Given two sensors or sources within an MCM/PHM system, it often happens that

signals being sent to a central processing system are received at different times al-

though they were generated simultaneously. Synchronization between sensors within

a data fusion system is necessary to ensure that the data fusion is occurring only

between corresponding data points. To do so, the time component of all data points

being fused must be aligned with each other within some reasonably sized margin ε.

This can be accomplished through implementation of a coordination paradigm used

in networking, and distributed and parallel computing – barrier synchronization [145].

In terms of vibration sensors, the term packets may refer to individual bursts of

data. For other sensors, these packets could be the independent batches of readings

being transmitted from that sensor to the topside system performing the data fusion.

Thus, it cannot be assumed that the packet sizes of the different data streams are

uniform. Here, we will propose a barrier synchronization scheme for continuous timed

data streams – one in which incoming data items arrive continuously and consecutively

[69] – from sensors in a distributed network. Let ε be some small, non-negative

predefined integer which is provided as a parameter to the synchronization process.

A larger value of ε will allow for more lenient synchronization and lower wait times

while a smaller value of ε would ensure a tighter correspondence between data items

before fusion. ε is one such parameter which can be manually or automatically tuned

from within the Process Assessment phase of the Data Fusion Model.

The barrier synchronization scheme is represented diagrammatically by Figure

5.3, which shows the barrier synchronization of the pth timed data item from packet

j in data stream s with the qth timed data item from packet k in data stream u.

An example of a timed data item in this domain is a single amplitude reading

72

Figure 5.3: Barrier synchronization of timed data streams

within a burst of vibration data. We will define the barrier synchronization of these

two data streams as follows: A timed data stream s consists of a sequence of packets

of possibly varying lengths where the length of any packet sj is denoted by L(sj) and

s = {s0, s1, ..., sj, sj+1, sj+2, ...}. Any data packet sj within stream s consists of L(sj)

data items which are each represented as the triple: spj = (v, t, d) where v is the data

component of the pth data item, t is the start time, and d is the duration.

In some cases, such as for vibration data and other bursty data, the d component

for all data items within a burst will be uniform since the sampling rate will be

constant at least until the end of the burst. So for any two data items spj and sqj

within the same burst/packet sj, dpj = dqj where p and q represent the indices of the

two data items and p 6= q.

The duration of a data item d will also aid in the detection of missing data within

a packet since the start time of the next data item should always be equal to the start

time of the current data item plus its duration, and for the detection of lost packets

since the sum of the durations of all data items within the current packet plus the

sum of the smallest start time and the delay between packets, if any, should equal

the start time of the first data item within the next packet.

73

Assuming that all data items in a packet are sorted in ascending order according

to their start time, and all packets within a stream are ordered in ascending order

according to the smallest data item start time within that packet, there are three

possible scenarios:

1. Data items spj and uqk arrived at the same time or within a reasonable timeframe

of each other, i.e. tpj ≥ tqk − ε and tpj ≤ tqk + ε. In this case, both packets will

be permitted to cross the barrier and begin the fusion process.

2. Data item spj arrived some time before data item uqk, i.e. tpj < tqk − ε. This

could mean that the corresponding data item from stream u was lost or delayed,

and would require the data item spj to block at the barrier until time tqk − ε.

3. Data item spj arrived some time after data item uqk, i.e. tpj > tqk + ε. As in

Case 2, data item spj will block until the arrival of the next data item in packet

uk or until the arrival of the first data item of the next packet uk+1.

In cases 2 and 3, indefinite blocking is possible and could result in high latency

and late fault detection since faulty data from the monitoring system will be delayed

behind the blocked data item. An alternate and more feasible approach could be to

employ known data imputation techniques [85, 147] to create a replacement data item

for fusion whenever needed. Another alternative is to introduce a second parameter

to the synchronization process, w, which represents the maximum allowed blocking

time. If a data item blocks for greater than w time units, the known data point is

allowed to pass through the barrier, enter the fusion process as the sole input for that

time block and then exit the fusion process as its output. Analysis of an appropriate

approach to cases 2 and 3 will be left for future studies.

74

5.5.3 Inter-Sensor Data Fusion

The first type of fusion, which occurs at the boxes labeled F1 in Figure 5.4, works

closest to the raw data emanating from the sensors. At the lowest level, sensor data

from two heterogeneous sources will be combined to validate signals, create features,

and generate a unified output. In our context, we will be combining vibration signals

from the accelerometer through channel C1 with velocity data from the tachometer

through channel C3 to produce time synchronous average vibration features [114]

through channel C1.3. Inter-sensor data fusion would occur during the Data Align-

ment phase of our hybrid framework (Figure 2) where the common frame of reference

would be the tachometer signal.

In the inter-sensor data fusion process, an analogue-to-digital converter (ADC) is

used to first digitize the raw analogue signal that is received from the sensors into

a sequence of digital values via a two step process. Sampling, the first step of the

digitization process, is necessary to produce a signal in terms of discrete time and

continuous values, while quantization, the second step, maps the set of continuous

data values to a discrete set.

Once the data has been digitized, a low pass filter could be applied to de-noise

the signal and improve the signal-to-noise ratio. Other de-noising techniques include

a statistical multichannel filtering approach [124], wavelet transforms, Wiener filter

[159] and linear filters.

After undergoing a de-noising process, the vibration signal will then need to be

normalized (or ordered) with respect to the tachometer through channel C3 via Time

Synchronous Averaging (TSA) which was defined in Chapter 4. TSA is a signal

processing technique often used to perform inter-sensor data fusion and reduce noise.

By normalizing the accelerometer data with respect to the tachometer signal, we

75

ensure that time samples are aligned to the same angular position of the component

(e.g. a gear or shaft) to preserve the phase relationship. Additionally, since the

rotational speed is not constant, order tracking is needed to distinguish non-stationary

vibration data from transient vibrations.

On the opposite side of the component, a second accelerometer measuring the

vibration of the same component from a different angular position produces signals

through channel C2. The entire fusion process F1 will be mirrored there to normalize

the accelerometer signal through channel C2 with respect to the tachometer signal

through channel C3 to generate signals through channel C2.3.

5.5.4 Intra-Component Data Fusion

Figure 5.4: Intra-component fusion diagram

76

In the second type of data fusion, denoted by F2, homogeneous data from mul-

tiple sources (channels C1.3 and C2.3) will be integrated to produce more accurate

data than could have otherwise been generated from a single sensor. This may be

between sensors measuring the same object but at different angular positions or be-

tween redundant sensors measuring the same object at the same angular position. In

the former case, data from both sensors will need to be included in the final result

since each sensor provides a unique perspective of the object. In the latter case, the

data will help to identify sensor malfunction and would provide a mechanism for sen-

sor validation. In either case, the fusion process F2 will output data through channel

C13.23 in Figure 3. F2 will be used, for example, in the Data Association phase of the

Fusion Model to combine vibration readings from multiple accelerometers attached

to the same component.

Intra-component sensor fusion can be accomplished by any of three different levels

of abstraction: signal/data-level fusion, feature-level fusion, or decision-level fusion.

At the data-level, the data fusion algorithm is executed on the raw signals. Greater

accuracy is obtained from doing so but this approach is only viable when the signals

are of the same type (as would be the case with channels C1.3 and C2.3). At the

feature level, feature extraction is done to produce a feature vector on each signal and

the extracted feature vectors are fused. A sample feature set would be 320 bins of

vibration data that correspond to different frequency ranges in a spectrogram. At the

highest level of abstraction (decision-level fusion), each sensor processes their signals

independently to produce a local estimate. These local estimates are then combined

via a fusion process. By performing decision level fusion, features can be added or

removed from the system without having to change the method of analysis. While

this does provide a significant advantage, accuracy is sacrificed. Data level fusion will

be performed here to maximize accuracy.

77

Techniques for data-level, feature-level and decision-level intra-component fusion

will be investigated in future studies.

5.5.5 Inter-Component Data Fusion

Figure 5.5: Inter-component fusion diagram

The health of a complex system cannot truly be determined from individual mod-

els and data analysis techniques. So, at our final level, we combine data from multiple

components to enable system-level diagnosis and prognostics. This level of fusion, re-

ferred to as knowledge fusion, involves integrating higher-order, possibly competing

data and will be observed only in upper level nodes in the system architecture. Fig-

ure 5.5 diagrammatically represents this concept. Note that fusion types F1 and F2

will only occur within components i and j if they are lower level components (mean-

ing that the input to these components are raw sensor signals), but F3 would occur

within any other component to fuse the virtual sensor signals from any two compo-

78

nents below it in the architecture. Inter-component fusion would occur during the

Situation Assessment phase of Figures 1 and 2 as it establishes how a fault in a single

component will affect the health and life expectancy of the entire system, particularly

adjacent components.

We now need to consider how to not only combine heterogeneous data from mul-

tiple sources, but how the fusion process will operate in the presence of discordance.

Early research done in psychology on knowledge fusion within humans and animals

resulted in the definition of four possible ways to integrate input from different types

of components [70]. The four modes, known as Bower’s Taxonomy of Fusion, are:

1. complete unity, wherein the data from all the components are combined without

any consideration for the possible discord, creating the illusion of compromise

between sensors. No system is in place for detecting any disagreements;

2. unity with awareness of discordance and the possibility of recalibration, in which

the conflicts are detectable and are reconciled by recalibrating the offending

sensors;

3. unity with awareness of discordance and tendency towards suppression, in which

disagreements are detectable but the information gathered from the offending

sensors is temporarily ignored;

4. no unity at all, where there is no combination of the sensor data and no way

to detect conflicts. Because of its triviality, this mode will be omitted from any

future discussion.

In complex environments, the appropriate mode of integration may depend on the

situation. It is also not feasible to apply the same mode of integration throughout

the entire system since the system will need to adapt to changing environmental

79

and operational conditions [144]. So, an approach to knowledge fusion must consider

which mode of fusion is appropriate to the current situation.

Because of the ability to incorporate human knowledge in determining the prece-

dence of signals in the event of the conflict, an expert system could be built to dis-

tinguish the appropriate mode for a specific situation and perform inter-component

fusion. Liu and Liu previously implemented an expert system via a fuzzy group mul-

tiple attribute decision making method to perform this level of fusion in a machine

condition monitoring system [95]. In their approach, the expert system was com-

prised of four modules, namely the diagnosis tree, a fuzzy group multiple attribute

decision maker, a knowledge base in which each rule was associated with a confidence

factor representing the level of uncertainty in the validity of the rule, and an inference

engine.

Future work may include the use of expert systems to accomplish this level of

fusion.

5.6 EXPERIMENTAL SETUP

The following experiment was conducted to analyze simple intra-component fusion,

F2, on real vibration data by investigating its effect on state detection from vibration

signals. Although the fusion algorithm used for F2 is trivial, these results will show

if and how state detection is improved or impaired by a fusion algorithm.

To simulate the vibration of an ocean turbine as the propeller rotates, two ac-

celerometers were attached at different angles to the enclosure of an ordinary 50 cm

box fan. The first accelerometer, represented by Channel 1 (C1), was mounted to the

fan using a mounting pad. The second accelerometer, Channel 2 (or C2), was glued

to the surface of the fan. For this simple experiment, the fan and the two sensors

80

are considered our hardware plant for our MCM/PHM system. The accelerometers

were both connected to a WaveBook Data Acquisition Unit, which was responsible

for both data acquisition (DA) and time synchronous averaging of the vibration data.

Vibration measurements were then sampled at a frequency of 1000 Hz, or 1000

readings per second, in three (3) second bursts for each of the following four experi-

mental setups:

1. The fan placed on a solid floor, operating normally and in upright position at

1010 revolutions per minute (rpm). This scenario presents a baseline (BL)

2. The fan tilted on a soft surface such as the operator’s hand (TOH)

3. The fan tilted on a hard surface such as a wall (TOW)

4. The running fan slowed with an obstruction, like a pencil or popsicle stick

(SWO)

All experiments were run independently and the faults (i.e. TOH, TOW and SWO)

were not introduced while the fan was running normally. Each experiment was run

a total of six (6) times with equal burst durations and sampling rates, producing a

balanced class distribution which, although uncharacteristic of data produced by a

live turbine, is adequate for initial tests and vibration analysis.

Corresponding data points from channels C1 and C2 were averaged to simulate a

simple data-level fusion process F2. The resultant fused signal is similar to that of

virtual channel C13.23 in Figure 5.4, and is referred to as Channel 3 (C3) within this

experiment.

The streaming Haar wavelet transform (SWT), described in Section 4.2.1, was

then used to convert the resultant time series of amplitude readings into a time

series of resonance vectors, mapping real valued amplitudes to a tractably small set

81

of distinct resolution scales. For the wavelet transform used in this case study, we

examined wavelengths from 21 to 210 and consequently, the output of the transform

contained ten attributes, one for each scale 1 through 10, whose value would be 1 if

a wave is detected at that scale or 0 if no matching wave is found.

Next, the time frequency features produced by the wavelet transform for each of

the three channels are passed through a sliding window transform (with window sizes

of 50, 100 and 200) to reduce short term variations in the signal. To implement a

sliding window transform with a window size of w, we sum the values of the next

w instances for each of the ten attributes. The value of each of the ten attributes

would therefore be between 0 and w. The instances containing the summed values

are combined to form a new dataset, which is used in place of the original dataset.

The six runs for each experiment were merged to form a single dataset for each of

the four classes (BL, SWO, TOH and TOW). For our binary classification problem,

we then combined all six runs of the BL class with each of the three classes of interest

SWO, TOH, and TOW producing three sets of data each having six runs of the class

of interest plus six runs of baseline data. Therefore, in total, for this experiment,

there were 3 window sizes × 3 classes of interest × 3 channels = 27 datasets.

Twelve data mining classifiers were then trained on each of the 27 datasets to

distinguish between normal operation (BL) and the single class of interest (TOH,

TOW or SWO). Each classifier was built using the WEKA data mining tool, version

3.5.2; default parameters were used unless otherwise noted. In the results, we assign

a letter label (letters A through L) to each classifier to save space in the graphs in

the results section. We employed: both versions of the C4.5 decision tree (A-C4.5O

and J-C4.5N), Naive Bayes (B-NB), Multi-Layer Perceptron (C-MLP), Repeated In-

cremental Pruning to Produce Error Reduction (D-RIPPER), both versions of the

k-Nearest Neighbor algorithm (K-2NN and E-5NN), Support Vector Machine (F-

82

SVM), both versions of the Random Forest (L-RF10 and G-RF100), Radial Basis

Function Neural Network (H-RBF) and the Logistic Regression (I-LR). Details on

these classifiers were presented in Section 4.4.

Each classifier was built using one run of 5-fold cross validation (CV). In 5-fold

CV, the dataset described above is randomly partitioned into five parts, called folds,

with the first four folds serving as a training set and the last fold held back as a

test set. The cross validation process is repeated four more times such that each fold

serves as a test set once, and then the results of all five folds are averaged to produce

a single estimate.

The performances of these algorithms were expressed in terms of the AUC – the

area under the ROC curve – which was also defined in Chapter 4.

Figure 5.6: Results

83

5.6.1 Results

In this section, we present the classification performance of each of the twelve classi-

fiers on the experimental data. From these results, we answer the following research

questions:

1. Are multiple sensors needed to measure the vibration of the same component?

2. Does data fusion improve classification performance?

3. What is the effect of window size on classifier performance?

4. Which classifiers are best and least able to detect a state of interest from the

wavelet transformed vibration data?

Figure 5.6 shows the AUC values for learners A through L on each of the three

classes of interest – slowed with obstruction (SWO), tilted on hand (TOH) and tilted

on wall (TOW) – and for three channels: C1, C2, and C3. Each class of interest

is presented in a different row; SWO is shown in the first row, TOH in the middle

row and TOW in the last row. Results for channels C1, C2 and C3 are displayed in

the first, second and third columns respectively. Each clustered bar graph shows the

AUC values on the y-axis for three window sizes (50, 100 and 200) and each of the

twelve classifiers for a specified class of interest.

First, we will look at the results for channels C1 and C2 to see if classifiers were

able to better detect the state of interest from any one channel. C1 and C2 results

suggest that classifiers are better able to distinguish SWO and TOW from C2 data

but perform better on C1 data for recognizing TOH. So, by removing any of the

two channels, we may be sacrificing the ability of the health monitoring system to

detect one or more states. This demonstrates the importance of having multiple

84

accelerometers measuring the vibration of the same component from different angular

positions, and establishes the need for some type of fusion algorithm to aggregate the

data from these sensors.

To determine whether data fusion enhances state detection by improving classi-

fication performance, we will compare the three graphs of the channel C3 results to

those from the other two channels. For SWO, all twelve classifiers achieved a mini-

mum 0.99 AUC from C2 data regardless of window size, but showed greatly degraded

performance on C1 data across all three window sizes. All classifiers were better able

to detect SWO from C3 than from C1, but performed best on C2 data. All classifiers

were able to achieve an almost perfect AUC when detecting TOH from C1 data and

at least a 0.97 AUC when detecting TOH from C2 data. Although classifier detection

of TOH did not improve after fusion when compared to any single channel, the AUC

values achieved on C3 were within a 0.01 AUC of those from C2. For TOW, all but

the top six classifiers had degraded performance on C1 data. Although detection of

TOW on C2 data was slightly better than on C1 data, the best performances on

TOW data (for all twelve classifiers) regardless of window sizes were recorded for the

fused channel C3, where AUCs exceeded 0.98 across the board. So, even in a most

naive and oversimplified form, data fusion provided more stable classifier performance

than data from any single channel.

Our results also showed the effect of window size on classifier performance. The

smallest window size needed to guarantee a minimum AUC of 0.98 was 200 on both

C1 for the top nine classifiers and C2 for all classifiers. By applying simple data fusion

and a window size of just 100 instances, we observe the same (or better) performance

as from a window size of 200 instances on C1 or C2 individually. So, from our fused

channel C3, a window size of 100 would be sufficient.

85

From the results, we can also determine the best classifiers for state detection for

vibration analysis of rotating machinery. Our results indicate that the five classifiers

that were best able to distinguish the class of interest (TOH, TOW or SWO) from

normal operation (BL) were G-RF100, L-RF10, E-5NN, K-2NN, A-C4.5O, while the

worst performing classifier was B-NB. These rankings were consistent across all three

channels. Overall, the RF classifier proved to be the most robust and consistent

classifier in this study. These results concur with preliminary empirical studies [54]

[82], which investigated the robustness of the RF algorithm for classification of noisy

and/or imbalanced data.

5.7 CHAPTER SUMMARY

This chapter defines a framework and approach to data fusion for MCM/PHM sys-

tems in inaccessible, unattended ocean systems. The proposed data fusion approach

has been partitioned into three levels: inter-sensor or fusion of data between het-

erogeneous sensors, intra-component or data fusion between homogeneous sensors,

and inter-component fusion which is performed at higher levels of the architecture to

provide an overview of the health of the system. At the inter-component and intra-

component levels of fusion, the performance and error rates of distributed classifica-

tion and expert systems must be carefully measured to determine the effectiveness of

these techniques.

The results of the experiments discussed within this chapter showed that data

fusion, even in a most naive and oversimplified form, provided more stable classifier

performance and higher correlations between runs than data from any single chan-

nel. In the upcoming chapters, we will analyze other data fusion approaches and

will consider data mining pre-processing techniques such as feature extraction where

86

necessary.

87

Chapter 6

Preliminary Analysis of Data Mining &

Sensor Fusion Techniques on Fan Data

6.1 INTRODUCTION

In this chapter, we evaluate and compare the three fusion techniques and the twelve

machine learning algorithms on combining and learning from homogeneous data ac-

quired from two vibration sensors mounted on a box fan. Each of the three fusion

approaches is representative of a different level of fusion. The techniques are applied

at different points in time after data acquisition: immediately after the raw data has

been gathered (data-level fusion), after features have been extracted from the data

(feature-level fusion), and after a decision has been made regarding the state of the

machine (decision-level fusion). The three fusion levels, the fusion techniques and the

machine learners were previously defined in Section 3.3.

In the two experiments described in this chapter, we implement the top three

blocks of the OSA-CBM architecture (refer to Chapter 2.2 for more details) and build

a simple MCM/PHM system for rotating machinery. In these studies, data acquisition

(DA) is done via a WaveBook Data Acquisition Unit, which is also used within the

data manipulation (DM) block to perform time synchronous averaging (TSA). In

addition to TSA, our DM block involves the Streaming Wavelet Transform (SWT) –

88

explained in Section 4.2.1 – for feature extraction and signal processing. Data mining

and machine learning techniques provide an avenue for automated interpretation of

the sensor data and problem classification, while sensor fusion techniques are needed

to combine data from multiple sources to get a complete, more accurate picture.

These techniques would work collaboratively within the SD and HA blocks to allow for

complete, tested and automatic interpretation of the raw data, and identify problem

states as they occur.

The experiments discussed in Section 6.2 analyze and compare the performance

of data-level, feature-level and decision-level fusion algorithms for intra-component

fusion of vibration data. For both experiments, we focus on distinguishing between

normal operation and a single faulty state (referred to as binary classification), thus

the output of our SD block can only be one of two values – normal or faulty. These

experiments demonstrate homogeneous sensor fusion of vibration data and demon-

strate the abilities of the three fusion levels to improve the ability of machine learning

algorithms to detect the orientation and operating state of a turbine. Detection of

multiple faulty states, or multi-class classification, has been left for future work.

6.1.1 Contributions

To the authors’ knowledge, little work has been done in comparing these levels of

sensor fusion based on analysis of experimental data or on studying sensor fusion

within an MCM/PHM system. The few studies comparing the performance of these

three fusion levels were specific to different application domains [128]. This research

is therefore not only unique in its domain, but in its use of experimental data to rank

the suitability of these three fusion approaches for this domain. Results presented

here provide useful insight into the performances of the various machine learning

algorithms and fusion techniques on distinguishing system state based on vibration

89

data preprocessed by a wavelet transform and lay the foundation for the experiments

presented in the subsequent chapters.

The remainder of the chapter is laid out as follows. Section 6.2 follows with

a description of the experiments conducted, the results of which are discussed in

Section 6.3. A summary of our findings and chapter conclusions are provided in

Section 6.4.

6.2 EXPERIMENTAL SETUP

These experiments compare different fusion and mining approaches for fusing and

interpreting vibration data gathered from a typical 50 cm 120V AC box fan. As the

researchers did not yet have access to vibration data from the ocean turbine at the

time this study was conducted, two identical accelerometers (model AC136-1A) were

glued to the outer casing of the box fan and readings were taken while the fan was

running in various states. A turbine is basically a large fan whose blades rotate at

approximately 60 RPMs. Although a fan runs at a much higher speed than a turbine,

the rotation of its blades produces different vibration signatures depending on varying

operating conditions, as would a turbine.

An IO-Tech Wavebook/516-E Data Acquisition Unit (DAQ) was used to record

the sensor data and perform TSA [90]. An important note is that the measurements

recorded from both accelerometers during these experiments were already synchro-

nized (i.e., ordered) and complete with no data points missing. Also, there was no

class imbalance, i.e. the number of data points which were normal was the same as

the number of faulty data points. Also, data imputation techniques [147, 48] may

also be utilized to fill in data which may have been lost during transmission and/or

because of sensor malfunction. Class imbalance and data imputation are considered

90

in later experiments.

6.2.1 Fan Experiment 1

For the first experiment (EXP1), measurements were recorded from the fan while it

was operating at 1010 RPMs in four different setups: standing upright (baseline),

tilted on a soft surface i.e. a hand (TOH), tilted on a hard surface i.e. a wall (TOW),

and slowed with an object i.e. a pencil (SWO). These four experiments correlate

to four possible scenarios while an ocean turbine is submerged – running normally,

tilted on its mooring line, tilted on a submerged object like a piling and obstructed

by debris. The baseline state is considered the normal class, while TOH, TOW and

SWO are the faults or problem scenarios that the data mining classifiers will try to

detect.

For each setup, data from the two accelerometers were sampled at 1000 Hz in 3

second bursts, producing a total of 3000 readings per burst. These accelerometers are

denoted as channels 1 and 2 (CH1 and CH2). Each experiment was repeated a total

of six (6) times, resulting in 18,000 measurements per experiment. The six runs for

each setup were combined resulting in 8 files = 2 channels x 4 setups.

6.2.2 Fan Experiment 2

The second experiment (EXP2) was conducted from the same two accelerometers on

the same fan, operating at 420 RPMs. Aside from a baseline state in which the fan

was allowed to run upright without obstruction, three faulty states were produced by

slightly percussing the side of the fan (PP), using the tip of a pencil to slow the fan

blades (SO), and pushing the same pencil further into the blades so that its distal

portions make contact with the fan thus producing a hard obstruction (HO). The PP

setup simulates the contacts of sharks to the turbine casing, while SO and HO relate

91

to the turbine blades being obstructed by debris.

Data from both accelerometers (CH1 and CH2) were sampled at 1000 Hz for 1

second for each setup, with each setup repeated four times. There were, therefore,

1000 readings per burst and 4000 readings per setup. The data set for this experiment

consisted of 8 files = 2 channels x 4 setups.

6.2.3 Pre-Processing and Fusion

Data level fusion (FT1) was performed on the raw accelerometer data by computing

the arithmetic mean of corresponding data points. That is, FT1(t) = CH1(t)+CH2(t)
2

.

FT1 was applied on the data from each of the four setups and each experiment. The

number of files after FT1 is 12 files = (2 channels x 4 setups) + (1 fused channel x 4

setups) for each experiment.

The data in all 24 files (12 files from each experiment) were passed through the

streaming wavelet transform (SWT) described in Chapter 4.2.1. For our purpose,

the transform is used to detect oscillations or vibration signatures. To find these

oscillations, the transform observes the transitions between pairs of data points at

a time, and outputs 1 if an oscillation is detected at that scale and time and 0

otherwise. The transform, therefore, produces one data point for every pair of data

points it examines, resulting in output files having half the number of lines as the

input, which reduces the amount of data that needs to be processed and/or stored.

This algorithm is simple, computationally fast and was found to be quite effective

in previous work [42]. The number of wavelet features produced by the transform

is equal to the number of resolution scales that the transform will examine, where

scale n corresponds to a wavelength of 2n. The number of scales is a parameter to

the wavelet transform process. For the 3000 data points contained within each file in

EXP1, wavelengths greater than 1024 (210) would not be meaningful as they would

92

only produce 1 value for the entire burst. 29 was selected as the largest wavelength

for EXP2 since it had only 1000 data points per file, and a wavelength of 1024 would

be too large. Therefore, the output of the wavelet transform on EXP1 and EXP2

had 10 and 9 binary features respectively, where the values for each feature could be

either 0 or 1.

After performing the wavelet transform and extracting the features from each of

the data files in each experiment, feature level fusion (FT2) was performed by taking

a union of all of the wavelet features from CH1 and CH2 for each experiment and

each setup. Let CH1i(t) represent the ith feature at time t for CH1. FT2(t) =

{CH11(t), CH12(t), ..., CH1n(t)} ∪ {CH21(t), CH22(t), ..., CH2n(t)} where n is the

number of features. So, for EXP1, the 10 wavelet features from CH1 were fused via

process FT2 with the 10 wavelet features from CH2 for each setup, producing 4 new

files, each containing 20 features. Similarly, for EXP2, the 9 wavelet features for

corresponding data points from each channel were combined. Counting the 8 files

from the individual channels, the 4 FT1 files and the 4 new files with the combined

features (FT2), EXP1 and EXP2 both have 16 data files = (2 channels x 4 setups)

+ (4 setups with FT1) + (4 setups with FT2).

A sliding window transform [91] with a window size of 100 was then applied to the

transformed data in each of the 16 data files for each experiment to reduce short term

variations in the signal. Initial experimentation described in the previous chapter

revealed that windowing improved the performance of data mining learners on this

data and that a window size of 100 was sufficient to do so. This transform was

implemented as a sum of the values for each feature over the length of the window.

To implement a sliding window transform with a window size of w, we sum the values

of the next w instances for each of the ten attributes; the value of each of the ten

attributes would therefore be between 0 and w.

93

The resultant sliding window transformed data files are used in place of the original

files for training twelve data mining learners. In a binary classification problem, the

goal is to distinguish between two states or classes. For our experiments, we intend to

distinguish a single faulty state from baseline, so we combined the four data files for

the BL setup (i.e., the baseline files for CH1, CH2, FT1 and FT2) with each of the

three faulty classes for the corresponding channel. BL represents our normal state,

while the faulty state is our class of interest. For EXP1, these faulty states are SWO,

TOH and TOW; for EXP2, the classes of interest are PP, SO and HO. Note that the

BL data file for EXP1 is different from the BL data file for EXP2. After combining

the files for classification, we have, for each experiment, a total of 12 datasets = 3

classes of interest x {CH1, CH2, FT1, FT2}.

Twelve data mining classifiers – see Section 4.4 – were then trained on each of

the 12 datasets to distinguish between BL and the class of interest. These classifiers

are available in the WEKA [67] data mining software package1. Each classifier was

built using one run of 5-fold cross validation. In 5-fold cross validation, each data

file is randomly partitioned into five parts, or folds, with the first four folds used to

train the data mining algorithm and the last fold held back as a test set. The cross

validation process is repeated four more times such that each fold serves as a test set

once. The results of all five folds are averaged to produce a single estimate.

For each instance within the data files, in addition to the predicted class, the learn-

ers output the probability of belonging to each class. Decision level fusion (FT3) was

performed on the classification results of CH1 and CH2 by averaging the probabilities

of membership for each of the two classes for that instance and selecting the predicted

class with the larger probability. Say, for example, that for a given data point in the

CH1 data file at time t, the probability of being faulty according to CH1 data is 0.65

1Available on http://www.cs.waikato.ac.nz/ml/weka

94

while the probability that the CH2 data point occurring at time t is faulty is 0.15. The

probability of being faulty for data point FT3(t) is 0.15+0.65
2

= 0.40. Since there are

only two classes, the probability of being normal for that data point is 1−0.40 = 0.60.

Since that data point has a higher probability for being normal, its predicted class is

BL, or normal.

The performances of each of the learners on each channel (CH1, CH2, FT1, FT2,

FT3) were measured in terms of the AUC, which is defined in Section 4.7. Results

are shown in Section 6.3.

6.3 EMPIRICAL RESULTS

In this section, we present the AUC values for each of the twelve classifiers on the

different setups and channels for the two experiments. These results, shown in Fig-

ures 6.1 and 6.2 for EXP1 and EXP2 respectively, will be used to compare our three

fusion approaches – data-level fusion (FT1), feature-level fusion (FT2) and decision-

level fusion (FT3) – to the results from individual channels (CH1 and CH2). We

hope to gather not only which level of fusion yields the best results, but also how

consistent these results are across multiple experiments. Both figures follow the same

general format.

In each figure, there are three graphs – one for each setup or fault within that

experiment. These graphs each contain twelve clusters of five vertical bars, where

each vertical bar represents a different channel and each cluster is a classifier. From

left to right, the five vertical bars represent results for CH1, CH2, FT1, FT2 and

FT3. The twelve clusters reading from the left are the C4.5 decision tree with tuned

parameters (C4.5N), Naive Bayes (NB), Multi-Layer Perceptron (MLP), RIPPER

(RIP), 5-Nearest Neighbors (5NN), Support Vector Machine (SVM), Random Forest

95

with 100 trees (RF100), Radial Basis Function Network (RBF), Logistic Regression

(LR), C4.5 decision tree with default parameters (C4.5O), 2-Nearest Neighbors (2NN)

and Random Forest with 10 trees (RF10). The height of each bar is the AUC value,

thus the maximum value is 1.

The scale of each graph has been modified for readability. For example, in the

TOH graph in Figure 6.1, the minimum value on the vertical axis is 0.975 compared

to 0 for the TOW graph since all of the AUC values for TOH were larger than 0.975.

Figure 6.1: Fan Experiment 1 - AUC per Learner and Fusion Technique

6.3.1 Results for Fan Experiment 1

Figure 6.1 shows the results of the first fan experiment (EXP1). Here, the results for

the three classes of interest (SWO, TOH, TOW) are presented as separate graphs in

that order from top to bottom.

96

For SWO, the classification performance for all classifiers on feature-level fusion

(FT2) and decision-level fusion (FT3) were better than data-level fusion (FT1), where

the difference in performance between FT2 and FT3 were within 0.001 AUC of each

other. Of all three fusion approaches on SWO data, FT1 performed the worst while

FT2 performed the best overall. On TOH data, FT1 performed the worst and FT2

performed the best overall. Also, for TOH, all classifiers achieved an AUC of 1 on

CH1 data and a minimum AUC of 0.999 on FT2, and performed better on FT2

and FT3 than on FT1. All three fused channels showed better results than any

individual channel (CH1 or CH2) on TOW data, with FT1 performing the worst and

FT3 performing the best. The poor performance of FT1 was likely due to its naive

implementation as a simple averaging. We will confirm this through experimentation

with different data-level algorithms in future work.

For both SWO and TOH, FT2 and FT3 outperformed FT1, while on TOW, FT1

outperformed all other channels. Overall, FT2 seemed to provide the most consistent

classification performances of the five channels, while FT3 did not outperform any of

the other two fusion channels for any of the three setups.

6.3.2 Results for Fan Experiment 2

The results for the periodic percussion (PP), light obstruction (LO) and hard ob-

struction (HO) setups for EXP2 are shown in Figure 6.2 from top to bottom.

For the PP setup, all classifiers achieved an AUC of 1 across for all three fused

channels. Classifier performance when distinguishing LO was worse than that for

PP. While FT1 performed better than CH2 data on LO, FT2 was the best and most

stable fusion approach for that setup. On HO data, FT1 provided the worst results

of all three fusion channels, while FT2 yielded the most consistent results.

We found that overall, FT2 outperformed individual sensor channels CH1 and

97

Figure 6.2: Fan Experiment 2 - AUC per Learner and Fusion Technique

CH2. A ranking of the overall performances of the three fusion levels on both ex-

periments in decreasing order would yield: feature-level fusion (FT2), decision-level

fusion (FT3), and then naive data-level fusion (FT1).

In terms of the learners, we find that using FT2 or FT3, the C4.5N, RF10 and

RF100 models all produce similar results. The 2NN and 5NN models also behave

similarly.

6.4 CONCLUSION

In this chapter, we compared the performance differences of twelve data mining clas-

sifiers on data fused at the data-level, feature-level and decision-level. Data were

collected from two accelerometers mounted on a typical household box fan. Based

98

on the results from both experiments, we noted that feature-level fusion yielded the

most stable results and the greatest improvement overall compared to the other fused

channels. Feature level fusion also yielded more consistent results than individual

channels in most cases.

In the next chapter, we continue our experiments on data gathered from our test

bed (the dynamometer). This provides the opportunity to analyze said techniques

on data from a machine that operates more like the turbine than the fan does.

99

Chapter 7

State Detection From Imperfect Data

7.1 INTRODUCTION

In the previous chapters, we conducted experiments on vibration data sampled at

1,000 readings per second from two sensors mounted on a household fan. This was a

simplified version of the MCM/PHM problem with which we are faced but preliminary

findings from those experiments helped shape the direction of the research presented

in this chapter and the next. The data used in all remaining case studies were gathered

from the six vibration sensors installed on the dynamometer testbed, which behaves

more similarly to the ocean turbine than the house fan, thus producing more realistic

datasets. This chapter considers the following:

• Due to the nature of the Streaming Wavelet Transform (SWT) algorithm, at

certain points in time, some of the values within the output vectors are not

yet computed, thus resulting in missing values. Roughly eleven percent of the

values produced by the wavelet transform from bursts of 20,000 instances will

be missing.

• Three times more sensors and five times faster sampling means that there is 15

times more data being collected per second from the dynamometer than from

the fan. Based on the quantity of data available in the fan experiments, at most

100

18 features could be extracted (using the wavelet methodologies described in

Chapter 4) from both sensor channels; however, using the dynamometer, feature

level fusion of the six sensor channels would produce up to 72 wavelet features

(12 per channel) if the wavelet transform was applied on just a one second

burst of data. With four times more features, we consider feature selection as

a means for reducing the quantity of data that a learner would need to process

by removing redundant or unnecessary features.

Accelerometers mounted on the dynamometer record the degree of vibration of

different parts of the machine. Changes in the underlying pattern of these vibration

signals typically relate to some type of event, such as a change in speed, development

of faults or the presence of wear or erratic behavior. The streaming wavelet transform

algorithm was implemented and used to preprocess data for the first two out of three

case studies presented in this chapter. This third case study employed the Short Time

Wavelet Transform with Baseline-Differencing (STWTB). As before, classification

models were generated within WEKA. Descriptions and parameter settings for the

various classifiers were given in Section 4.4 and those for the wavelet algorithms were

provided in Section 4.2.

7.2 CONTRIBUTIONS

The main contributions of this chapter are three case studies: the first (Section 7.3)

concerns missing data while the second and third (Sections 7.4.1 and 7.4.3) revolve

around feature selection. To the authors’ knowledge, this research is the only such

work which investigates missingness to this extent in the context of reliability analysis,

and more specifically, to ocean turbine MCM/PHM. Also, it is the only known work

applying feature selection techniques to ocean turbine vibration data and comparing

101

the performances of feature selection techniques for enabling reliable state detection.

7.3 CASE STUDY 1 – MISSING DATA

Construction of reliable classification models from imperfect data is one of the biggest

challenges in domains where data imperfections are prevalent. Incompleteness, which

is one form of data imperfection, occurs whenever a source such as a sensor, transducer

or human observer provides insufficient information about the phenomenon being

observed [44]. This missingness hampers the decision making (i.e., classification)

process as decisions are generally dependent on full or complete information [101].

Learning from data containing missing values has been the target of many research

efforts both within our team [85, 147] and by other experts [164]. Not many of

these studies, however, involve datasets where missingness is a natural characteristic

of the data and is not randomly injected into the data. This case study revolves

around just that – three sets of data where missing values are a direct consequence

of the preprocessing algorithm used to generate the data. Prior to imputing or filling

in these missing values, we will utilize known machine learning techniques to build

classification models from this data and evaluate their abilities to learn from the data

in its natural state. We then generate models after the missing values in the data

are imputed using two very different techniques – Mean Imputation and Expectation-

Maximization (EMI) Imputation. We perform imputation to discover which learners

are affected solely by data missingness. Both techniques were described in Section

4.6.

This case study investigates the robustness of various prominent machine learning

algorithms trained on imperfect data to distinguish between operating states of an

ocean turbine prototype. The study involves three sets of experimental data, each

102

gathered from the six accelerometers mounted on the dynamometer test bed. Section

7.3.1 describes these three experiments. Recall from Chapter 2 that sensor channels

are numbered relative to prime mover MTRX, with the leftmost sensor being channel

1. This sensor configuration is the same across all three experiments and the sensor

to channel correspondence is likewise consistent.

For all experiments, we selected drive-shaft rotational speeds within the range of

52.5 and 73 revolutions per minute (RPM) which were experimentally known to avoid

resonant frequencies of the dynamometer. An ocean turbine would typically operate

between 30 and 60 RPM, so these speeds represent operation toward maximum rated

RPM.

Since we have complete control over sampling and experimental conditions, an

equal amount of data was collected for normal vis-a-vis faulty states for all experi-

ments, resulting in a balanced class distribution. During a field deployment, the time

spent in some failure mode will be less than that spent in normal operation, resulting

in data exhibiting class imbalance. Experiments presented in the next chapter concern

imbalanced datasets. A need for synchronizing vibration signals to other waveform

signals like voltage and phasor measurements on a live turbine may also be required

[133]. Missing data values in the raw waveforms are possible due to packet loss during

transmission, sensor malfunction or latencies introduced by separate DAQ’s operating

in parallel. These will require some form of data fusion (i.e., ordering) of waveforms

to shaft position. Even so, data imputation techniques [147] might be necessary to

fill in these missing data values.

103

7.3.1 Experimental Design

Experiment A

Eight consecutive bursts (4 seconds each) were sampled from the dynamometer with-

out interruption and with SFTA turning at 64 RPM to develop a baseline waveform

(BL). We then introduced the first of two simulated faults by lightly percussing the

metal case of the GBXA component with a steel tip ball peen hammer. This hammer

was equipped with an accelerometer bound to channel 7 whose signal will be ana-

lyzed in future work. Percussion proceeded at approximately once per second. This

scenario is denoted as SH, for soft hammer. The second faulty scenario was similar to

the first with the exception that the impact of the hammer was harder than in the SH

case. We label this case as HH, for heavy hammer. These two scenarios were meant

to simulate repeated impact from submerged debris or marine animals, or from bolts

tumbling in the drive train. The vibration signatures read during a shark attack, for

example, could be similar to those from the SH or HH experiment. We collected eight

bursts, totaling 32 seconds of data, from each of the six sensor channels and for each

faulty scenario.

Experiment B

The dynamometer was again allowed to run without interruption with SFTA rotating

at 52.5 RPM to develop a baseline (BL). After sampling the eight bursts of BL data

at that speed, the procedure for acquiring the BL signal was repeated twice – once

at 64 RPM and the second time at 73 RPM. The soft hammer (SH) experiment from

Experiment A was repeated at each of the three speeds, so that for each speed, we

have a pair of corresponding BL and SH signals.

104

Experiment C

The baseline signal for Experiment C was acquired with zero percent resistive load, as

in Experiments A and B, and SFTA turning at 50 RPM. In this experiment, we wish to

assess vibrations that result from application of a resistive load of forty percent, which

creates counter-torque. This is similar to the phenomenon that could be experienced

when powering appliances or on-board electrolysis devices. The scenario where the

load was applied is considered the abnormal or red state, while data recorded under

no load comprises the BL class.

7.3.2 Pre-Processing

The streaming Haar wavelet transform discussed in Section 4.2.1 was implemented

then applied separately to each set of data in all three experiments to convert the

time series of amplitude readings (in millivolts) into a time series of resonance vectors.

There were 8 bursts× 6 channels× 3 setups = 144 files for Experiment A, 8 bursts× 6

channels × 6 setups = 288 files for Experiment B and 8 bursts × 6 channels × 2 setups

= 96 files for Experiment C. Each data file output by the Haar wavelet transform

contains 10,000 rows, or half of the original number of rows in each of the files prior

to applying the transform. This halving occurs during a down-sampling phase of

the wavelet transform, where every other instance in the data file is eliminated or

removed at the first level of this transform as shown in Figure 7.1. In this figure,

we demonstrate the wavelet transformation of 16 instances and show how wavelet

features are extracted from the raw signal. The dark arrows represent the extraction

of the detail from the previous level; the dashed arrows represent the approximation

from the previous level. Approximation values are shown in the gray columns and

detail values (each of which is a feature in the actual output vector of the transform)

105

are in the white columns.

Figure 7.1: Example of Applying Haar Wavelet Transform Showing
Missing Values

In the streaming Haar wavelet transform, we take the first pair of instances, i.e.

instances 0 and 1 in the diagram. Recall from Section 4.2.1 that the average of these

two values forms the approximation for the first level of the transform ((−0.011368 +

−0.005646)/2 = −0.00851) while half of the difference ((−0.011368−−0.005646)/2 =

−0.00286) is the first level detail. The first level approximation calculated from

instances 0 and 1 is then paired with the approximation calculated from the first

level of the consecutive pair of instances (instances 2 and 3) and the approximation

and detail are evaluated for the second level. This detail value, which can only be

calculated after the first four time instances have elapsed, will be the second value in

the feature vector for instance 3. Even numbered instances will be discarded since

the entire feature vector for instance 2k will have the same values as the following

106

instance 2k + 1. This process is repeated until all possible calculations using the

available data have been made.

Consider the example from Figure 7.1 to observe how the missing values and

omitted instances arise. First, note that all even numbered instances have no values

for either features or approximations. This is because the Haar wavelet only works

on pairs of values: it can only be calculated after every two instances, and because

the timestamps start with 0, all even-valued instances do not have data. Also observe

how instance 1 has only a single feature, while instances 3 and 5 have two features

and instances 7, 9, 11, and 13 have three. This is because for the earlier instances,

not enough data has yet been acquired for these deeper features to be calculated.

These missing values are denoted in the output file (a sample of which is shown in

Figure 7.2) by question marks (‘?’). Overall, the first 2k−1 − 1 instances will have

a missing value for feature at depth k. This means that some instances are missing

many values while others are missing few or none; classification with this data must

take into account both the quantity and range of missing values. Finally, note that

for the deeper features, adjacent instances often share a feature value. This is because

these values are only updated when enough new information has arrived to recalculate

that value; prior to that, the existing value is used.

The maximum number of features n that will be produced by the transform when

there are m instances in the raw file is calculated by n = floor(log2m). For each raw

file containing 20,000 instances (5000 Hz for 4 seconds), we therefore can get no more

than 14 = floor(log2m) features. So, in each row of the output files for Experiments

A, B and C, there are 14 wavelet features where each feature refers to one frequency

resolution. Since the number of samples are identical for all data sets, the proportion

of missing values will also be the same. Out of 140,000 values in each data set, 16,369

or 11 percent of them are missing.

107

Figure 7.2: Sample Output of Wavelet Transform

7.3.3 Classifiers

The case study involves six widely used classifiers, listed below. Also described below

is the approach each classifier takes when a model is generated within WEKA from

data with missing values.

• Naive Bayes (NB) – In WEKA, the Naive Bayes classifier simply ignores missing

values during training and classification.

• Multi-Layer Perceptron (MLP) – Like NB, the MLP ignores missing values

during training and prediction.

• k-Nearest Neighbor (5NN) – The maximum possible distance is assigned for an

attribute during distance computation if there is a missing value encountered

in at least one of the instances being compared. The 5NN model (where k =

5) was used in these study.

• Support Vector Machine (SVM) – In the WEKA implementation, missing values

are replaced with the mean (for numeric attributes) or the mode (for nominal

108

attributes) before building the model.

• Decision Tree (C4.5N & C4.5O) – For this learner, an instance with a missing

value at an attribute is split up and fractions of it are sent along each branch pro-

portional to how many instances with observed values went down each branch.

For example, if there is a binary split on an attribute and 80% of the observed

instances go along the first branch (and thus 20% go down the second branch),

then the instance with missing values is added to both sets, having a weight of

0.8 (assuming the starting weight was 1.0) in the one branch and a weight of

0.2 in the other. These fractional weights may be further split if the instance

has additional missing values.

• Logistic Regression (LR) – Like the SVM, the WEKA implementation of the

Logistic Regression replaces missing values with global means/modes.

7.3.4 Classification

For each experiment, we distinguish between a normal state and a single abnormal

state (which may be a fault as in Experiments A and B or just a state of interest as

in Experiment C), which is a simplified state detection / fault identification problem

in the condition monitoring context. To prepare our datasets for each binary classi-

fication experiment, we combine the wavelet output from the normal state with that

from the given faulty state for the corresponding channel, burst and experiment. After

merging these files, the resultant file will contain 20,000 instances: 10,000 instances

from each class (normal and faulty). For Experiment A, we will have 96 such files =

{SH,HH}×{CH1, CH2, CH3, CH4, CH5, CH6}×{BL}×8 bursts. There will be

144 files = 3 speeds ×{SH}×{CH1, CH2, CH3, CH4, CH5, CH6}×{BL}×8 bursts

for Experiment B and 48 files = {40%Load}×{CH1, CH2, CH3, CH4, CH5, CH6}×

109

{BL}×8 bursts for Experiment C. Multi-class classification will be examined in future

work.

We used WEKA to train the learners on each data file and to evaluate their ability

to correctly identify which of the 20,000 instances in each file is red (abnormal) or

green (normal) using the performance measures discussed in the next section.

Ten runs of ten-fold cross validation is used to build and evaluate classification

models from each dataset. In each run of 10-fold cross validation, the data file is

randomly partitioned into ten parts, or folds, with the first nine folds used to train the

data mining algorithm and the last fold held back as a test set. The cross validation

process is repeated nine more times such that each fold serves as a test set once. The

results of all ten folds are averaged to produce a single estimate for that run. Since

this is a random partitioning, classification results may differ slightly if the case study

is repeated. To minimize this variance and obtain more reliable results, we perform

ten runs of this cross validation process and average the results from all ten runs.

After obtaining these results, we apply each of the data imputation techniques

(Mean Imputation and Expectation-Maximization Imputation) to each of the wavelet

output files and follow the same steps as before to prepare the datasets for binary

classification. We again use ten runs of ten-fold cross validation to build and evaluate

the classification models generated by each learner. The results are averaged across

these ten runs.

7.3.5 Performance Measures

We will use the False Negative Rate (FNR) and False Positive Rate (FPR) as two

of the performance measures in this study [130]. We have omitted the TNR and

TPR since they can easily be computed from the FNR and FPR. Given the FNR,

the TPR is calculated by subtracting the FNR from 1. Similarly, TNR = 1− FPR.

110

Considering the balanced distribution of the classes in the study, the accuracy will

be included in the results as a third performance measure.

For high assurance systems, such as ocean turbines, an optimal fault detection

module must minimize the FNR while maintaining an accuracy of at least 0.99. False

negatives are analogous to faults that go undetected, which can result in damage

to the turbine and the need for unscheduled maintenance and repair. Classification

models which do not meet these requirements are therefore sub-optimal and will be

considered inadequate for our needs.

7.3.6 Results

The summarized classification results for each classifier on the unimputed data from

Experiments A, B and C are presented in Figures 7.3(a), (b) and (c) and discussed

in Sections 7.3.6, 7.3.6 and 7.3.6 respectively. For each experiment, we present a

table showing the FPR, FNR and Accuracy for each classification model averaged

across all eight bursts. Each table contains three columns per abnormal class, one for

each performance measure, and one row per learner – Naive Bayes (NB), multi-layer

perceptron (MLP), 5-Nearest Neighbors (5NN), Support Vector Machine (SVM), Lo-

gistic Regression (LR) and Decision Tree with tuned and default parameters (C4.5N

and C4.5O). Results in each table are sorted by accuracy, with the highest accura-

cies (best performers) listed first. The performance measures are the values averaged

across the eight bursts and six channels. Ideal classification models are those which

have a FPR below 0.01 and accuracy above 0.99. Higher accuracies allow for greater

confidence in the predictions made by these models. FPR and FNR values below 0.01

and accuracy values above 0.99 are highlighted in gray.

111

Figure 7.3: Average Classification Results Per Learner

Experiment A

This experiment determines whether our classification models can detect hard or soft

impacts based on the vibration data from six sensor channels. Figure 7.3(a) shows the

results of this experiment. We can quickly see from this table that both decision tree

classifiers were able to distinguish both percussion states (hard hammer HH and soft

hammer SH) with a satisfactory degree of accuracy. We also observed that by tuning

the parameters of the decision tree (C4.5N), we were able to gain a slight performance

112

increase over the decision tree model built using default parameters (C4.5O). The

C4.5N model had a FPR of 0.00174 on HH and 0.00254 on SH meaning that on

average, there were 17 false alarms (or, false positives) and 9,983 correctly identified

faulty instances. This is significantly better than the 5-NN model which produced on

average 1,190 false alarms and 1,884 missed or undetected faulty instances. In the

live system, this could be equivalent to repeated impact from a submerged object or

a marine animal where roughly 19% of the impacts go undetected; this can obviously

be catastrophic.

Experiment B

The results for Experiment B are shown in Figure 7.3 (b). This experiment involved

three baseline signals acquired at different speeds (52.5, 64 and 73 RPM). At each

speed, we also acquired data for one faulty state (soft hammer SH). Here, the goal is

to determine if abnormal states can still be detected with a high degree of confidence

regardless of the rotational velocity of the dynamometer and by extension, the turbine.

We find again that the two decision tree models yielded acceptable results. The 5NN

model again had the worst performance.

Experiment C

For the third experiment, Experiment C, Figure 7.3 (c) shows similar results as the

other two experiments. The MLP classifier, which performed third best overall for all

three experiments is seen here to yield acceptable false negative rates and accuracy

values. As before, both decision tree models were able to detect the addition of a

counter-torque or load to the dynamometer with a high accuracy.

The explanation for the poor performance of the 5NN in all three experiments may

lie in the way the algorithm handles missing values in WEKA. 81.92 % of the instances

113

in each binary classification file containing 20,000 instances (10,000 instances from

the normal class and 10,000 instances from the abnormal class) have at least one

missing value, of which the older instances in the batch will have a higher degree

of missing values due to the nature of the algorithm (refer to Section 4.2.1). The

nearest neighbors implementation in WEKA works by assigning a maximum distance

for attributes with missing values. If the instance to be classified has multiple missing

values, there is a greater likelihood for it to be misclassified since the instances that

best match may be assigned greater distances due to the degree of missing values,

and thus, never be selected as the nearest neighbor(s).

7.3.7 Data Imputation Results

To confirm that the behaviors of these learners are due to the missing values in the

data, we present the results after imputing these missing values in the data from all

three experiments using MI and EMI. These results are shown in Figures 7.4, 7.5 and

7.6.

Figure 7.4: Average accuracy by learner before and after imputing data
for Experiment A - BL vs HH and BL vs SH

The three bars in each cluster of each graph represent the accuracy values obtained

from the original dataset (labeled None), Expectation-Maximation Imputation (EMI)

114

Figure 7.5: Average accuracy by learner before and after imputing data
for Experiment B - BL vs SH where BL and SH recorded 3 times at
different speeds

and Mean Imputation (MI) respectively. The first two graphs (Figures 7.4 and 7.5)

show results for the HH and SH experiments (Experiment A). Figure 7.5 presents

the results for Experiment B, with the first graph being the lowest speed, the second

graph being the medium speed and the last graph the highest speed. The bottommost

figure presents the results for Experiment C.

From the results, we find that the MLP, LR, SVM and NB models built on EMI

imputed data performed worst while those built on MI imputed data were almost as

good as those built on the original unimputed data. This is contrary to results found in

previous studies comparing MI and EMI on other datasets [83] and is counterintuitive

considering the relative lack of sophistication of the MI algorithm. For the C4.5N

(decision tree with tuned parameters), C4.5O (decision tree with default WEKA

parameters) and 5NN, both imputation techniques seemed to perform equally well,

115

Figure 7.6: Average accuracy by learner before and after imputing data
for Experiment C - BL vs 40% Load

with 5NN models greatly benefiting from the lack of missing values. Overall, the MI

technique seems to be the better of the two imputation techniques for these datasets.

7.4 CASE STUDY 2 – FEATURE SELECTION

This section concerns feature selection on wavelet transformed vibration data. Wa-

velet transforms, which are becoming increasingly popular as a vibration analysis

technique, are applied in this case study on vibration signals gathered from a dy-

namometer to convert the time series of raw vibration readings into a time series of

resonance vectors. This dynamometer is the test bed for an ocean turbine prototype,

which demands an automated monitoring solution such as an MCM/PHM system

due to its complexity, unpredictable environment and other factors.

Each component of the data vector produced by the wavelet transform is coded as

a feature. Feature-level data fusion [40] is applied to the wavelet output to combine

the data from all vibration sensors into a single file for each experiment. This gives

the advantage of having a unified view of the data and possibly improved classification

performance.

In this section, we empirically investigate several feature selection techniques and

116

gauge their effects on the performances of some widely used classifiers on experimental

data gathered from the dynamometer. From the results of our case studies, we hope

to determine which feature selection technique(s) best identify the optimal subset

of features that will enable a classifier to distinguish abnormal or faulty states from

non-faulty states either as good as or even better than it would on the complete

dataset. We also experiment with different sizes of the feature subsets to determine

the optimal number of features to be selected. The results with and without feature

selection are presented. During our experiments, we noted that the speed of some

classifiers suffered due to the size of the entire dataset; this also inspired the need for

feature selection.

7.4.1 Feature Selection on SWT Data

Thirty-two seconds of data were sampled from the dynamometer for this experiment

the same way as in Experiment A of the previous section. As with that experiment,

there were three scenarios baseline (BL), soft hammer (SH) and hard hammer (HH).

As before, the Streaming Haar Wavelet Transform (SWT) was applied to that data

to convert the time series of amplitude readings (in millivolts) into a time series of

resonance vectors. The output of the Haar wavelet transform are 18 files (6 channels

x 3 scenarios) each having 80,000 rows. In each row, there are 14 wavelet features

corresponding to the frequency amplitude at different times and frequency resolutions.

As previously noted, due to certain optimizations made for operating on streaming

data, many instances have missing values.

In this study, feature level fusion is done by performing a union of the features

across all six sensor channels for each setup/experiment, i.e. BL, SH and HH. The

14 wavelet features from channel 1 were combined with the 14 wavelet features from

channel 2 for each setup and so on, producing 3 new files, each containing 84 features.

117

The wavelet features for each channel and the BL scenario were combined with those

for each of the faulty classes, i.e. SH or HH. More specifically, the 80,000 instances

of BL were appended to the end of the SH data file, and then these same 80,000

instances for BL were appended to the data file for HH. After doing this, we have 2

files = {SH,HH} × {BL}. By combining the files in this manner, we prepare our

dataset for a binary classification problem, meaning that each classifier will only need

to distinguish between two classes at a time per channel – the normal state (BL) and

a single fault.

We used the WEKA data mining tool to train seven learners (namely, Naive Bayes

(NB), multi-layer perceptron (MLP), 5-Nearest Neighbors (5NN), Support Vector

Machine (SVM), Random Forest with 100 trees (RF100), Logistic Regression (LR)

and Decision Tree with default parameters (C4.5O)) on each data file and evaluate

their ability to correctly identify which of the 160,000 instances in each file is red

(faulty) or green (normal). One run of five-fold cross validation with feature selection

(as described in Section 4.8) is implemented and applied to each of the two datasets

(combined file with BL vs. HH and combined file for BL vs. SH) while building

each classification model. For each feature selection technique, we build classification

models based on datasets constructed using only the top 3, 4, 5, 7 and 10 wavelet

features chosen by that technique. We also built classification models from both files

using all 84 features, i.e., no feature selection. The AUC is used as the performance

measure.

7.4.2 Results

The classification results for each learner are shown in Figure 7.7. In the figure,

there are seven charts, one for each machine learner – Naive Bayes (NB), multi-

layer perceptron (MLP), 5-Nearest Neighbors (5NN) Support Vector Machine (SVM),

118

Random Forest with 100 trees (RF100), Logistic Regression (LR) and Decision Tree

(C4.5O). Each graph contains ten clusters of bars. The first eight bars represent the

results for the eight feature selection techniques while the last group (labeled “None”)

shows that classifier’s performance when no feature selection is performed. Within

each of the first eight clusters, there are five bars representing the number of features

n used to build the model. In order of appearances, these values of n are 3, 4, 5, 7

and 10.

From the graphs, the difference in performances across the different combinations

of feature selection technique and classifier is quite evident, especially in the cases of

Naive Bayes, LR, MLP and SVM where Chi-squared and Information Gain yielded

the worst results. All classifiers except 5NN built perfect models (i.e. AUC of 1) on

the dataset containing all 84 features. This information is shown in the graphs as the

right-most bar.

For ease of analysis, we list the number of features and the feature selection

technique(s) which yielded the best performance per classifier on our dataset in Table

7.1. In this table, we include the AUC that was obtained by that classifier on the

reduced set of features selected by the feature selection technique. We found that by

selecting just the top 3 features using either the Information Gain (IG) or Chi-squared

(CS) filters, 5NN, C4.5O and RF100 were able to achieve perfect results, which in the

case of 5NN was better than its performance on the dataset containing all features.

Note that these two techniques had the opposite effect on the NB, LR, MLP and

SVM classifiers as previously observed.

7.4.3 Feature Selection on STWTB Data

The baseline signal for this study was acquired with 45% resistive load and SFTA

(the dynamometer drive shaft) turning at 25 RPM. Data was also acquired with a

119

Learners No. of Features FS Technique AUC

NB 10 PRC 0.999998

MLP 7 PRC 0.999998

5NN 3 IG/CS 1

SVM 10 KS 0.998354

RF100 3 IG/CS 1

LR 10 KS/Dev 0.999108

C4.5O 3 IG/CS 1

Table 7.1: Summary of Feature Selection Techniques Per Classifier

90% resistive load applied at the same RPM and then with 45 and 90 percent load

at 50 RPM. Data gathered at 25 RPM will be used to generate the classification

models used in this study; these models will then be tested against the data collected

at 50 RPM. The change in load is what we aim to detect and the loads are therefore

coded as classes. We test against a different RPM here to ensure the robustness of

these techniques in varying operational conditions (such as speed) since typically the

speed of the turbine will vary during operation based on the flow velocity of the ocean

currents.

Data from the accelerometers were sampled at 5,000 Hz for 4 seconds for each

experiment, producing a total of 20,000 readings per experiment. These accelerome-

ters are denoted as channels 1 through 6 (CH1, CH2, . . . , CH6) throughout this case

study. The raw data consisted of 24 files = 6 channels x 2 loads x 2 speeds. Following

feature-level fusion, this became a single data file for each combination of load and

speed (e.g., four in total).

For this experiment, four machine learning techniques (Naive Bayes, 5-Nearest

120

Neighbors, Decision Tree with tuned parameters – C4.5N – and Logistic Regression)

were trained to detect the underlying patterns in the vibration signatures and to

predict the state of the machine. Seven models were built for each machine learner

(or classifier) by training the classifier on the 78 features fused from 25 RPM data

and then from just the top 2, 4, 6, 8, 10 and 15 features selected from that dataset

by five feature selection techniques (AUC, Information Gain, Chi-squared, PRC and

Signal-To-Noise). The classification accuracy (percentage of correctly labeled test

instances) for all learners are presented in the next section.

7.4.4 Results

Table 7.4.4 shows the performances of models built during these experiments on the

25RPM data when evaluated on the 50RPM data. Each of the four rightmost columns

represents the accuracies obtained by an individual learner. These learners are the

5-Nearest Neighbors (5NN), Decision Tree (C4.5N), Naive Bayes (NB) and Logistic

Regression (LR). The first row of the table are the results when all features were used

(no feature selection). The remainder of the table is divided into five sections where

each section shows the results per feature selection (FS) technique and contains six

rows; these rows present the results when 2, 4, 6, 8, 10 and 15 features were selected

using that FS technique.

From the results obtained, we found that the AUC, Chi-squared (CS) and Infor-

mation Gain (IG) techniques all produced the same feature rankings, and thus, the

same performances for all four learners. The top 8 features selected by these tech-

niques were sufficient to reproduce a perfect 5NN model. Of all the feature selection

algorithms, these three yielded the best Decision Tree models using just 4 features.

It is of note that unlike any other learner, the Decision Tree performed worse built

using a reduced feature set (even when IG is used to select the features) than when all

121

Table 7.2: Classification Accuracies per Feature Selection Technique,
Learner and # of Features

Technique # of Features 5NN C4.5N NB LR

None All 1 0.90493 0.891222 0.996573

AUC

2 0.967398 0.785809 0.914424 0.951207

4 0.980728 0.868492 0.895781 0.977962

6 0.998365 0.813097 0.502452 0.980854

8 1 0.847554 0.50132 0.991889

10 1 0.847554 0.801339 0.952779

15 1 0.847554 0.805301 0.903986

CS

2 0.967398 0.785809 0.914424 0.951207

4 0.980728 0.868492 0.895781 0.977962

6 0.998365 0.813097 0.502452 0.980854

8 1 0.847554 0.50132 0.991889

10 1 0.847554 0.801339 0.952779

15 1 0.847554 0.805301 0.903986

IG

2 0.967398 0.785809 0.914424 0.951207

4 0.980728 0.868492 0.895781 0.977962

6 0.998365 0.813097 0.502452 0.980854

8 1 0.847554 0.50132 0.991889

10 1 0.847554 0.801339 0.952779

15 1 0.847554 0.805301 0.903986

PRC

2 0.5 0.4917 0.689009 0.5

4 0.5 0.4917 0.688286 1

6 0.5 0.4917 0.500252 1

8 0.5 0.4917 0.993901 0.983558

10 0.5 0.4917 0.984123 0.987739

15 0.506791 0.4917 0.670649 0.999874

S2N

2 0.5 0.798447 0.571963 1

4 0.5 0.4917 0.570202 1

6 0.5 0.4917 0.563663 1

8 0.608463 0.4917 0.890751 1

10 0.964569 0.4917 0.88374 0.989751

15 1 0.4917 0.84243 0.908325

122

78 features/attributes were used. This makes sense considering that the Decision Tree

algorithm performs its own feature selection, so, when presented with all features, it

can determine the optimal subset of features to construct a model. Also, the feature

ranking produced by the IG ranking may be different from the feature ranking in

the Decision Tree, and thus using IG as a feature ranker may yield different results

than using the Decision Tree to select its best features from the entire feature set.

IG as a feature ranking technique considers each attribute’s individual contribution

to the entire dataset while the IG-based feature selection step that is inherent to

the Decision Tree construction process ranks attributes based on how they perform

together. Given m instances in the training set, the IG feature ranker evaluates each

attribute a based on all m instances while the Decision Tree evaluates that attribute

on the subset of instances that fall within the current branch of the tree.

The NB learner gave near perfect results when trained on a subset of the fea-

tures selected using the PRC technique with 8 features being the optimal number

of features. The LR learner built a perfect model from just 2 features selected by

the S2N technique. The models these two learners built on the datasets using these

reduced feature spaces yielded better results than those built using all features. The

NB model was as much as 10% better on the dataset containing just 8 features than it

was on the dataset with all features. The false positive rate (FPR), or the percentage

of false alarms, decreased from 21.46% to just 0.26%. In terms of an ocean turbine,

false alarms cause unnecessary system shut down and maintenance trips (resulting in

a loss of time, money and uptime).

Overall, 3 out of the 4 learners in this study stand to benefit from feature selection;

the fourth learner (the Decision Tree) suffered no major loss in performance. While

the number of features are small in this study, note that this number differs according

to the window size of the wavelet transform. In future studies, we will experiment

123

with different window sizes and how these affect our results. Also, although we did not

bench test the evaluation speeds of each of our models, we realized better evaluation

times for the 5NN model when using the reduced set of features than with all features.

Considering the quantity of data that would be analyzed per sensor within a minute

(5,000 Hz × 60 seconds = 300,000 data points) on a deployed ocean turbine, these

time savings would free up computing resources for other processes involved in the

MCM/PHM system such as prognostics and system advisory generation.

7.5 CONCLUSION

This chapter presented three case studies which investigate the ability of different

machine learning techniques to build reliable classification models on experimental

data gathered from a dynamometer. This dynamometer is a test bed for the drivetrain

of an ocean turbine prototype, and experiments conducted on data gathered from it

reveals invaluable insight needed for developing a data-driven MCM/PHM system for

the turbine.

From the three experiments in the first case study, which revolved around ana-

lyzing learner behaviour on data with missing values, we found that the decision tree

learner was able to consistently identify abnormal states with the greatest degree of

accuracy and confidence. An interesting note is that on the unimputed data, the near-

est neighbor model performed the worst of the seven classifiers on all experiments.

This learner was shown in [72] to have an overall good performance, and even out-

performed decision tree models in some of those studies. This very point stresses the

importance of experimenting with multiple machine learning techniques to determine

the optimal approach for different applications and datasets.

The last two studies compared the performances of several machine learners when

124

trained on all features against their performances when trained on a subset of n

features selected by different feature selection techniques. Features were extracted

using the Streaming Wavelet Transform (SWT) for the first of these two studies and

via the Short Time Wavelet Transform with Baselining (STWTB) for the second.

From the results, it is clear that learners respond differently to some feature selection

algorithm than they do others. Findings from the SWT feature selection case study

showed that the 5-Nearest Neighbors, Random Forest and Decision Tree algorithms

were able to build perfect models using just the 3 most important features (3.33% of

the total number of features) selected by either the Information Gain or Chi-squared

techniques. On the more complex study using a test set acquired at a different

rotational velocity than the training set, the Decision Tree no longer fares as well as

it did in the previous study but 5-Nearest Neighbors still yielded perfect models using

the top 8 features (10.25% of the feature set) selected by the same two algorithms.

In the next chapter, we will employ this STWTB implementation again for prepro-

cessing the raw vibration waveforms. This STWTB approach was found to produce

robust models even when the current environmental or operating conditions differ

from what they were when the training data was first acquired. The next chapter

considers another type of data imperfection in form of class imbalance, a known issue

in condition monitoring applications.

125

Figure 7.7: AUC per Learner and Feature Selection Technique

126

Chapter 8

MCM/PHM In The Presence of Class

Imbalance

8.1 INTRODUCTION

Because of the expenses associated with developing the ocean turbine and its dy-

namometer (designed to test components of the turbine), there are constraints placed

on the types of system tests that can be conducted. All tests must be unobtrusive

and cannot in any way damage the machines. This means that certain types of fault

scenarios, such as a bent shaft, bad bearing assemblies or an imbalanced rotor, may

never be modeled on the dynamometer or the turbine itself; it may also take weeks,

months or even years for the turbine to develop certain types of faults or problems

on its own. Once a fault does develop in the turbine, remediation steps will be taken

(by an operator or by the turbine’s MCM/PHM system) as soon as the problem is

detected to avoid damage to the expensive machine. Thus, only a small amount of

data can be collected while the turbine is in this faulty state. Consequently, there is

a lack of “faulty” data corresponding to many of the possible abnormal states and re-

searchers are left with a minimal allowable set of test cases and a negligible amount of

faulty data. Considering the large quantity of data being collected on a regular basis,

especially from vibration sensors which produce thousands of readings per second, the

ratio of abnormal to normal occurrences can be as small as 1:1000 (or 0.01%) [150].

127

This difference in the quantity of normal versus abnormal data has been shown

in many other machine learning applications to result in the creation of suboptimal

classification models which label most, if not all, of the data as belonging to the

majority class (i.e., normal). This suboptimal ratio of classes is called class imbalance

and is found in many real-world datasets. Class imbalance occurs when there are

significantly fewer instances in one or more classes in a dataset compared to the

number of instances in the remaining classes. When trained on imbalanced datasets,

traditional machine learning techniques tend to simply ignore the minority class(es)

and label all instances as being of the majority class to maximize accuracy.

This problem has been studied in many domains [72, 75] but there is little or

no research related to the effect and remediation of class imbalance in fault data for

condition monitoring of an ocean turbine. An investigation presented in this paper

demonstrates how this class imbalance problem could affect reliable state detection

within a data driven MCM/PHM system for an ocean turbine. The study also shows

how various degrees of imbalance affect the abilities of seven machine learners to

distinguish between two states of an ocean turbine. To do so, we empirically evaluate

the performances of seven widely used, but very different, machine learning algorithms

when trained on datasets with varying class distributions to distinguish between a

normal and an abnormal state.

All data used in these experiments were collected from the testbed for an ocean

turbine and were under-sampled to simulate the different levels of imbalance. The

raw vibration signal acquired from each sensor was pre-processed using the Short

Time Wavelet Transform with Baselining (STWTB) algorithm (described in Section

4.2.1). From the previous chapter, it was found that STWTB transformed data

allowed learners to build models that were robust enough to reliably identify changes

in system state even if the current rotational velocity is different from what it was

128

when the training data (used to generate the model) was collected. Here, we assess

whether models generated from STWTB data are tolerant of class imbalance.

For the specific “abnormal” conditions that are considered in the experiments

described later in this chapter, it was possible to collect the same amount of data

in those abnormal state as was collected in the normal state (meaning the class

distribution of the dataset was originally balanced), since these abnormal states are

unobtrusive and will not actually damage the test equipment (i.e. the dynamometer).

This will not be true of naturally occurring abnormal or faulty scenarios, which could

result in system failure. Hence, we introduce artificial class imbalance into our dataset

to simulate the problem of having such imbalanced data. Two sensor fusion techniques

were applied in these case studies to combine the readings from the six sensor sources.

An analysis of how each learner performed when trained on data fused with either

of the two techniques and how the class distribution affected these results was also

conducted.

8.2 CONTRIBUTIONS

The main contributions of this chapter are:

• The case studies in which experimental data are used to answer key research

questions related to class imbalance in and fusion of ocean turbine sensor data

• A first assessment of the robustness of models generated using data pre-proc-

essed by this wavelet-based baseline-differencing technique when the class dis-

tribution is imbalanced.

• An empirical comparison of data fusion approaches for dealing with class im-

balance

129

• The number of machine learners evaluated in these experiments. Other studies

related to class imbalance and data fusion involved three or fewer learners [142].

• To the authors’ knowledge, our research is the first studying the class imbalance

problem in this domain.

The remainder of this chapter is organized as follows. Section 8.3 presents a back-

ground into the class imbalance problem. Approaches to handling the class imbalance

problem in other reliability analysis applications are surveyed in Section 8.4. Two

case studies shown in Section 8.6 demonstrate how class imbalance affects classifier

performances for distinguishing between two states when applied to experimental

data collected from an ocean turbine’s dynamometer with and without data fusion.

Results are discussed in Section 8.7 and concluding remarks are given in Section 8.8.

8.3 BACKGROUND

The occurrence of imbalanced or skewed datasets is a common challenge in data

mining applications. Such datasets exist in both binary (two class) and multi-class

(more than two classes) classification problems where the goal is typically to detect one

or more rare events, such as the presence of ailments, seismic activities, faults or failure

states in machinery, network intrusions, etc. The disparity in the number of these

rare cases versus the abundance of observations made under normal circumstances

typifies an imbalanced dataset.

When presented with an imbalanced dataset, traditional machine learners trained

to distinguish between the different classes tend to ignore the minority class and

simply label new examples (instances) that actually are in that minority class as be-

longing to the majority class. This occurs because these algorithms strive to maximize

overall accuracy (percentage of correctly classified instances). For instance, given a

130

training set containing 1,000 instances where 1% (10) of the instances are in class A

and the remaining 990 are in class B, a learner can achieve a 99% accuracy by classi-

fying all instances as being in class B since it would have correctly labeled 990/1000

instances. A model’s accuracy, therefore, is not a good indicator of its performance

on imbalanced data.

This class imbalance problem, its effect on data mining and machine learning

techniques as well as approaches to learning from imbalanced datasets have been

well studied in many domains, such as in software quality prediction [60], protein

classification [165], wind turbine fault detection [150], IP traffic analysis [23] and text

classification [97]. The vast amount of research effort invested into class imbalance

across these and other domains has been summarized in numerous papers [62, 65],

which also list techniques that were proposed and implemented for dealing with the

class imbalance problem. Such techniques are usually classified according to whether

they are applied at the data level or at the algorithmic level. Data level approaches

aim to balance the class distribution while algorithmic approaches involve adjusting

the learning algorithm itself to take into account the natural class distribution.

8.3.1 Data level approaches

Data level or re-sampling techniques are the most widely used approaches to handling

the class imbalance problem because they are simple to apply. Approaches that fall in

this category work by changing the overall class distribution via either over-sampling,

under-sampling or a combination of both.

Over-sampling of the minority class involves the introduction of new instances

to that class, usually by replicating existing examples or creating new instances.

In random over-sampling (ROS), examples from the minority are selected at random

and duplicated until the class distribution is at the desired level. Other over-sampling

131

approaches, such as Synthetic Minority Over-sampling Technique (SMOTE) [15], aim

to increase the number of minority instances in a more intelligent manner: by using

knowledge of the characteristics of the data itself to create new data points.

Under-sampling approaches typically involve the removal of instances from the

majority class. As with over-sampling, this can be done randomly (known as random

under-sampling or RUS) or intelligently. Data cleaning techniques such as one-sided

selection [72], Tomek links [143] and neighborhood preprocessing [16] are a subset of

intelligent sub-sampling approaches; these aim to remove redundant and noisy data

from the majority class.

Both over-sampling and under-sampling have their pros and cons. Over-sampling

tends to lead to over-fitting, where a classification model is too specific to the training

set and fails to generalize to and correctly label new data. Also, since there is now

more data to process, the time taken to train classifiers on the over-sampled dataset

will also increase. On the other hand, because there is less data to process, under-

sampling reduces the time needed to build classification models. However, when

removing instances using under-sampling, useful data may also be discarded resulting

in a loss of information.

8.3.2 Algorithmic level approaches

Algorithmic level solutions include adjusting the classifier’s decision threshold, tuning

the machine learner parameters, assigning costs to the different classes (cost sensitive

learning) and applying a one-class learning scheme. The classifier’s decision threshold

is a parameter it uses when labeling a new instance. For a binary classification

problem, if the posterior probability of the class of interest exceeds this threshold

then the instance is labeled as being in the minority class; otherwise, the instance is

labeled as being in the majority class. By lowering this threshold, a classifier will be

132

more likely to label instances as the minority class.

Cost sensitive learning [93] involves assigning a cost to each class to account for

the relative importance of the classes in relation to the problem so that there is a

greater cost for incorrectly labeling (or misclassifying) a minority instance. Cancer

gone undetected, for example, is significantly worse than a false alarm as the patient

may die due to lack of treatment. Error costs are, however, difficult to assess and are

usually unknown.

In one-class or recognition based learning, a classifier is trained to identify a single

class of interest instead of distinguishing between two or more states (discriminative

learning). When it encounters a new instance, the classifier determines whether the

instance belongs to the class of interest or not. Because the classifier only considers a

single class, typically the minority class, the abundance of instances in the majority

class should not affect its performance.

8.4 RELATED WORK IN RELIABILITY ANALYSIS APPLICATIONS

While previous surveys discuss the class imbalance problem in general, the focus here

is to briefly review studies involving skewed datasets in the field of reliability analysis,

specifically in fault detection and condition monitoring, to reveal the state of the art

in dealing with class imbalance in this domain.

Zou et al. utilized a cost-sensitive approach for training a Support Vector Machine

(SVM) for steam turbine fault diagnosis [163]. For their multi-class problem, the re-

searchers combine several SVM learners – originally designed for binary classification

– using a cost conscious One Versus All (OVA) and One Versus One (OVO) method

for fusing the decisions of the generated classification models. Given k classes, the

OVA method involves generating k classifiers on data from two classes where the ith

133

SVM is trained to label the ith class as positive and all others as negative. Using

OVO, k(k− 1)/2 SVM models are constructed and the overall decision is made using

a voting strategy. They also introduce a reject option to ignore classified instances

where the computed reliability values are below a specified threshold.

Verma and Kusiak [150] applied a Tomek links-based data sampling approach to

remove borderline and noisy data from the majority class for fault detection in wind

turbines. This study considers two classes: a normal and a faulty state (with the

faulty instances accounting for 10% of the training set). In their approach, a majority

instance is removed from the training set (the dataset used to build the classification

models) if there exists a minority instance such that the Euclidean distance between

the two instances is less than the smallest Euclidean distance between this minority

data point and any other instance in the minority class. The Tomek links under-

sampled data is then passed through a Random Forest data sampling algorithm to

further reduce the degree of class imbalance. This Random Forest sampling algorithm

also discards noisy, borderline and redundant samples from the majority class based

on any instances that are incorrectly labeled by Random Forest models generated by

removing random subsets of the majority dataset.

In [94], Liu and colleagues proposed a modified SVM learning algorithm for multi-

class classification of blast furnace fault data. The four faulty states accounted for

3.5%, 4.8%, 6.7% and 7.2% of the training set while the remaining 77.8% of the

instances were normal. The proposed algorithm is a multi-step iterative process.

As in the Verma-Kusiak study, instances are pruned from the majority class based

on their distance from instances in the minority class. In the next step, unlabelled

instances are selected and added to the training set to compensate for the removal

of instances in the previous step. Lastly, noisy instances are weeded out using the

Edited Nearest Neighbor algorithm [119].

134

8.5 METHODOLOGY

The training set is the set of labeled observations that are used to initially train

or build the classification models. In other words, the actual class to which each

observation belongs is already known. The test set consists of new observations

that the models are applied to. Each observation is then labeled by the model as

being representative of one or more states (classes) from the set of possible classes C.

Although in the live MCM/PHM system, the actual class of new sensor observations

will be unknown, the class labels of all instances in the test set is maintained for the

purpose of evaluating these models.

8.5.1 Learners

Seven machine learning algorithms are evaluated on their ability to distinguish be-

tween two operating states of an ocean turbine dynamometer from sensor data ac-

quired from the machine. Classification models were constructed in WEKA, an open

source data mining software package. The seven algorithms, described in greater

detail in Chapter 4, are listed below.

• Naive Bayes learner (NB) – applies Bayes’ rule of conditional probability

and a “naive” assumption of independence among the features to predict the

probability that an instance belongs to a specific class.

• Decision Tree (C4.5) – a tree-like machine learning model. We built this

classifier using default values.

• Logistic Regression (LR) – labels an instance in a binary classification prob-

lem based on the measured probability of the class of interest (which in our case

is the faulty scenario), similar to Naive Bayes.

135

• k-Nearest Neighbors (5-NN) – this lazy learner classifies a new instance by

taking a distance-weighted majority vote of the classes of the k instances (for

these experiments, we used k = 5, hence our nomenclature) in the training

dataset that are closest to the new instance within the feature space.

• Random Forest (RF) – an ensemble learner composed of multiple unpruned

decision trees. The default parameter values for the WEKA implementation of

the Random Forest learner were used to construct this classifier.

• Multi-Layer Perceptron (MLP) – a form of feed-forward neural network.

• Support Vector Machine (SVM) – a hyperplane which divides a set of in-

stances into two classes with maximum margin.

8.5.2 Feature Level Fusion

Our case studies investigate feature level and decision level fusion of the wavelet

transformed vibration data. To fuse the sensor data at the feature level, a set union

of the features produced by the wavelet transform from all channels was performed,

which, intuitively, should improve a classifier’s ability to perform state detection since

all the available data is being taken into account during the data mining process.

8.5.3 Decision Level Fusion

In these studies, the decision-level fusion process (Section 4.3.3) is repeated using each

of the seven previously described machine learning techniques to see which generates

the best classification models.

136

8.6 EXPERIMENTAL SETUP

The case studies presented in this section investigate the effect of class imbalance

on different machine learners for performing state detection based on vibration data.

Vibration readings of rotating machinery contain distinct signatures which can be

used to determine the state of a machine. By comparing acquired signals against

a known baseline signal, we can determine whether the machine is operating in an

abnormal state. The data used in these experiments were all acquired from the test

platform for an ocean turbine – a 20 kW onshore dynamometer designed for testing

the turbine’s generator and drive train. In the case studies described below, we show

how classification performances differ when attempting to detect when the resistive

load being applied to the dynamometer has increased from 45% to 90%, where 45%

load is considered to be normal. This is similar to having twice the normal load

applied to the ocean turbine, as could occur if the on-board electrolysis device or

other such devices meant to consume or utilize the power being generated by the

turbine is unexpectedly drawing more energy.

8.6.1 Data Acquisition

Data collection and time synchronous averaging [90] of the vibration signals is per-

formed by a WaveBook Data Acquisition Unit. The baseline signal for this experiment

was acquired with 45% resistive load and SFTA (the dynamometer drive shaft) turn-

ing at 25 RPM. Data was also acquired with a 90% resistive load applied at the same

RPM and then with 45% and 90% load at 50 RPM. In the first case study, data gath-

ered at 25RPM will be used to generate the classification models, which were then

tested against the data collected at 50RPM. In the second study, the 50RPM data is

used as the training set while the 25RPM data serves as the test set. Again, we stress

137

that the change in load is what we aim to detect. We test against a different RPM

here to ensure the robustness of these techniques in varying operational conditions

(such as speed) since typically the speed of the turbine will vary during operation

based on the flow velocity of the ocean currents.

Data from the accelerometers were sampled at 5,000 Hz for 4 seconds for each of

the four setups (i.e., configurations of load and RPM), producing a total of 20,000

readings per setup and sensor. This means that, initially, the number of instances rep-

resenting each class (i.e., load) is the same and the class distribution is balanced. The

accelerometers are denoted as channels 1 through 6 (CH1, CH2, . . . , CH6) through-

out this case study. The resulting dataset consisted of 24 files = 6 channels × 2 loads

× 2 speeds.

8.6.2 Data Transformation

A Short Time Wavelet Transform with Baselining (STWTB) technique described

in Section 8.6.2 was applied to each file separately. In the baselining step in the

STWTB process, a baseline is generated from the 45% load data for each source

and RPM, and then subtracted from all the data (data collected at both 45% and

90% loads) observed by that source at the same RPM. This is done twice, once for

each RPM. This baselining step was deemed necessary to remove those portions of

the vibration signals that are characteristic of the speed of the system, so that the

remaining signal only depicts the vibrations caused by actual abnormalities in the

machine (and not its operating conditions). For each file processed, this algorithm

outputs 15,904 instances and 13 numeric features, with lower values for a specific

frequency and instance indicating a close similarity to the baseline signal.

138

Class
Distribution

% Positive
Instances

% Negative
Instances

Total # of
Instances

#
of Positive
Instances

#
of Negative
Instances

A 0.1 99.9 15000 15 14985
B 0.5 99.5 15000 75 14925
C 1 99.0 15000 150 14850
D 2 98.0 15000 300 14700
E 5 95.0 15000 750 14250
F 50 50.0 15000 7500 7500

Table 8.1: Training Set Distributions

8.6.3 Class Distributions

The primary intention is to produce a state detection system capable of distinguishing

between two operating states (45% load and 90% load) regardless of the turbine’s

RPM (or environmental condition). This is a simplified version of the real problem

in which there will be multiple possible system states. Multi-class classification, or

the problem involving detecting more than two system states, will be considered in

future studies. To prepare the datasets from each experiment for binary classification

(determining which of two states a particular set of observations belong to), the

data gathered at 45% load is appended to the corresponding file containing the data

gathered at 90% load for the same channel and RPM. This means there are now 12

files per experiment – 6 files (one for each channel) per RPM.

Random under-sampling of both classes in the 25RPM and 50RPM files was done

to simulate the varying class distributions, meaning that instances were selected at

random and discarded from the datasets gathered at both speeds. Two case studies

were conducted: one with the 25RPM data being the training set and the 50RPM

data used as the test set and the second with the 50RPM data used for training and

the 25RPM data used for testing. Six different class distributions were simulated in

both studies, as shown in Table 8.1. For each case study and class distribution, the

139

random under-sampling process was repeated 10 times to ensure that the observed

results were unrelated to the exact subset of instances selected. The total number of

instances was selected arbitrarily to be 15,000.

With the highest degree of skew, class distribution A is quite similar to what one

would typically see in a fault detection application, and is most characteristic of the

real world data than the other distributions. This is true especially in the case of

vibration data, where data is sampled at a high frequency, usually more than 1,000

readings per second. Thus, it is important to understand the effect of such a highly

skewed class distribution on techniques that would potentially be used in a condition

monitoring system for an ocean turbine.

Seven machine learners – 5-Nearest Neighbors, Decision Tree, Logistic Regression,

Multi-Layer Perceptron, Naive Bayes, Random Forest and Support Vector Machine

– were trained on the 25RPM data (Case Study 1) and on the 50RPM data (Case

Study 2) to distinguish between the two states. Models were evaluated against the

other RPM for each case study; models built on the 25RPM data were evaluated

against the 50RPM data and vice versa. There were a total of 360 models per learner

in each study = 10 repetitions × 6 channels × 6 class distributions.

8.6.4 Performance Measure

The performances of the classifiers on these datasets are expressed in terms of the

False Positive Rate (FPR = FP
N

), the False Negative Rate (FNR = FN
P

) and the area

under the ROC curve (AUC). These performance measures are defined in Section 4.7.

As previously defined, the decision threshold is used by classifiers when assigning a

class label to a new instance; if the confidence in labeling an instance as being faulty or

abnormal exceeds this threshold then the instance is labeled as faulty. Lowering this

threshold increases the TP and decreases the TN, making the classifier more biased

140

to the faulty (or positive) class. Varying the threshold, therefore, affects the FPR

and FNR and the optimal value of this parameter depends on the class distribution

and the data itself. Since there will be no single threshold that will work best for all

class distributions, the best threshold for each of the 720 models built by each learner

for both studies is determined by iteratively evaluating each model as the value of

that parameter is gradually incremented from 0 to 1. The FPR and FNR presented

in the results section are the best values found by varying the threshold for each

model. The AUC, however, does not depend on a decision threshold since the ROC

curve considers every possible decision threshold. This makes the AUC an excellent

performance measure especially in class imbalance applications.

8.7 RESULTS & ANALYSIS

The discussion in this section answers the following research questions:

1. How does class imbalance in these datasets affect the results obtained when

using the specified waveform analysis and machine learning techniques for per-

forming fault detection on ocean turbine data?

2. Which learners are affected most and least by class imbalance in these datasets?

3. Which data fusion approach is better suited for this problem?

4. Which learners perform best regardless of the speed at which the training data

was collected?

5. What is the optimal combination of data fusion type (feature level or decision

level) and learner that will allow for reliable state detection regardless of class

distribution and environmental changes (in this case, the dynamometer speed)?

141

Figures 8.1 and 8.2 shows the performances of the seven learners when trained on

the datasets with varying class distributions. The three bar graphs in Figure 8.1 show

the results when trained on 25RPM data while the three graphs in Figure 8.2 show the

results when trained on 50RPM data. The two topmost graphs present the average

AUC for each learner when no fusion technique is employed. Feature level fusion

results and decision level fusion results are shown in the middle and bottommost pair

of graphs respectively.

All graphs are laid out similarly and contain seven clusters, one for each learner,

of six bars (representing the class distributions arranged from lowest to highest degree

of imbalance). The first bar in each cluster is the average AUC obtained by the model

when trained on the balanced dataset (distribution level F in Table 8.1).

8.7.1 How does class imbalance in these datasets affect the results using

the specified waveform analysis and machine learning techniques?

From the results presented in Figures 8.1 and 8.2, we find our 5-NN models produc-

ing perfect results on the balanced feature-level fused data – middle graph in the left

column – which is consistent with findings from a previous study conducted by our

group [47]. These 5-NN models are unaffected by the class distribution. The SVM

results on the balanced unfused data, though, are considerably different than were

previously observed. This may imply that the performance of the SVM depends on

the amount of available training data. On the feature-level fused data with an equal

number of positive and negative instances, the SVM now yields perfect models for

both training sets. The SVM models built on the 50RPM data appear unaffected

by the class distribution; on the 25RPM data, the SVM models built using class

distribution E (5% positive instances) perform worse than those built using the bal-

anced data, especially on the feature-level fused data. The SVM’s performance on the

142

Figure 8.1: Classification Results (AUC) For All Learners With 25RPM
Training Set

143

Figure 8.2: Classification Results (AUC) For All Learners With 50RPM
Training Set

144

25RPM training sets with less than or equal to 2% of the instances being abnormal

(positive class) is similar to its performance on the balanced data.

8.7.2 Which learners are affected most and least by class imbalance in

these datasets?

To best determine how the learners are affected by the class distributions, we consider

their performances on the unfused data (topmost pair of graphs in Figures 8.1 and

8.2).

Of the seven learners, the decision tree (C4.5) and Logistic Regression (LR) seem

to be least tolerant of the degree of class imbalance in the training sets. The C4.5

models performed similarly for the first five class distributions (distributions A to E

from Table 8.1) for both training sets, but when trained on the datasets with 0.1%

of the instances being positive (class distribution F), the efficiency of this algorithm

is obviously affected. On the 25RPM training set, the average AUC value is 0.2 less

on the skewed dataset than it is on the balanced dataset. This difference is similar

on the 50RPM training set, where the average AUC on the balanced set is 0.15 more

than that on the highly skewed dataset. LR models perform even worse on the highly

skewed 50RPM training set, with the average AUC being barely more than 0.5. Such

a low AUC indicates that LR models are performing just as good as a random guess

on that dataset.

Naive Bayes (NB) seems to be the most consistent learner for the unfused data in

both case studies. Although its performance on the 25RPM data is worse than most,

the degree of class imbalance barely, if any at all, affects the NB models.

145

Figure 8.3: Change in AUC For All Learners On Balanced and Imbal-
anced Fused Data

8.7.3 Which data fusion approach is better suited for this problem?

First, we consider how the performances of the different learners are affected by each

type of fusion. Figure 8.3 graphically shows the differences in the performances of

models built on unfused data (in terms of the AUC) from those of the models built

on the feature-level fused and decision-level fused data. This comparison is made

for two data distributions: balanced (class distribution F) and highly skewed (class

distribution A). This figure is also a clustered bar graph where the seven clusters are

the various machine learners. The four bars in each cluster are:

1. Comparison on unfused versus feature-level fused balanced datasets averaged

for both case studies

2. Comparison on unfused versus decision-level fused balanced datasets averaged

for both case studies

3. Comparison on unfused versus feature-level fused datasets with the highest

degree of skew (0.1% positive instances) averaged for both case studies

146

4. Comparison on unfused versus decision-level fused datasets with the highest

degree of skew (0.1% positive instances) averaged for both case studies

If the models performed better on the data fused using the specific technique than

they did on the unfused data, the bar for that corresponding relationship is above

the y-axis; inversely, models which performed better on the unfused data are those

where the bar is below the x-axis. The larger the performance difference, the higher

or lower the bar will be.

From this graph, it can be seen that of all the learners, the decision tree algorithm

showed the greatest improvement when trained on decision-level fused data (for both

class distributions) and benefited most from this type of sensor fusion. The decision

tree and Naive Bayes (NB) models performed better on average on the unfused sensor

data than they did on the balanced feature-level fused data; this was also the case for

the NB models when class imbalance was present. Both learners, however, performed

best on the decision level fused data. Some learners, namely the Multi-Layer Per-

ceptron (MLP), k-Nearest Neigbors (5-NN), Logistic Regression (LR) and Support

Vector Machines (SVM), saw the same degree of improvement for both fusion tech-

niques when the dataset was balanced. Overall, for both the balanced data (first two

bars in each cluster in Figure 8.3) and the highly skewed data (last two bars in each

cluster in the same figure), decision-level fusion performs either similar to or better

than its feature-level counterpart for all learners in terms of the AUC.

In Figure 8.4, the class distribution is plotted against the average error rates

(FPR and FNR) observed for each fusion technique (unfused, feature-level fusion and

decision-level fusion) and training set (25RPM and 50RPM). These combinations

are the six graphs in that figure. From this diagram, we find that decision-level

fusion yields the lowest false positive and false negative rates and this observation

147

Figure 8.4: Error Rates

148

is consistent for both training sets and all class distributions. It is important to

note, however, that the average FPR of models built from feature-level fused data

was better than the FPR of those models built on the unfused data for the first case

study (where the 25RPM data was used for training) but was significantly higher than

the FPR of the models built on the unfused data for the second case study (where

the training set was the 50RPM data). Based on the overall error rates and increased

classification performances that are observed when decision-level fusion is applied, it

can be concluded that this fusion technique is superior to feature-level fusion on this

data.

8.7.4 Which learners perform best regardless of the speed at which the

training data was collected?

The SVM and 5-NN perform consistently across both training sets. This is observed

in Figures 8.1 and 8.2 where the representative clusters of bars for these two learners

in the leftmost graphs are most similar to the corresponding clusters in the rightmost

graphs.

8.7.5 What is the optimal combination of data fusion type (feature level

or decision level) and learner?

Overall, we find the 5-NN and MLP models are the most robust to class distribution

when trained on fused data (using either of the two fusion techniques and any RPM).

Based on the observed error rates (Figure 8.4), the decision-level fusion approach is

the preferred technique for combining the sensor data.

149

8.7.6 Analysis of Results

A three-way ANalysis of VAriance (ANOVA) F Test [61] was conducted on the AUC

to statistically examine the effects of the various data fusion techniques and class

distributions on the performances of the classification models. Each RPM (25RPM

and 50RPM) was analyzed separately. An n-way ANOVA can be used to determine

if the means in a set of data differ when grouped by multiple factors. If they do differ,

additional tests (such as the Tukey’s Honestly Significant Difference criterion) can be

used to determine which factors or combinations of factors are associated with the

difference. The three factors in this study are:

• Factor A. Results per sensor fusion technique, i.e., feature-level versus decision-

level.

• Factor B. The seven learners.

• Factor C. The results for each of 6 class distributions as listed in Table 8.1.

Tables 8.2 and 8.3 show the ANOVA test results for the 25RPM and 50RPM

datasets, respectively. A significance level of 5% (α = 0.05) was utilized for all tests.

This means that if the value in the rightmost column of each of the two tables equals

or exceeds 0.05 for any individual factor or group of factors, then that factor or

that group of factors produce similar classification performances and thus do not

significantly impact the mean performances. From the data presented in these tables,

we can reasonably conclude therefore that for both RPMs, the choice of learner, the

dataset distribution and the fusion technique employed all significantly impact the

results (both individually and jointly).

Tukey’s Honestly Significant Difference criterion was used to perform a multiple

comparison test for each of the three factors to further analyze how the various

150

Source Sum sq. d.f. Mean sq. F Prob < F

A 0.82665 1 0.82665 253.92 0

B 1.24802 6 0.208 63.89 0

C 0.04586 5 0.00917 2.82 0.0157

A × B 1.06486 6 0.17748 54.52 0

A × C 0.04383 5 0.00877 2.69 0.0201

B × C 0.23463 30 0.00782 2.4 0

A × B × C 0.23162 30 0.00772 2.37 0.0001

Error 2.46117 756 0.00326

Total 6.15664 839

Table 8.2: ANOVA – 25RPM

Source Sum sq. d.f. Mean sq. F Prob < F

A 11.2056 1 11.2056 1824.47 0

B 9.4951 6 1.5825 257.66 0

C 0.8367 5 0.1673 27.25 0

A × B 8.7654 6 1.4609 237.86 0

A × C 0.7824 5 0.1565 25.48 0

B × C 4.5105 30 0.1503 24.48 0

A × B × C 4.3131 30 0.1438 23.41 0

Error 4.6432 756 0.0061

Total 44.5521 839

Table 8.3: ANOVA Results – 50RPM

151

values for each factor affect the overall results. A significance level of 5% (α =

0.05) was again utilized for these tests. The results are presented as six graphs,

shown in Figures 8.5(a) to 8.5(f), where the symbol ◦ represents the group mean and

the interval around that symbol is the 95% confidence interval. Intervals which are

disjoint indicate a significant difference (given α = 0.05); those which overlap imply

no significant differences.

It is clear from Figures 8.5(a) and 8.5(b) that, as previously observed, decision-

level fusion is drastically better than feature-level fusion in both case studies. There is

a clear distinction between the mean values for both fusion techniques and no overlap

of their confidence intervals.

From the comparison test conducted on Factor B (the machine learning algo-

rithms), we find again that the k-Nearest Neighbor (5-NN) and Multi-Layer Percep-

tron (MLP) are consistently among the top three learners regardless of RPM. The

decision tree (C4.5) was the worst performer. Although the Random Forest (RF)

performed similar to the MLP and 5-NN when trained on the 25RPM data, there is

a steep degradation of its performance if the 50RPM data is used for training. On

the 50RPM data, the RF performs slightly better than (but statistically similar to)

the Naive Bayes (NB). The Support Vector Machines (SVM) performs similarly to

the 5-NN and MLP on the 50RPM training set and slightly worse on the 25RPM

training set.

Finally, analysis of the effects of Factor C confirms that the class distribution does

impact classification performances. The mean performances on the balanced dataset

(50% positive instances) for both RPMs are better than those on the datasets with the

four highest degrees of skew. At 25RPM, datasets containing 5% positive instances

result in significantly worse performances than the balanced datasets but at 50RPM,

performances on the 5% imbalanced dataset are similar to (if not slightly better) than

152

the results on the balanced dataset. With or without fusion, however, the datasets

with 1%, 0.1%, 2% and 0.5% positive instances yield worst performances than the

remaining two distributions (which have lesser degrees of imbalance) on the 50RPM

data and all but the 1% and 5% distributions were statistically significantly worst

than the balanced dataset.

8.8 CHAPTER SUMMARY

Imbalanced datasets pose a problem for traditional machine learners. Much research

effort has been invested into understanding and alleviating class imbalance in many

domains, but not much work has yet been done studying this problem in the context

of condition monitoring and little or none of these are related to ocean turbine reli-

ability. In experiments presented in this chapter, we gauged the effect of a skewed

dataset for detecting ocean turbine state by training seven popular machine learning

algorithms on datasets with varying class distributions. We also analyzed how dif-

ferent techniques for fusing the data from multiple sensor sources fared against class

imbalance.

Findings from two case studies conducted on experimental data collected from an

ocean turbine dynamometer indicated that the k-Nearest Neighbor machine learning

algorithm performs extremely well on the given datasets regardless of the class distri-

bution as well as the speed at which the training data was collected. This tolerance to

the speed and other environmental condition of the dynamometer is especially impor-

tant because ocean turbines are subject to an ever-changing operating environment.

The ocean turbine’s speed will also continuously vary during operations, and an au-

tomated state detection module must consistently perform well to avoid damage to

the machine and unnecessary downtime. Classification models may need to be rebuilt

153

online because of a change in system state and thus the speed at which the training

data was gathered should not be a factor which could negatively affect the models’

ability to distinguish among the system states. Although the k-Nearest Neighbor

models built on individual sensor data are satisfactory, perfect models can be gen-

erated from that learner by applying the decision-level fusion approach described in

this paper. Thus, the combination of vibration analysis (the Short Time Wavelet

Transform with Baselining technique), decision-level fusion approach and either the

k-Nearest Neighbor or Multi-Layer Perceptron produce an excellent candidate model

for an ocean turbine state detection module.

154

(a) Factor A (Fusion Technique) – 25RPM (b) Factor A (Fusion Technique) – 50RPM

(c) Factor B (Learner) – 25RPM (d) Factor B (Learner) – 50RPM

(e) Factor C (Class Distribution) – 25RPM (f) Factor C (Class Distribution) – 50RPM

Figure 8.5: Multiple comparisons on the 3 three main factors

155

Chapter 9

Condition Monitoring Software System

(CMSS)

9.1 INTRODUCTION

Numerous reliability concerns mostly attributed to the unpredictable nature of an

ocean turbine’s operating environment motivate the need for an automated monitor-

ing system to ensure these turbines satisfy uptime and productivity requirements and

to reduce operating costs. Machine condition monitoring (MCM) systems provide

such a means for continuous and intelligent problem detection while Prognostics and

Health Monitoring (PHM) systems work to predict the useful life and life expectancy

of these machines. MCM/PHM systems employ a network of sensors to record data

about the behaviour and operational environment of the systems they monitor and

utilize a wide variety of data mining or machine learning techniques, statistical and

inferencing tools, waveform analysis methods and data fusion algorithms to derive

useful information from the sensor data. By performing automated monitoring of the

ocean turbine, potential faults can be detected and identified at an early stage allow-

ing for quick remediation, such as self adjustment or shutdown, to minimize damage

to the turbine, thus reducing downtime due to failure.

The primary contribution of this chapter is the Condition Monitoring Software

156

System (CMSS) tool, a software tool for monitoring ocean turbines and other sub-

merged vessels, which is presented in Section 9.2. In its current state, the CMSS tool

performs data manipulation and state detection – two basic requirements of a condi-

tion based monitoring system per the International Organization for Standardization

(ISO) standard ISO-13374 [74]. This data mining based tool is being developed to

aid engineers in fault identification (determining what the problem is), fault local-

ization (finding the location or source of the problem), fault prognosis (predicting

the likely outcome from a problem) and future life assessment for an ocean turbine

while it operates autonomously offshore. The completed product will be a data-driven

MCM/PHM system in which sensor data is processed, fused and mined to understand

the current behavior of the turbine and predict its future health. In the present ver-

sion of the tool, a Short Time Wavelet Transform based technique is applied to raw

vibration signals to transform the data into a format that classifiers can learn from.

The outputs from n classification models built separately on data from each of the n

sensor channels are combined using a decision-level data fusion approach to yield a

single prediction of the current state of the machine based on all of the available sen-

sor data. Classification models constructed using either the Multi-Layer Perceptron

(MLP) or k-Nearest Neighbor algorithm were found to be optimal for this application.

The planned data flow through this MCM/PHM system, whose architecture was so

designed to conform with industry standards, is mapped out in this work. We also

show how different operational states (such as changes in the counter-torque or load

applied on the generator) could be reliably identified using this software tool.

157

9.2 CMSS

9.2.1 Requirements

The requirements of the tool are as follows:

1. The MCM/PHM architecture should use open standards. The PHM architec-

ture should follow the OSA-CBM specification for defining data and interface

specifications for communication between subsystems.

2. The MCM/PHM architecture must support remote configuration of its runtime

parameters.

3. The MCM/PHM software will be deployed on a computer running the LINUX

operating system.

4. The MCM/PHM architecture must be scalable and easily expandable to monitor

multiple turbines

5. The MCM/PHM architecture must be easy to maintain and upgrade

6. The MCM/PHM architecture should permit remote monitoring of its opera-

tional status and performance.

7. The MCM/PHM architecture should allow deployment of new/updated subsys-

tems remotely (from the shore system) and without taking the topside subsys-

tems offline.

8. Although there are no real-time requirements (since critical system events are

typically captured by the Safety Controller or LabVIEW Vibrations Monitoring

subsystems shown in Figure 2.5), software must be as computationally efficient

as possible so as to avoid a performance bottleneck. With thousands of vibration

158

measurements being produced per sensor every second, it is necessary to process

each burst of data (or data stream as the case may be) quickly to prepare for

the next batch of data.

9.2.2 Architecture

Figure 9.1 shows the data flow through the software components of the MCM/PHM

system. We present this view of the system to show the roles different sub-systems

play in terms of the six ISO-13374 functions. These functions are:

1. Data Acquisition (DA) – Data is collected and digitized.

2. Data Manipulation (DM) – Typically, in the DM block, signal processing, time

synchronous averaging (TSA), algorithmic computations and feature extraction

are performed on the digitized output from the DA block.

3. State Detection (SD) – The output from DM and DA are compared against the

anticipated baseline profile values to evaluate the system’s state in terms of a

predefined enumeration, e.g., system normal, level high, alarm, alert, etc.

4. Health Assessment (HA) – Diagnosing system faults and determining the health

of the system occurs in this block. The output from the DA, DM and SD blocks

are fused with the output from other HA blocks in order to make this assessment.

5. Prognostics Assessment (PA) – The life expectancy and future health of the sys-

tem are projected, and the possibility of future faults and failures is predicted.

6. Advisory Generation (AG) – Reports on existing or predicted conditions along

with advice on how to optimize the life of the machine are generated.

159

Data acquisition is performed by three controllers. Vibration signals are recorded

and pre-processed by a Wavebook Data Acquisition Unit (DA2), power quality data

via the Power Quality System (DA3) and all remaining signals are acquired and

handled by the Safety Control and Monitoring System, or SCMS (DA1). The DA

block has been split into these sub-blocks since they work independently of each

other. By labeling the sub-systems according to role, it is now clear that there are

multiple DA, DM and SD blocks (and not just one of each as was depicted in Figure

2.5) which all feed the MCM/PHM system. This highlights the need for data fusion.

Figure 9.1: Data Flow through MCM/PHM system

160

Two DM processes will operate on the vibration signals. The first is the Lab-

VIEW Vibration Monitoring (VM) application [105] designed to conduct cepstrum

and spectral analysis of the data. The VM application will be situated between the

Wavebook and the Data Gateway to allow it real time (or as close to that as possible)

access to the vibration signals as they are made available. Any system issues detected

by this application will automatically trigger an alarm, alert or shutdown request de-

pending on the severity of the problem. The VM application will then package the

raw data, the results of the analyses, a history of any warnings/alerts/alarms and

the parameters pertaining to the data acquisition (including the sampling rate, burst

size, a unique identifier representing the sensor channel which generated the data and

a 14 character MIMOSA identifier indicating which turbine the data was recorded

from) as an XML file which is then passed to the Data Gateway to be timestamped

and forwarded to the Data Store. Once this XML file arrives at the Data Store, the

information contained within it is parsed and stored.

The second process is another vibration analysis technique applied to the raw

vibration data to extract useful features (or descriptive characteristics) that can be

used for data mining, data fusion and machine learning within the MCM/PHM sys-

tem. Based on the outcome of previous experiments conducted by our team on data

from the ocean turbine’s dynamometer, we recommend the use of a modified Short

Time Wavelet Transform algorithm with Baseline-Differencing (STWTB) proposed

by Wald et al. [153]. This is a two step process where the first step is the application

of a Short Time Wavelet Transformation (STWT) algorithm. The second step is

the use of “baseline-differencing” to normalize the data relative to a given operating

condition. This baselining step was deemed necessary to remove those portions of the

vibration signals that are characteristic of the machine’s environment and/or opera-

tional conditions (in this case, its rotational velocity), so that the remaining signal

161

only depicts the vibrations caused by actual abnormalities in the machine (and not

its operating conditions). Prior applications of this algorithm produced good results

as shown in our related work [47, 33] and in Chapters 7 and 8.

The output of the STWTB is a set of wavelet features, where the number of

features is determined by the depth of the transform and the amount of data being

examined at a given instance. Each feature represents the amount of oscillations in

the vibration signal at a given wavelength. This STWTB output is supplied to state

detection sub-block SD2 where the state of the machine is again assessed. Within

SD2, data fusion is required to combine the views of the n vibration sensors that are

mounted on the turbine. For this, we recommend the decision level fusion approach

employed in [33]. SD1 refers to the state detection performed by the SCMS in which

sensor values are compared against operational limits for that sensor type. If the

sensor value is outside of the normal operating range, the SCMS will declare an

abnormal state and may trigger an alarm or alert depending on the severity of the

problem.

The output from the DA, DM and SD blocks as well as earlier HA results are then

fed into the HA block so that faults or failures can be diagnosed and the likely source

of any problem(s) can be determined. These advisories and data are then forwarded

to the PA and AG blocks for prognostics and advisory generation. Future studies will

investigate the use of Expert Systems [95], Fuzzy learning [96] and/or other machine

learning techniques for combining the available information and for performing the

required tasks of the HA block. We will also experiment with different approaches

for prognostics and advisory generation.

162

9.2.3 Implementation

The CMSS application was designed according to the Model-View-Controller (MVC)

pattern, a popular and widely accepted software design pattern used to separate the

way the data is processed (Model) from visual presentation (View). The Controller

serves as an intermediary between the Model and View, passing commands back and

forth. The application was coded in the JAVA programming language to maximize

portability and maintain extensibility. JAVA is an object oriented language, meaning

that each entity within an application is coded as its own unit, known as a class.

Each entity can therefore be reused and the application can be modularized so that

it can be easily extended. Also, unlike many languages, JAVA is supported on most

if not all operating systems (including LINUX), and programs written in JAVA can

therefore be easily ported to a computer running a different operating system if the

need arises.

Either of two popular machine learning algorithms, Multi-Layer Perceptron (MLP)

[14] or k-Nearest Neighbors (k-NN) [55] was determined via experimentation [33] to be

ideal for the SD2 block. These algorithms were found to be robust to class imbalance

and both performed extremely well regardless of the current environmental condition

when used in conjunction with STWTB and a decision-level data fusion approach.

The k-NN algorithm classifies a new instance by taking a majority vote of the classes

of the k instances in the training dataset that are closest to the new instance within

the feature space. The MLP is a form of feed-forward neural network which maps

input values to an output. It uses a learning technique known as back-propagation, a

generalization of the least mean squares algorithm, which involves continually updat-

ing the weights it assigns to individual connections within the neural network based

on the amount of error in the output compared to the expected outcome.

163

The decision level data fusion [36] method involves first generating a classification

model from the data from each sensor channel separately. For each new incoming

instance, the probability that this new instance belongs to each of the possible system

states is then computed individually based on observations made by each source.

These probabilities are averaged and the system state with the highest probability is

selected as the fused output.

CMSS references an open source data mining library WEKA [160] – the engine

behind the popular WEKA data mining tool1 – in which the k-NN and MLP along

with many other algorithms are implemented. Default values were selected for all

parameters of the IBk algorithm (the WEKA implementation of the k-NN algorithm)

with the exception of the value of k which was set to 5 and the distanceWeighting

(which tells the learner to use an inverse distance weighting to determine how to

classify an instance) set to ‘Weight by 1/distance’. For the MLP, two parameters were

changed: the hiddenLayers parameter (the number of nodes in the intermediate, or

hidden, layers in the network) was set to ‘3’ and the validationSetSize (percentage of

the training dataset reserved for validating the MLP model during back-propagation)

was set to ‘10’.

The output from the LabView Vibration Monitoring (VM) system is currently

the only input to the CMSS. The LabView VM can save each batch (or burst) of

data to either a standardized format that the Data Gateway will be able to interpret

or to a LabView Measurement File (LVM) with each column of data being readings

from a different sensor channel and each row being the raw vibration amplitudes read

at a particular time interval. Both input formats are considered acceptable to the

CMSS Data Access Layer. Regardless of the original input format of the vibration

signals, the Data Access Layer will re-format this data and save this to the file format

1Available for download from http://www.cs.waikato.ac.nz/ml/weka

164

http://www.cs.waikato.ac.nz/ml/weka

expected by the module that performs the STWTB transformation. Note that the

STWTB Data Manipulation function is also implemented separately.

The typical use case based on the functionality that is currently implemented is

as follows:

1. Training data from n sensor channels are used to construct n MLP or 5-NN

models for distinguishing between the m different states. This is done only

once since these models are reapplied to the new data as they arrive. In the live

system, it is possible that models may need to be rebuilt midstream.

2. Vibration data from the dynamometer testbed is collected and time synchronous

averaged by the Wavebook Unit. The Wavebook Unit is currently tethered

directly to the LabView VM.

3. The LabView VM performs cepstrum analysis of the data and aside from the

analysis results, it also produces an LVM file with n column representing the

time-amplitude readings from the n vibration sensors. The filename contains a

date and time stamp of the data collection time.

4. The CMSS reads this n column file and invokes the STWTB function with

current parameters, including the depth of the transform. The depth of the

transform dictates the number of wavelet features that will be output by the

algorithm and is constrained by the burst size. CMSS waits for completion of

the STWTB algorithm, which produces n comma separated files per burst.

5. Once the STWTB process has ended, CMSS will read all n files and deserialize

the data into n Instances objects – each represents a different dataset in the

WEKA framework.

165

6. For the ith Instances object, the ith MLP or 5-NN is applied. The model is

applied to each instance j and produces a degree of certainty that instance j

belongs to each possible state. For each instance j, we have m×n probabilities:

the probability given by each of the n models for each of the m classes/states.

The class with the highest average probability across all the models is selected

as the final decision for that instance.

7. CMSS results are written to a text file and presented on screen to the user. In

the live system, these results will be transmitted either to the Data Store if the

CMSS and Data Store reside shore-side or to the Data Gateway if the CMSS

resides topside.

9.3 CONCLUSION

This chapter presented the architecture for a Condition Monitoring Software Sys-

tem (CMSS) tool – a data driven MCM/PHM system for monitoring ocean turbines

and other submerged machines. The CMSS tool is designed to conform with ISO

standards for condition monitoring systems to ensure interoperability with software

written by other vendors. In its present state, CMSS performs state detection from

vibration signals acquired by multiple sensors. The process it uses to transform,

manipulate and interpret these signals is outlined in this chapter.

166

Chapter 10

Conclusion and Future Work

Machine Condition Monitoring / Prognostics Health Monitoring (MCM/PHM) sys-

tems help to ensure the reliability of the machines they monitor by automating de-

tection, identification and localization of problems soon after or even before they

develop. Such systems employ numerous types of sensors, including vibration sen-

sors, to record different physical phenomena of the machine being monitored. This

research focuses on the design and development of an MCM/PHM system for ocean

turbines. Many factors including remoteness, a harsh and unpredictable environment

and high retrieval costs pose reliability concerns for these turbines.

10.1 CONCLUSIONS

Per ISO-13374, an international standard for designing a condition based monitoring

system, there are six primary functions of an MCM/PHM system – data acquisition,

data manipulation, state detection, health assessment, prognostics and advisory gen-

eration. Data fusion, which is the aggregation of data from multiple sources to gain

a complete, more accurate view, is known to be needed to combine data in different

ways to realize these functions and has been identified in our previous publications

[39, 38] as a cross cutting concern. Chapter 5 addresses this by offering a data fusion

framework for MCM/PHM systems which satisfies those ISO standards. Also pro-

167

posed in that chapter is a barrier synchronization approach for coordinating sensor

streams within this framework.

Preliminary tests of data mining and data fusion techniques for accomplishing

state detection from vibration data are presented in Chapter 6. These experiments,

conducted on vibration data acquired from two sensors mounted on a household box

fan, revealed that a feature-level fusion approach (where data fusion is applied after

descriptive features are extracted from the raw data) produced the most consistent

performances. Of the twelve classifiers in that study, 5-Nearest Neighbor seemed to

give the best results, even more so when either feature-level or decision-level fusion

is applied.

The streaming wavelet transform (SWT) used to extract features from each vi-

bration signal would sometimes output vectors where some of the values had not yet

been computed depending on the amount of data available at the time the transform

is applied. We evaluate how this missingness affects the performances of each learner

in one of three case studies presented in Chapter 7. Data for all three studies were

acquired from six sensors mounted on a dynamometer test platform for the ocean

turbine. It was observed that the 5-Nearest Neighbor, which performed extremely

well on vibration data from the fan, is the worst performer of the seven classifiers

used in this study, although the data were pre-processed using the same SWT algo-

rithm. Upon application of an Expectation-Maximation Imputation (EMI) or Mean

Imputation (MI) technique to fill in the missing values, the 5-Nearest Neighbor now

produces excellent models. The Decision Tree seemed to perform best on the SWT

processed vibration data from the dynamometer, most likely due to repeated values

produced by that algorithm, with and without data imputation. Also of note is the ef-

fectiveness of the quick and easy MI imputation technique which replaces the missing

values with the mean of the available values as compared to the more sophisticated

168

EMI counterpart.

The last two studies in that chapter revolved around feature selection (FS) – a

popular pre-processing methodology for reducing the dimensionality of a dataset often

resulting in more robust learning models. The first FS case study involved seven fea-

ture selection techniques and seven machine learners. Features were extracted using

the SWT algorithm and fused using the feature-level approach that was previously

identified as yielding satisfactory results. The performances of models built using the

top 3, 4, 5, 7 and 10 features identified by each FS technique were analyzed and com-

pared against those of models built using all features. The second FS study compared

the performances of four machine learners when trained on all features against their

performances when trained on a subset of 2, 4, 6, 8, 10 and 15 features selected by

five different feature selection techniques.

This second study differs from the first in the way models are evaluated. The

observed performances of the learners in the first study assumed that new, incom-

ing data would share similar characteristics as those data used to build the models.

This is highly unlikely in a live ocean turbine system as its environmental conditions

and operating parameters, like its rotational velocity, continuously fluctuate during

operation. In this second FS study, we test models on data collected while the dy-

namometer operated at a different speed than the one at which the data used to build

the models was collected. We selected STWTB as the vibration analysis (and feature

extraction) approach of choice for the third study in that chapter based on findings

from a previous study [151]. Further justification for this choice is presented in the

published paper [46]. In both studies, the models built from 5-Nearest Neighbors

(5-NN) and Logistic Regression (LR) yielded the best results. These results show

how using just a subset of wavelet transform features extracted from the vibration

signal, we can achieve similar or better results than when all features are used. This

169

is particularly true for the 5-NN, Naive Bayes (NB) and LR algorithms with the 5-NN

and LR learners generating perfect models from just 8 and 2 features respectively.

The NB model was also near perfect when trained on just the top 8 features selected

using the PRC feature ranking technique.

A scenario that must also be accounted for is that, in the dataset used to build our

models, there will be significantly fewer examples of problem states than there will be

of normal operation. Experiments in Chapter 8 investigate how varying degree of class

imbalance will affect various learners. These experiments extend one of our published

studies [37] which performed a similar analysis but at a much smaller scale. Findings

confirm that the combination of the STWTB vibration analysis method, decision-

level fusion approach and either the 5-Nearest Neighbor or Multi-Layer Perceptron

produce an excellent candidate model for an ocean turbine state detection module.

The Condition Monitoring Software System (CMSS) tool proposed in Chapter 9

and presented in our related work [34] brings the entire process together. Presented

in that chapter are specifics of how the proposed data-driven MCM/PHM approach

for this ocean turbine prototype could be realized and implemented.

10.2 FUTURE WORK

Opportunities for future work include:

• In all of these experiments, only binary classification (distinguishing between

two states) was considered. Multi-class classification remains for future work.

• Missing from the current implementation of the CMSS are the health assess-

ment, prognostics and advisory generation processes which remain. Next steps

would involve experimentation with various data mining, machine learning and

data fusion strategies for conducting health assessment and prognostics and

170

the integration of these remaining modules (health assessment, prognostics and

advisory generation) into the CSS.

• Data fusion approaches employed in these studies assume that all sources are

equally reliable and that the data or information being combined emanated

from the same type of format (and hence exists in the same format). As there

are many different types of sensors and data sources that would comprise a

complete MCM/PHM system, appropriate fusion techniques must be employed

to combine the data at different points within the system. Evaluation of other

fusion algorithms such as those listed in a survey paper compiled by our team

[41] is therefore also necessary future work.

• It will also be necessary to evaluate said vibration analysis, data fusion and

data mining techniques on vibration data gathered from the live ocean turbine.

At the time our research was conducted, the ocean turbine was still under

development.

171

BIBLIOGRAPHY

[1] Agena Ltd. Agenarisk software package, 2011.

[2] D. Aleksendric and D. C. Barton. Neural network prediction of disc brake
performance. Tribology International, 42(7):1074–1080, 2009.

[3] W. Altidor, T. Khoshgoftaar, and J. V. Hulse. Robustness of filter-based feature
ranking: A case study. In Proceedings of the Florida Artificial Intelligence
Research Society (FLAIRS’11) Conference, 2011.

[4] P.-P. Beaujean, T. M. Khoshgoftaar, J. C. Sloan, N. Xiros, and D. Vendittis.
Monitoring Ocean Turbines: A Reliability Assessment. In Proceedings of the
15th ISSAT International Reliability and Quality in Design Conference, pages
367–371, 2009.

[5] R. Bhowmik. Data mining techniques in fraud detection. Journal of Digital
Forensics, Security and Law, 3(2), 2008.

[6] H. Boudali and J. B. Dugan. A continuous-time bayesian network reliability
modeling, and analysis framework. IEEE Transactions on Reliability, 55(1):86–
97, 2006.

[7] L. Breiman. Random Forests. In Machine Learning, pages 5–32, 2001.

[8] S. Budhaditya, D.-S. Pham, M. Lazarescu, and S. Venkatesh. Effective anomaly
detection in sensor networks data streams. In Ninth IEEE International Con-
ference on Data Mining, 2009. ICDM ’09, pages 722–727, Dec, 2009.

[9] M. D. Buhmann and M. D. Buhmann. Radial Basis Functions. Cambridge
University Press, New York, NY, USA, 2003.

[10] C. S. Byington and A. K. Garga. Data Fusion for Developing Predictive Di-
agnostics for Electromechanical Systems. In M. E. Liggins, D. L. Hall, and
J. Llinas, editors, Handbook of Multisensor Data Fusion – Theory and Practice,
Second Edition, chapter 28, pages 701–737. CRC Press, City, State or Country,
2008.

[11] Y. D. Cai, D. Clutter, G. Pape, J. Jan, M. Welge, and L. Auvil. Maids: Mining
alarming incidents from data streams. Proceedings of the 23rd ACM SIGMOD

172

International Conference on Management of Data, pages 13–18, Jun. 2004.
Paris, France.

[12] I. Cardei, A. Agarwal, B. Alhalabi, T. Tavtilov, T. Khoshgoftaar, and P.-P.
Beaujean. Software and communications architecture for Prognosis and Health
Monitoring of ocean-based power generator. In IEEE International Systems
Conference (SysCon), 2011, pages 353–360, Apr. 2011.

[13] S. Ceccherini, B. Carli, U. Cortesi, S. D. Bianco, and P. Raspollini. Retrieval
of the vertical column of an atmospheric constituent from data fusion of re-
mote sensing measurements. Journal of Quantitative Spectroscopy and Radia-
tive Transfer, 111(3):507 – 514, 2010.

[14] D. Charalampidis and B. Muldrey. Clustering using multilayer perceptrons.
Nonlinear Analysis: Theory, Methods & Applications, 71(12):e2807 – e2813,
2009.

[15] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence
Research, 16:321–357, 2002.

[16] G. Chen, J. Xu, and X. Xiang. Neighborhood Preprocessing SVM for Large-
Scale Data Sets Classification. In Proceedings of the 2008 Fifth International
Conference on Fuzzy Systems and Knowledge Discovery - Volume 02, FSKD
’08, pages 245–249, Washington, DC, USA, 2008. IEEE Computer Society.

[17] K. Chen, L. Wang, and H. Chi. Methods of combining multiple classifiers with
different features and their applications to text-independent speaker identifica-
tion. International Journal of Pattern Recognition and Artificial Intelligence,
11:417–445, 1997.

[18] Q. Cheng, P. Varshney, J. Michels, and C. Belcastro. Distributed Fault De-
tection with Correlated Decision Fusion. IEEE Transactions on Aerospace and
Electronic Systems, 45(4):1448–1465, Oct. 2009.

[19] S. Cho, S. Binsaeid, and S. Asfour. Design of multisensor fusion-based tool con-
dition monitoring system in end milling. The International Journal of Advanced
Manufacturing Technology, 46:681–694, 2010. 10.1007/s00170-009-2110-z.

[20] K. Choi, S. Singh, A. Kodali, and K. R. Pattipati. Novel Classifier Fusion
Approaches for Fault Diagnosis in Automotive Systems. IEEE Transactions on
Instrumentation and Measurement, pages 602–611, 2009.

[21] W. W. Cohen. Fast Effective Rule Induction. In Proceedings of the Twelfth
International Conference on Machine Learning, pages 115–123, 1995.

173

[22] D. C. Conner, P. R. Kedrowski, and C. F. Reinholtz. Multiple camera, laser
rangefinder, and encoder data fusion for navigation of a differentially steered 3-
wheeled autonomous vehicle. In Proceedings of SPIE, the International Society
for Optical Engineering, pages 76–83, 2001.

[23] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data
streams. In Scientific Data Mining (SDM), 2005.

[24] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Compressing historical
information in sensor networks. In SIGMOD ’04: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages 527–538,
New York, NY, USA, 2004. ACM.

[25] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy. Rethinking data man-
agement for storage-centric sensor networks. In CIDR 2007, Third Biennial
Conference on Innovative Data Systems Research, pages 22–31, Asilomar, CA,
USA, Jan. 2007.

[26] P. Domingos and M. J. Pazzani. On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. Machine Learning, 29:103–130, 1997.

[27] J. Don and Z. Wang. Effects of anti-oxidant migration on friction and wear of c/c
aircraft brakes. Applied Composite Materials, 16:73–81, 2009. 10.1007/s10443-
008-9075-1.

[28] J. Dong, D. Zhuang, Y. Huang, and J. Fu. Advances in Multi-Sensor Data
Fusion: Algorithms and Applications. Sensors, 9(10):7771 – 7784, 2009.

[29] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
pages 1289–1306, 2004.

[30] F. R. Driscoll, G. M. Alsenas, P. P. Beaujean, S. Ravenna, J. Raveling, E. Bu-
sold, and C. Slezycki. A 20 kW open ocean current test turbine. In Proceedings
of the MTS/IEEE Oceans ’08, pages 1–6, Quebec City, Quebec, Canada, Sept.
2008.

[31] D. Dubois and H. Prade. Possibility Theory and Data Fusion in Poorly Informed
Environments. Control Engineering Practice, 2(5):811–823, 1994.

[32] J. Duhaney and T. M. Khoshgoftaar. Comparing Sensor Fusion Approaches
for Ocean Turbine Monitoring and Reliability. Technical report, Department of
Computer and Electrical Engineering and Computer Science at Florida Atlantic
University, Boca Raton, FL, USA, 2010.

174

[33] J. Duhaney and T. M. Khoshgoftaar. A Study on Class Imbalance in Ocean
Turbine Fault Data. Technical report, Department of Computer and Electrical
Engineering and Computer Science at Florida Atlantic University, Boca Raton,
FL, USA, 2012.

[34] J. Duhaney and T. M. Khoshgoftaar. CMSS: A Software Tool for Monitoring
Ocean Turbines. Technical report, Department of Computer and Electrical
Engineering and Computer Science at Florida Atlantic University, Boca Raton,
FL, USA, 2012.

[35] J. Duhaney and T. M. Khoshgoftaar. Fusing Wavelet Features for Ocean Tur-
bine Fault Detection. Technical report, Department of Computer and Electrical
Engineering and Computer Science at Florida Atlantic University, Boca Raton,
FL, USA, 2012.

[36] J. Duhaney and T. M. Khoshgoftaar. Decision level fusion of wavelet features
for ocean turbine state detection. In Eleventh International Conference on
Machine Learning and Applications (ICMLA 2012), forthcoming 2012.

[37] J. Duhaney and T. M. Khoshgoftaar. Studying the Effect of Class Imbalance
in Ocean Turbine Fault Data on Reliable State Detection. In Eleventh In-
ternational Conference on Machine Learning and Applications (ICMLA 2012),
forthcoming 2012.

[38] J. Duhaney, T. M. Khoshgoftaar, A. Agarwal, and J. C. Sloan. Mining and
Storing Data Streams for Reliability Analysis. In Proceedings of the 16th ISSAT
International Reliability and Quality in Design Conference, pages 314 – 318,
Washington D.C., USA, August 2010.

[39] J. Duhaney, T. M. Khoshgoftaar, I. Cardei, B. Alhalabi, and J. C. Sloan. Ap-
plications of Data Fusion in Monitoring Inaccessible Ocean Machinery. In Pro-
ceedings of the 16th ISSAT International Reliability and Quality in Design Con-
ference, pages 308 – 313, Washington D.C., USA, August 2010.

[40] J. Duhaney, T. M. Khoshgoftaar, I. Cardei, B. Alhalabi, and J. C. Sloan. Data
and Knowledge Fusion for MCM/PHM in Inaccessible Ocean Systems. Techni-
cal report, Department of Computer and Electrical Engineering and Computer
Science at Florida Atlantic University, Boca Raton, FL, USA, 2010.

[41] J. Duhaney, T. M. Khoshgoftaar, and J. C. Sloan. Data Fusion for Reliability
Analysis: A Survey. Technical report, Department of Computer and Electrical
Engineering and Computer Science at Florida Atlantic University, Boca Raton,
FL, USA, 2011.

175

[42] J. Duhaney, T. M. Khoshgoftaar, and J. C. Sloan. Feature level sensor fu-
sion for improved fault detection in MCM systems for ocean turbines. In Pro-
ceedings of the 24th Florida Artificial Intelligence Research Society Conference
(FLAIRS’24), pages 15–20, 2011.

[43] J. Duhaney, T. M. Khoshgoftaar, and J. C. Sloan. Feature Selection on Dy-
namometer Data for Reliability Analysis. In Proceedings of the 23rd IEEE In-
ternational Conference on Tools with Artificial Intelligence (ICTAI’11), pages
1012–1019, 2011.

[44] J. Duhaney, T. M. Khoshgoftaar, and J. C. Sloan. A survey of data fusion algo-
rithms for reliability analysis. In Proceedings of the 17th ISSAT International
Reliability and Quality in Design Conference, pages 344–348, 2011.

[45] J. Duhaney, T. M. Khoshgoftaar, J. C. Sloan, B. Alhalabi, and P. P. Beau-
jean. A Dynamometer for an Ocean Turbine Prototype – Reliability Through
Automated Monitoring. In Proceedings of the 13th IEEE International High
Assurance Systems Engineering Symposium, pages 244–251, Boca Raton, FL,
USA, 2011.

[46] J. Duhaney, T. M. Khoshgoftaar, and R. Wald. Applying feature selection
to short time wavelet transformed vibration data for reliability analysis of an
ocean turbine. In Eleventh International Conference on Machine Learning and
Applications (ICMLA 2012), forthcoming 2012.

[47] J. Duhaney, T. M. Khoshgoftaar, R. Wald, and P. P. Beaujean. Fusion of
Wavelet Transform Features for Reliable Fault Detection within an Ocean Tur-
bine MCM System. In Proceedings of the 18th ISSAT International Reliability
and Quality in Design Conference, pages 23 – 27, 2012.

[48] J. Duhaney, T. M. Khoshgoftaar, R. Wald, and J. C. Sloan. Classifier Ro-
bustness to Missing Values – a Case Study in Ocean Turbine State Detec-
tion. Technical report, Department of Computer and Electrical Engineering
and Computer Science at Florida Atlantic University, Boca Raton, FL, USA,
2011.

[49] Z. Elouedi, K. Mellouli, and P. Smets. Assessing Sensor Reliability for Multi-
sensor Data Fusion Within the Transferable Belief Model. IEEE Transactions
on Systems, Man and Cybernetics, Part B, 34(1):782–787, Feb. 2004.

[50] J. Esteban, A. Starr, R. Willetts, P. Hannah, and P. Bryanston-Cross. A review
of data fusion models and architectures: towards engineering guidelines. Neural
Computing and Applications, 14(4):273–281, 2005.

176

[51] S. Fabre, A. Appriou, and X. Briottet. Sensor Fusion Integrating Contextual
Information. International Journal of Uncertainty, Fuzziness & Knowledge-
Based Systems, 9(3):369, 2001.

[52] C. Fan, Z. Jin, J. Zhang, and W. Tian. Application of multisensor data fusion
based on RBF neural networks for fault diagnosis of SAMS. In Control, Automa-
tion, Robotics and Vision, 2002. ICARCV 2002. 7th International Conference
on, volume 3, pages 1557 – 1562, Dec. 2002.

[53] W. Fan. Systematic data selection to mine concept-drifting data streams. Pro-
ceedings of the SIGKDD04, pages 128–137, 2004.

[54] A. Folleco, T. M. Khoshgoftaar, J. V. Hulse, and L. A. Bullard. Software
quality modeling: The impact of class noise on the random forest classifier. In
Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008,
pages 3853–3859, 2008.

[55] R. Fraiman, A. Justel, and M. Svarc. Pattern recognition via projection-based
kNN rules. Computational Statistics & Data Analysis, 54(5):1390–1403, 2010.

[56] H. Freeman and O. Lowenschuss. Bibliography of sampled-data control systems
and z-transform applications. IRE Transactions on Automatic Control, 4(1):28
– 30, Mar. 1958.

[57] M. M. Gaber, S. Krishnaswamy, and A. Zaslavsky. Ubiquitous data stream
mining. In The Eighth Pacific-Asia Conference on Knowledge Discovery and
Data Mining, Sydney, Australia, May 2004.

[58] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data streams: a
review. SIGMOD Record, 34(2):18–26, 2005.

[59] D. Ganesan, B. Greenstein, D. Perelyubskiy, D. Estrin, and J. Heidemann.
An evaluation of multi-resolution storage for sensor networks. In SenSys ’03:
Proceedings of the 1st international conference on Embedded networked sensor
systems, pages 89–102, New York, NY, USA, 2003. ACM.

[60] K. Gao, T. M. Khoshgoftaar, and A. Napolitano. Stability of Filter-Based
Feature Selection Methods for Imbalanced Software Measurement Data. In
Proceedings of the 24th International Conference on Software Engineering &
Knowledge Engineering (SEKE’2012), pages 74–79, Jul. 2012.

[61] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya. Choosing software
metrics for defect prediction: an investigation on feature selection techniques.
Software: Practice and Experience, 41(5):579–606, 2011.

177

[62] V. Garćıa, J. S. Sánchez, R. A. Mollineda, R. Alejo, and J. M. Sotoca. The
class imbalance problem in pattern classification and learning. In F. J. F.-T.
et al, editor, II Congreso Español de Informática, pages 283–291, Zaragoza,
2007. Thomson.

[63] N. A. Giacobe. Application of the JDL data fusion process model for cyber
security. In J. J. Braun, editor, Multisensor, Multisource Information Fusion:
Architectures, Algorithms, and Applications 2010, volume 7710, page 77100R.
SPIE, 2010.

[64] A. H. Gunatilaka and B. A. Baertlein. Feature-level and decision-level fusion
of noncoincidently sampled sensors for land mine detection. IEEE transactions
on Pattern Analysis and Machine Intelligence, 23:577–589, 2001.

[65] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou. On the class imbalance
problem. In Proceedings of the 2008 Fourth International Conference on Natural
Computation - Volume 04, ICNC ’08, pages 192–201, Washington, DC, USA,
2008. IEEE Computer Society.

[66] D. L. Hall and S. A. H. Mcmullen. Mathematical Techniques in Multisensor Data
Fusion (Artech House Information Warfare Library). Artech House Publishers,
March 2004.

[67] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten. The WEKA data mining software: an update. SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[68] S. Hashemi, Y. Yang, Z. Mirzamomen, and M. Kangavari. Adapted one-versus-
all decision trees for data stream classification. IEEE Transactions on Knowl-
edge and Data Engineering, 21(5):624–637, 2009.

[69] R. Herrtwich. Timed data streams in continuous-media systems. Technical
Report TR-90-017, International Computer Science Institute, Berkley CA, May
1990.

[70] C. Hiransoog and C. Malcolm. Multi-sensor/knowledge fusion. In Proceedings of
the 1999 IEEE/SICE/RSJ International Conference on Multisensor Fusion and
Integration for Intelligent Systems, 1999. MFI ’99., pages 117–122, Malcolm,
CA, USA, Aug. 1999.

[71] J. Huang and C. Ling. Using AUC and accuracy in evaluating learning algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 17(3):299 –
310, Mar. 2005.

[72] J. V. Hulse and T. Khoshgoftaar. Knowledge discovery from imbalanced and
noisy data. Data and Knowledge Engineering, 68(12):1513–1542, Dec 2009.

178

[73] IEEE Standard Glossary of Software Engineering Terminology. USA, December
1990. IEEE Std 610.12-1990.

[74] International Organization for Standardization. ISO 13374. Condition Mon-
itoring and Diagnostics of Machines – Data Processing, Communication and
Presentation.

[75] N. Japkowicz. The Class Imbalance Problem: Significance and Strategies. In
In Proceedings of the 2000 International Conference on Artificial Intelligence
(ICAI), pages 111–117, 2000.

[76] M. A. K. Jaradat and R. Langari. A hybrid intelligent system for fault detection
and sensor fusion. Applied Soft Computing, 9:415–422, Jan. 2009.

[77] P. Jayaswal, S. Verma, and A. Wadhwani. Application of ann, fuzzy logic and
wavelet transform in machine fault diagnosis using vibration signal analysis.
Journal of Quality in Maintenance Engineering, 16(2):190–213, 2010.

[78] A. D. Jurik and A. C. Weaver. Control, analysis and visualization of body
sensor streams. In International Symposium on Medical Information and Com-
munication Technology (ISMICT), Montreal, QC, Canada, Feb. 2009.

[79] A. Karlsson. Dependable and generic high-level information fusion – methods
and algorithms for uncertainty management. Technical Report HS-IKI-TR-07-
003, Institutionen för kommunikation och information, School of Humanities
and Informatics, University of Skövde, Sweden, 2007.

[80] T. Khoshgoftaar, L. Bullard, and G. K. Attribute Selection Using Rough Sets
in Software Quality Classification. International Journal of Reliability, Quality,
and Safety Engineering, 16(1):73 – 89, 2009.

[81] T. Khoshgoftaar, S. Zhong, and V. Joshi. Enhancing Software Quality Estima-
tion Using Ensemble-Classifier Based Noise Filtering. Intelligent Data Analysis:
An International Journal, 6(1):3 – 27, 2005.

[82] T. M. Khoshgoftaar, M. Golawala, and J. V. Hulse. An Empirical Study of
Learning from Imbalanced Data Using Random Forest. In ICTAI ’07: Pro-
ceedings of the 19th IEEE International Conference on Tools with Artificial
Intelligence, pages 310–317, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[83] T. M. Khoshgoftaar and J. Hulse. Imputation techniques for multivariate miss-
ingness in software measurement data. Software Quality Control, 16:563–600,
Dec. 2008.

179

[84] T. M. Khoshgoftaar, L. A. Nguyen, K. Gao, and J. Rajeevalochanam. Ap-
plication of an Attribute Selection Method to CBR-Based Software Quality
Classification. In Proceedings of the 15th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’03), pages 47–52, Sacramento, CA,
USA, Nov. 2003.

[85] T. M. Khoshgoftaar and J. van Hulse. Imputation techniques for multivariate
missingness in software measurement data. Software Quality Control, 16(4):563–
600, 2008.

[86] T. Kobayashi and D. L. Simon. Application of a Bank of Kalman Filters for
Aircraft Engine Fault Diagnostics. Technical report, National Aeronautics and
Space Administration (NASA), Cleveland OH, Glenn Research Center, 2003.

[87] E. Kuljanic and M. Sortino. Twem, a method based on cutting forces–
monitoring tool wear in face milling. International Journal of Machine Tools
and Manufacture, 45(1):29–34, 2005.

[88] M. Last. Online classification of nonstationary data streams. Intelligent Data
Analysis, 6(2):129–147, 2002.

[89] S. Le Cessie and J. C. Van Houwelingen. Ridge Estimators in Logistic Regres-
sion. Applied Statistics, 41(1):191–201, 1992.

[90] M. Lebold, K. McClintic, R. Campbell, C. Byington, and K. Maynard. Review
of vibration analysis methods for gearbox diagnostics and prognostics. Pro-
ceedings of the 54th Meeting of the Society for Machinery Failure Prevention
Technology, pages 623–634, May 2000.

[91] C.-H. Lee, C.-R. Lin, and M.-S. Chen. Sliding-window filtering: an efficient
algorithm for incremental mining. In Proceedings of the Tenth International
Conference on Information and Knowledge Management, CIKM ’01, pages 263–
270, New York, NY, USA, 2001. ACM.

[92] X. Li, P. S. Yu, B. Liu, and S.-K. Ng. Positive unlabeled learning for data
stream classification. In Proceedings of the SIAM International Conference on
Data Mining, SDM 2009, pages 257–268, Sparks, Nevada, USA, 2009.

[93] C. X. Ling and V. S. Sheng. Cost-sensitive Learning and the Class Imbalanced
Problem. In C. Sammut, editor, Encyclopedia of Machine Learning. Springer,
2011.

[94] L. Liu, A. Wang, M. Sha, X. Sun, and Y. Li. Optional SVM for Fault Diagnosis
of Blast Furnace with Imbalanced Data. ISIJ International, 51(9):1474–1479,
2011.

180

[95] S. Liu and S. Liu. An efficient expert system for machine fault diagnosis.
International Journal of Advanced Manufacturing Technology, 21(9):691–698,
2003.

[96] X. Liu, L. Ma, and J. Mathew. Rotating machinery fault diagnosis based on
fuzzy data fusion techniques. In 2nd World Congress on Engineering Asset
Management and the 4th International Conference on Condition Monitoring,
pages 1309–1318, Harrogate, England, Jun. 2007.

[97] Y. Liu. Imbalanced text classification: A term weighting approach. Expert Sys-
tems with Applications, 36(1):690–701, 2009. doi:10.1016/j.eswa.2007.10.042;
pmid:.

[98] Z. Liu, D. Forsyth, J. Komorowski, K. Hanasaki, and T. Kirubarajan. Sur-
vey: State of the Art in NDE Data Fusion Techniques. IEEE Transactions on
Instrumentation and Measurement, 56(6):2435 – 2451, Dec. 2007.

[99] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White. Revis-
iting the JDL Data Fusion Model II. In Proceedings of the Seventh International
Conference on Information Fusion (FUSION 2004), pages 1218–1230, 2004.

[100] Z. Ma and A. Survival. Survival analysis approach to reliability, survivability
and prognostics and health management (phm). In Aerospace Conference, 2008
IEEE, pages 1 –20, Mar. 2008.

[101] T. Marwala. Introduction to missing data. Computational Intelligence for Miss-
ing Data Imputation, Estimation, and Management: Knowledge Optimization
Techniques, pages 1 – 18, 2009.

[102] M. Mazzucco, A. Ananthanarayan, R. L. Grossman, J. Levera, and G. B. Rao.
Merging multiple data streams on common keys over high performance net-
works. In Supercomputing ’02: Proceedings of the 2002 ACM/IEEE conference
on Supercomputing, pages 1–12, Los Alamitos, CA, USA, 2002. IEEE Computer
Society Press.

[103] MIMOSA. OSA-CBM V3.3.0, 2010.

[104] Minerals Management Service. Technology White Paper on Ocean Current
Energy Potential on the U.S. Outer Continental Shelf, May 2006.

[105] M. Mjit. Methodology for fault detection and diagnostics in an ocean turbine
using vibration analysis and modeling. Masters, Florida Atlantic University,
777 Glades Road, Boca Raton FL 33431, 2009.

[106] Z. P. Mourelatos and J. Zhou. Reliability Estimation and Design with Insuffi-
cient Data Based on Possibility Theory. In 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, volume 43, pages 1696 – 1705, 2004.

181

[107] M. Neil, N. Fenton, S. Forey, and R. Harris. Using Bayesian Belief Networks
to Predict the Reliability of Military Vehicles. International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems (IJUFKS), Special issue on
management of uncertainty and imprecision in multimedia information systems,
12(1):11–20, 2001.

[108] M. Neil, N. Fenton, and D. Marquez. Using Bayesian Networks and Simulation
for Data Fusion and Risk Analysis. NATO Science for Peace and Security
Series: Information and Communication Security, 13, 2007.

[109] M. Neil, P. Krause, and N. E. Fenton. Software quality prediction using bayesian
networks. In T. M. Khoshgoftaar, editor, Software Engineering with Computa-
tional Intelligence, chapter Chapter 6. Kluwer, 2003.

[110] T. M. Nguyen, J. Schiefer, and A. M. Tjoa. Sense & response service architecture
(SARESA): an approach towards a real-time business intelligence solution and
its use for a fraud detection application. In DOLAP ’05: Proceedings of the 8th
ACM international workshop on Data warehousing and OLAP, pages 77–86,
New York, NY, USA, 2005. ACM.

[111] G. Niu, T. Han, B.-S. Yang, and A. C. C. Tan. Multi-agent decision fusion for
motor fault diagnosis. Mechanical Systems and Signal Processing, 21(3):1285 –
1299, 2007.

[112] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries
over distributed data streams. In SIGMOD ’03: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pages 563–574,
New York, NY, USA, 2003. ACM.

[113] M. E. Orlowska, X. Sun, and X. Li. Can exclusive clustering on streaming data
be achieved? SIGKDD Explorations Newsletter, 8(2):102–108, 2006.

[114] R. Orsagh, J. Sheldon, and C. Klenke. Prognostics/diagnostics for gas tur-
bine engine bearings. In Proceedings of the 2003 IEEE Aerospace Conference,
volume 7, pages 3095–3103, Mar. 2003.

[115] M. Oussalah, H. Maaref, and C. Barret. Application of a possibilitic-based
approach to mobile robotics. Journal of Intelligent and Robotic Systems, 38:175–
195, Oct. 2003.

[116] R. Pan. A Unifying Approach to Data Fusion for Reliability Prediction. In
Proceedings of Mathematical Methods in Reliability (MMR 2009), pages 173 –
177, June 2009.

182

[117] C. Parikh, M. Pont, and N. Jones. Application of Dempster-Shafer Theory in
Condition Monitoring Applications: A Case Study. Pattern Recognition Letters,
22(6-7):777–785, May 2001.

[118] Z. K. Peng and F. L. Chu. Application of the wavelet transform in machine con-
dition monitoring and fault diagnostics: a review with bibliography. Mechanical
Systems and Signal Processing, 18(2):199–221, 2004.

[119] C. S. Penrod and T. J. Wagner. Another Look at the Edited Nearest Neighbor
Rule. IEEE Transactions on Systems, Man and Cybernetics, 7(2):92–94, Feb.
1977.

[120] P. Pirjanian, J. A. Fayman, and H. I. Christensen. Improving Task Reliabil-
ity by Fusion of Redundant Homogeneous Modules Using Voting Schemes. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 425–430, 1997.

[121] J. C. Platt. Sequential minimal optimization: A fast algorithm for training sup-
port vector machines. Advances in Kernel Methods: Support Vector Learning,
208(MSR-TR-98-14):1–21, 1998.

[122] J. R. Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993.

[123] D. Raheja, J. Llinas, R. Nagi, and C. Romanowski. Data fusion/data mining-
based architecture for condition-based maintenance. International Journal of
Production Research, 44(14):2869–2887, Jul. 2006.

[124] A. Rao and D. Jones. A denoising approach to multisensor signal estimation.
IEEE Transactions on Signal Processing, 48(5):1225 –1234, May 2000.

[125] A. Rehman, D. R. Phalke, and R. Pandey. Alternative fuel for gas turbine:
Esterified jatropha oil-diesel blend. Renewable Energy, 36(10):2635 – 2640,
2011. Renewable Energy: Generation & Application.

[126] D. Ruta and B. Gabrys. An Overview of Classifier Fusion Methods. Computing
and Information Systems, 7:1 – 10, 2000.

[127] J. Rutten. A tutorial on coinductive stream calculus and signal flow graphs.
Theoretical Computer Science, 343(3):443 – 481, 2005. Formal Methods for
Components and Objects.

[128] F. Samadzadegan. Data Integration Related to Sensors, Data and Models. In
International Archives of Photogrammetry Remote Sensing and Spatial Infor-
mation Sciences (ISPRS), number 4 in 35, pages 569–574. Natural Resources
Canada, 2004.

183

[129] J. Sargolzaei and A. Kianifar. Modeling and simulation of wind turbine savonius
rotors using artificial neural networks for estimation of the power ratio and
torque. Simulation Modelling Practice and Theory, 17(7):1290 – 1298, 2009.

[130] N. Seliya, T. M. Khoshgoftaar, and J. V. Hulse. A study on the relationships of
classifier performance metrics. In Proceedings of the 2009 21st IEEE Interna-
tional Conference on Tools with Artificial Intelligence, ICTAI ’09, pages 59–66,
Washington, DC, USA, 2009. IEEE Computer Society.

[131] G. Shafer. Belief functions. In Readings in Uncertain Reasoning. Morgan Kauf-
mann Publishers, 1990.

[132] J. Sherman, R. Davis, W. Owens, and J. Valdes. The autonomous underwater
glider ”Spray”. Oceanic Engineering, IEEE Journal of, 26(4):437 – 446, Oct.
2001.

[133] M. L. Sichitiu and C. Veerarittiphan. Simple, accurate time synchronization
for wireless sensor networks. In IEEE Wireless Communications & Networking
Conference, 2003.

[134] P. Smets. The transferable belief model. Artifical Intelligence, 66:191–234, Apr.
1994.

[135] P. Smets. Data fusion in the transferable belief model. In Proceedings of the
International Conference on Information Fusion, pages 21–33, Paris, France,
Jul. 2000.

[136] D. Smith and S. Singh. Approaches to Multisensor Data Fusion in Target
Tracking: A Survey. IEEE Transactions on Knowledge and Data Engineering,
18(12):1696–1710, 2006.

[137] W. Staszewski. Wavelet Based Compression and Feature Selection for Vibration
Analysis. Journal of Sound and Vibration, 211:735–760, 1998.

[138] A. N. Steinberg, C. L. Bowman, and F. E. White. Revisions to the JDL Data
Fusion Model. Sensor Fusion: Architectures, Algorithms, and Applications,
Proceedings of the SPIE, 3719(1):430–441, 1999.

[139] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of real-time
stream processing. SIGMOD Record, 34(4):42–47, 2005.

[140] X. Su, T. M. Khoshgoftaar, and R. Greiner. Making an accurate classifier
ensemble by voting on classifications from imputed learning sets. International
Journal of Information and Decision Sciences (IJIDS), pages 301–322, 2009.

[141] Z. Sun and C. C. Chang. Structural damage assessment based on wavelet packet
transform. Journal of Structural Engineering, 128(10):1354–1361, 2002.

184

[142] Y. Tian, G. Weiss, D. Frank, and H. Q. Ma. A combinatorial fusion method
for feature mining. In Proceedings of KDD’07 Workshop on Mining Multiple
Information Sources, pages 6–13, 2007.

[143] I. Tomek. Two Modifications of CNN. IEEE Transactions on Systems, Man
and Cybernetics, SMC-6(11):769–772, Nov. 1976.

[144] J. Triesch and C. V. D. Malsburg. Democratic integration: Self-organized inte-
gration of adaptive cues. Neural Computation, 13(9):2049–2074, 2001.

[145] L. G. Valiant. A bridging model for parallel computation. Communications of
the ACM, 33(8):103–111, 1990.

[146] J. Van Hulse, T. Khoshgoftaar, and N. A. Experimental perspectives on learning
from imbalanced data. In Proceedings of the 24th International Conference on
Machine Learning - ICML 2007, Corvallis, OR, USA, Jun. 2007.

[147] J. Van Hulse and T. M. Khoshgoftaar. A comprehensive empirical evaluation
of missing value imputation in noisy software measurement data. Journal of
Systems and Software, 81(5):691–708, 2008.

[148] J. H. VanZwieten, W. E. Laing, and C. R. Slezycki. Efficiency assessment of an
experimental ocean turbine generator. In Proceedings of the MTS/IEEE Oceans
Conference, Kona, Hawai’i, U.S.A., Sep. 2011. IEEE Ocean Engineering Society.

[149] K. Veeramachaneni, L. Osadciw, A. Ross, and N. Srinivas. Decision-level fusion
strategies for correlated biometric classifiers. In Proceedings of IEEE Computer
Society Workshop on Biometrics at the Computer Vision and Pattern Recogni-
tion (CVPR) conference, pages 1–6, Anchorage, AK, USA, 2008.

[150] A. Verma and A. Kusiak. Fault Monitoring of Wind Turbine Generator Brushes:
A Data-Mining Approach. Journal of Solar Energy Engineering, 134(2):021001,
2012.

[151] R. Wald, T. M. Khoshgoftaar, and B. Alhalabi. A novel baseline-differencing
approach for creating generalizable reliability models of ocean turbine behavior.
In Proceedings of the 18th ISSAT International Reliability and Quality in Design
Conference, pages 1–5, Jul. 2012.

[152] R. Wald, T. M. Khoshgoftaar, P.-P. Beaujean, and J. C. Sloan. Combining
wavelet and fourier transforms in reliability analysis of ocean systems. In Pro-
ceedings of the 16th ISSAT International Reliability and Quality in Design Con-
ference, pages 303 – 307, Washington D.C., USA, 2010.

185

[153] R. Wald, T. M. Khoshgoftaar, P.-P. J. Beaujean, and J. C. Sloan. A review of
prognostics and health monitoring techniques for autonomous ocean systems. In
Proceedings of the 16th ISSAT International Reliability and Quality in Design
Conference, pages 308–313, Aug. 2010.

[154] R. Wald, T. M. Khoshgoftaar, and J. C. Sloan. Fourier transforms for vibration
analysis: A review and case study. In The 12th IEEE International Conference
on Information Reuse and Integration (IRI’11), pages 366–371, 2011.

[155] D. Wang, M. Altar, and R. Sampson. An experimental investigation on cavita-
tion, noise, and slipstream characteristics of ocean stream turbines. Proceedings
of the Institution of Mechanical Engineers, Part A: Journal of Power and En-
ergy, 221:219 – 231, 2007.

[156] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams
using ensemble classifiers. In KDD ’03: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 226–
235, New York, NY, USA, 2003. ACM.

[157] H. Wang, T. M. Khoshgoftaar, and N. Seliya. How many software metrics
should be selected for defect prediction? In R. C. Murray and P. M. McCarthy,
editors, FLAIRS Conference. AAAI Press, 2011.

[158] H. Wang, J. Yin, J. Pei, P. S. Yu, and J. X. Yu. Suppressing model overfit-
ting in mining concept-drifting data streams. In KDD ’06: Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 736–741, New York, NY, USA, 2006. ACM.

[159] N. Wiener. Extrapolation, Interpolation, and Smoothing of Stationary Time
Series. The MIT Press, 1964.

[160] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, 2 edition, 2005.

[161] R. Wolff, K. Bhaduri, and H. Kargupta. A Generic Local Algorithm for Mining
Data Streams in Large Distributed Systems. IEEE Transactions on Knowledge
and Data Engineering, 21(4):465 –478, Apr. 2009.

[162] J. Ye, K. Chen, T. Wu, J. Li, Z. Zhao, R. Patel, M. Bae, R. Janardan, H. Liu,
G. Alexander, and E. Reiman. Heterogeneous data fusion for alzheimer’s dis-
ease study. In KDD ’08: Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1025–1033, New
York, NY, USA, 2008. ACM.

186

[163] C. Zao, E. hui Zheng, H. wei Xu, and L. Chen. Cost-sensitive multi-class
svm with reject option: A method for steam turbine generator fault diagnosis.
International Journal of Computer Theory and Engineering (IJCTE), 3(1):77–
83, 2011.

[164] S. Zhang, Z. Jin, and X. Zhu. Missing data imputation by utilizing information
within incomplete instances. Journal of Systems and Software, 84:452–459,
Mar. 2011.

[165] X.-M. Zhao, X. Li, L. Chen, and K. Aihara. Protein classification with imbal-
anced data. Protein Science, 70:1125–1132, 2008.

187

	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Dissertation Structure

	Background
	Components of the Dynamometer
	MCM/PHM
	Data Acquisition (DA)
	Data Manipulation (DM)
	State Detection (SD)
	Health Assessment (HA)
	Prognostics Assessment (PA)
	Advisory Generation (AG)

	Overall Architecture

	Related Work
	Data Mining & Machine Learning
	Data Stream Mining
	Data Stream Management

	Data Fusion
	Uncertainty
	Imprecision
	Vagueness
	Incompleteness
	Inconsistencies
	Correlation

	Data Fusion Techniques
	Bayesian Theory
	Possibility Theory
	Fuzzy Set Theory
	Evidence Theory
	Other

	Conclusion

	Methodology
	Data Acquisition
	Data Manipulation/Transformation & Feature Extraction
	Streaming Wavelet Transform
	Short Time Wavelet Transform

	Fusion Techniques
	Data-Level Fusion
	Feature level fusion
	Decision level fusion

	Classifiers
	Feature Selection
	Data Imputation
	Performance Measures
	Performance Evaluation

	Data and Knowledge Fusion Framework for MCM/PHM in Inaccessible Ocean Systems
	Introduction
	Chapter Contributions
	Related Work
	Data Fusion

	Framework
	Case Study: Ocean Turbine MCM/PHM
	Applying the Framework
	Barrier Synchronization
	Inter-Sensor Data Fusion
	Intra-Component Data Fusion
	Inter-Component Data Fusion

	Experimental Setup
	Results

	Chapter Summary

	Preliminary Analysis of Data Mining & Sensor Fusion Techniques on Fan Data
	Introduction
	Contributions

	Experimental Setup
	Fan Experiment 1
	Fan Experiment 2
	Pre-Processing and Fusion

	Empirical Results
	Results for Fan Experiment 1
	Results for Fan Experiment 2

	Conclusion

	State Detection From Imperfect Data
	Introduction
	Contributions
	Case Study 1 – Missing Data
	Experimental Design
	Pre-Processing
	Classifiers
	Classification
	Performance Measures
	Results
	Data Imputation Results

	Case Study 2 – Feature Selection
	Feature Selection on SWT Data
	Results
	Feature Selection on STWTB Data
	Results

	Conclusion

	MCM/PHM In The Presence of Class Imbalance
	Introduction
	Contributions
	Background
	Data level approaches
	Algorithmic level approaches

	Related Work in Reliability Analysis Applications
	Methodology
	Learners
	Feature Level Fusion
	Decision Level Fusion

	Experimental Setup
	Data Acquisition
	Data Transformation
	Class Distributions
	Performance Measure

	Results & Analysis
	How does class imbalance in these datasets affect the results using the specified waveform analysis and machine learning techniques?
	Which learners are affected most and least by class imbalance in these datasets?
	Which data fusion approach is better suited for this problem?
	Which learners perform best regardless of the speed at which the training data was collected?
	What is the optimal combination of data fusion type (feature level or decision level) and learner?
	Analysis of Results

	Chapter Summary

	Condition Monitoring Software System (CMSS)
	Introduction
	CMSS
	Requirements
	Architecture
	Implementation

	Conclusion

	Conclusion and Future Work
	Conclusions
	Future Work

	Bibliography

