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Though several clinical monitoring ways exist and have been applied to detect cardiac
atrial fibrillation (A-Fib) and other arrhythmia, these medical interventions and the
ensuing clinical treatments are after the fact and costly. Current portable healthcare
monitoring systems come in the form of Ambulatory Event Monitors. They are small,
battery-operated electrocardiograph devices used to record the heart’s rhythm and
activity. However, they are not energy-aware; they are not personalized; they require long
battery life, and ultimately fall short on delivering real-time continuous detection of
arrhythmia and specifically progressive development of cardiac A-Fib. The focus of this
dissertation is the design of a class of adaptive and efficient energy-aware real-time
detection models for monitoring, early real-time detection and reporting of progressive
development of cardiac A-Fib. The design realizes the personalized energy-aware models

by using a baseline energy model and incorporating a real-time detection algorithm for



the onset of A-Fib using individual A-Fib risk factors, A-Fib incidence rates, and A-Fib
prevalence circadian windows. We combine ubiquitous smartphone platforms, Bluetooth
wireless personal area networking, and bio-sensing technology to derive personalized
energy models that rival today’s A-Fib monitoring devices. We compare the energy
contributed from each energy-aware model to the energy from the baseline model known
as the telemetry model. Given a low A-Fib risk factor, for an A-Fib incidence rate of
0.02, and a prevalence window of 4 hours, our energy-aware model reduces energy
consumption by as much as 66%. We further extend the detection of A-Fib to the
paroxysmal phase, and derive the total energy-aware model for the detection and
reporting of A-Fib from its onset to its final stage. The design promises to have a greater
positive public health impact from predicting A-Fib and providing a viable approach to
meeting the energy needs of current and future real-time monitoring, detecting and
reporting required in wearable computing healthcare applications that are constrained by

Scarce encergy resources.
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CHAPTER 1

1. INTRODUCTION

A plethora of mobile applications ranging from games to network services to healthcare
are growing in popularity and becoming an integral part of personal daily life. The
quality and the performance of these mobile applications are constantly improving. The
significant progress in mobile hardware technology, wireless personal area networking,
wireless security and bio-sensing technology using Bluetooth has helped propel the
smartphone platform into new areas of on-body healthcare monitoring and detection.
Future wearable computing devices will have the ability to continuously sense, analyze
and report medical ailments such as cardiac arrhythmia. They will also need to balance
innovative interfaces, energy management, network resources, and privacy concerns. In
addition, they must be ready, unrestrictive, not monopolizing of user attention, attentive
to the environment, useful as a communication tool, personal, observable and easily
controllable by the user. The devices have to be hands-free or espouse hands-limited
portability; they can be event-triggered or can run continuously. They must be cost-
effective to economically monitor a patient’s health on a continuous basis and rival the
more traditional, cumbersome and significantly more expensive, stationary monitoring
system located in an emergency room or a hospital. They must be able to collect
biomedical data continuously over a long period in advance of the start of a serious health
problem. Today, the traditional healthcare monitoring system takes only a small snapshot
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of data collected when a patient who is already sick, is admitted to the hospital or
emergency room. The focus of this dissertation is the design of a class of adaptive and
efficient energy-aware models for real-time monitoring, early detection and reporting of
progressive development of cardiac A-Fib. Wearable devices face high performance
requirements in the middle of energy constraint challenges. Studies and research suggest
various methods to minimize power consumption in mobile devices. Study [1] suggests a
trade-off between power-saving and detection accuracy or performance; they show how
power can be saved at the loss of a small amount of accuracy by applying different
techniques using a low power real-time epilepsy seizure detection algorithm. The authors
of [2] describe a framework that is used to reduce the energy consumption of sensors by
temporarily turning them off. In study [3], the battery life is extended by as much as 30%
through a collaborative relationship between the operating system and applications. In
[4], the authors propose ways to enable systems to trade computational accuracy for
resources by scaling down the data or feature set for use on a remote healthcare system.
The study reports significant resource savings for small amounts of utility degradation,
e.g., 33% of bandwidth saving for only a 1% of accuracy degradation. In project [5], the
battery life of a wireless healthcare system is optimized using a dynamic scheduling
technique by efficiently assigning tasks to the available resources. The dissertation
includes the implementation of a risk assessment algorithm and the design of an
incidence based A-Fib detection scheme for wearable healthcare computing devices.
Related work in biomedicine and information technology introduced various algorithms
for diagnosing and detecting different types of arrhythmia, and developed cardiovascular

disease prediction algorithms. The Framingham Heart study [6] developed a risk score to



calculate individual risk of developing atrial fibrillation and a development framework
for researcher. The work by [7] developed a prediction model to detect tachycardia and
send alerts to a designated care center for appropriate medical action. The research
funded by the Health Technology Assessment Program addresses the accuracy of
electrocardiogram (EKG a.k.a. ECG) for the diagnosis of A-Fib and the potential risk of
A-Fib misinterpretation errors [8]. A mobile medical device, dubbed HeartSaver [9] was
developed to monitor the onset of atrial fibrillation and other cardiac pathologies. Other
related work deals with the classification of arrhythmia and the performance of machine
learning algorithms such as OneR, J48 and Naive Bayes [10] but does not address logistic
regression, a machine learning algorithm adopted in this dissertation.

1.1 Motivation of the problem

Given the imminent healthcare crisis threatening the aging world population, especially
in developed countries, current healthcare systems and services are inadequate and mal-
structured. They are not fit to handle the necessary continuous healthcare monitoring for
the aging millions. They cannot proactively diagnose or predict ailments because patients
do not visit physicians frequently, and as a result, when they visit their doctor, problems
have already begun.

Today, most hospitals and medical institutions offer excellent inpatient care for major
chronic disease; however, they lack daily preventive care and interaction with their
outpatients, especially before and after surgery or hospital discharge, when diagnosing
some ailments such as cardiac A-Fib. The American College of Cardiology and the
American Heart Association define A-Fib as a supraventricular tachyarrhythmia

characterized by uncoordinated atrial activation accompanied by the deterioration of



atrial mechanical function. A-Fib is the most prevalent arrhythmia in the United States
and accounts for more than 750,000 strokes per year [11]. The cost to treat A-Fib in the
United States exceeds $6.4 billion per year [12]. Approximately four million Americans
suffer from recurrent arrhythmias. Serious arrhythmia is responsible for 500,000 deaths
annually [13]. Hospitals treat about 850,000 people annually for arrhythmia. The only
outpatient interaction occurs when seeing doctors, but people visit doctors rarely or
infrequently and typically visit them after problems have already started. The average
patient’s condition progressively deteriorates for five days before seeking emergency
treatment [14]. Only a small snapshot of data is collected when a patient who is already
sick, is admitted to the hospital or emergency room. Furthermore, current healthcare
monitoring and detection systems are expensive, cumbersome and generally restricted to
more populated areas.

Current portable healthcare monitoring systems come in the form of Ambulatory Event
Monitors. They are small, battery-operated electrocardiograph devices used to record the
heart’s rhythm. These on-body healthcare devices fall short on delivering real-time
continuous monitoring and detection, and are plagued by technological challenges, which
are exacerbated by energy constraints, process optimization problems, data security risks
and interference, among others. Developing and deploying new proactive healthcare
technologies will alleviate the looming crisis by extending services from hospitals into
homes all over the world. Typical wearable computing devices shown in Figure 1, will
keep people out of overburdened hospitals and emergency rooms by continuously

monitoring and providing feedback of a patient’s physiological and vital signals. They



will sense, store and process the acquired data on the local, on-body network, or on a
remote server.
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Figure 1: Monitoring and detecting A-Fib
1.2 Problem Statement
The goal of this dissertation is to deliver adaptive energy-aware models for the
monitoring, detection and reporting of progressive development of A-Fib. These energy

models would extend battery life in a wearable healthcare computing device.

The cost associated with the utilization of emergency rooms and hospitalization to treat
A-Fib is exorbitant [15]. The average direct cost of a patient with A-Fib was estimated to
be more than five times the cost of a non-AFIB individual [16]. Many healthcare

providers are actively seeking cost-effective solutions to monitor symptoms suggestive of



cardiac arrhythmias, i.e., palpitations, dizziness, or syncope, a brief loss of consciousness
caused by a temporary decrease in blood flow to the brain. Existing devices include
Ambulatory Event Monitors (AEMs) and outpatient cardiac telemetry. In-progress
development promises to deliver wearable healthcare computing devices that
continuously monitor physiological patient information, analyze and report abnormal
medical conditions. However, these niceties quickly drain the small device batteries. In
order for these devices to be ubiquitously adapted, biomedical researchers and computer
engineers need to solve central technological problems that deal with short battery life,
energy management and energy optimization.

1.2.1 Current AEMs and outpatient cardiac telemetry face challenges

Today, cardiac arrhythmia is diagnosed under the supervision of a physician using
various diagnostic methods and tools. Healthcare monitoring solutions are designed on a
fixed hardware and software platform. They are not modular and are instead implemented
as ‘one size fits all’. Current healthcare monitoring solutions do not adjust or adapt to
different users profiles or medical needs and analyses. Patients have to physically visit
health centers to receive devices and be hooked up, which is a transportation hardship for
many individuals who live in poor, remote areas. Current healthcare monitoring solutions
are designed to work over a scheduled or pre-programmed period of time, but monitoring
is ineffective for patients who experience infrequent symptoms outside the scheduled
period. Moreover, arrhythmia of very short duration would be difficult to record. Existing
event monitoring stores a limited number of events. The analysis feedback and results
are delayed because EKG data and logged patient’s daily activities are first downloaded

to a computer. Certified technicians and doctors in remote medical centers review and



analyze the data before a full report is generated and communicated to the patient. These
solutions are not seamless; they require patient interaction and device activation. The
devices are carried by the patient and activated when symptoms are present in order to
record the heart electrical impulses. The symptoms might last only a short period. The
procedure becomes impractical when the patient is incapacitated during symptomatic
periods.
1.2.1.1 Current solutions lack energy optimization
Energy optimization is not addressed in current solutions, and battery consumption is
not efficiently budgeted. Mobile computing introduces healthcare application
opportunities but provides new challenges. The major challenges stem from energy
shortage, limited CPU speed, constrained resources such as cache and on-board
memory, wireless data security and privacy risks, wireless network unpredictability,
latency and interference. Mobile computing healthcare applications are steadily on the
rise because mobile computing devices are getting less expensive, smaller and more
wearable. Today healthcare wearable computing requires flexible user
interface/interactivity, ‘plug and play’ functionality, and high performance computing.
These requirements impose severe hardship on energy-constrained mobile computing
environments.
1.3  Contributions
e The design of a class of adaptive and efficient energy-aware models for real-time
early detection of cardiac A-Fib that incorporate a real-time detection algorithm,
individual A-Fib risk factor, A-Fib incidence rate, and A-Fib prevalence circadian

window. For example, given an A-Fib risk factor, an A-Fib incidence rate of 0.02,



and a prevalence window of 4 hours, the proposed energy-aware model reduces
the energy consumption by as much as 66%.

Bridging the gap between health science and engineering by introducing machine-
learning techniques in deriving atrial fibrillation algorithms.

The design of A-Fib classification/detection algorithms using J48, Naive Bayes,
and logistic regression. Future work may use other techniques such as support
vector machines, neural networks, and Fast Fourier.

The selection of best fit A-Fib detection algorithm using performance
measurements and accuracy comparison. The logistic regression algorithm is
slightly more accurate and is selected for its ease of portability and embedding in
wearable devices.

The recognition of the A-Fib incidence rate as it relates to the positive rate of the
logistic regression detection algorithm. If the detection algorithm is as accurate as
the cardiologist’s interpretation of EKG readings, then having a detection positive
rate equal to the clinical incidence rate gives our energy-aware model the best
energy performance.

The discovery that the duration and distribution of A-Fib episodes during a
circadian cycle play important roles in scheduling the monitoring and detection of
A-Fib.

The assessment of individual A-Fib risk factors as they contribute to scheduling

the monitoring and detection of A-Fib.
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The validation of the proposed energy-aware models using a commercial heart
monitor device and demonstration of the efficiency of the proposed energy-aware
models.

Organization

The dissertation goal is to design adaptive, energy-aware schemes for the detection and

reporting of progressive development of cardiac A-Fib. It bridges both biomedical

research and computer engineering. The dissertation is divided into two main parts: The

first part includes chapters 2, 3 and 4, which contain medical and data mining literature

surveys. The second part includes chapters 5, 6, 7, 8, 9 and 10, which contain the design

of adaptive energy-aware models.

Chapters 2, 3 and 4 contain technical and medical literature to provide an
understanding of the heart’s electrical system, EKG Interpretation, types of
arrhythmia, current arrhythmia monitoring and detection methods, shortcomings
of Holter Monitors, event monitors, and mobile outpatient cardiac telemetry. They
survey machine-learning classification methods in healthcare, particularly the
logistic regression model and its classification detection accuracy measurements.
Studying the heart’s electrical system and the intrinsic electrical activity of the
heart under normal and abnormal heart rhythms is necessary for the interpretation
of EKG information related to A-Fib and for determining predictors for A-Fib
detection. Chapters 2, 3 and 4 are the subject of a book chapter titled “Cardiac
Arrhythmia Monitoring and Detection Techniques in Wearable Healthcare

Computing Device” [98].



Chapters 5, 6, 7, 8, 9, and 10 present the design of adaptive energy-aware models
for the real-time early detection and reporting of progressive development of
cardiac A-Fib [92][93]. The design realizes the primary and hybrid energy models
by incorporating features that include an A-Fib risk factor, an A-Fib incidence
rate, a prevalence window, and an A-Fib detection algorithm. As a prerequisite to
designing such energy models, the energy requirements for the current healthcare
monitoring devices and the energy requirements for wearable healthcare
computing devices are determined. Next, a telemetry energy model, which is used
as a reference, and the wearable computing energy models are developed. Using
the telemetry energy as reference, each energy model is compared to the telemetry
energy model. The results are validated using a two-lead EKG Heart Monitor
A102D7 device from Alive Technologies wirelessly connected to an Apple

MacBook computer via Bluetooth.
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CHAPTER 2

2. EKG INTERPRETATION AND ARRHYTHMIA MONITORING

Technical and medical literature surveyed provides an understanding of the heart’s
electrical system, EKG interpretation, types of arrhythmia, current arrhythmia monitoring
and detection methods, and the shortcomings of Holter Monitors, event monitors, and
mobile outpatient cardiac telemetry. Understanding how to detect cardiac arrhythmias
and more specifically A-Fib, which is the focus of this dissertation, is a prerequisite to
interpreting A-Fib detection results. Studying the heart’s electrical system and the
intrinsic electrical activity of the heart under normal and abnormal heart rhythms is
necessary for the interpretation of EKG information related to A-Fib and for determining
predictors for A-Fib. Current portable battery-operated arrhythmia monitoring devices
such as Holter monitors, event monitors, and Mobile Cardiac Outpatient Telemetry
monitors are analyzed in order to pinpoint their shortcomings concerning energy
awareness and detection of arrhythmia. Just as important, applying data mining and
machine-learning classification methods to healthcare monitoring and detection help

predict A-Fib.

2.1 Understanding the electrical system of the heart and arrhythmia
The following sections survey literature explaining the internal electrical system of the

heart and the different types of cardiac arrhythmias. First, we look at a normal cardiac
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sinus rhythm, then, learn how the heart activities are monitored and recorded on an EKG.
We identify A-Fib as being the most common cardiac arrhythmia as well as one of the
most dangerous.

2.1.1 Understanding the heart’s electrical system

Understanding the heart’s internal electrical system helps in understanding arrhythmia.
The heart’s electrical system controls the rate and rhythm of the heartbeat. With each
heartbeat, an electrical signal starts at the top of the heart and propagates to the bottom of

the heart. As the signal travels, it causes the heart to contract and pump blood.
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Figure 2: Chambers and valves of the heart
The heart muscle, or myocardium (Greek: myos = muscle, kardia = heart; Latin -tum =
diminutive), naturally contracts when it is electrically stimulated. The heart (see Figure 2)
has four chambers: right atrium, right ventricle, left atrium and left ventricle. The interior
of the heart muscle is made up of cells (myocytes). When the heart is at rest, myocytes
are negatively charged (polarized), whereas when the heart contracts the myocytes

become positively charged (depolarized) [17]. Some cells form heart connective tissue
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and other cells grow into heart valves. Muscle cells give the heart its ability to beat and
pump blood throughout the body. A single cell beats when a complex series of gates —
called ion channels - open and close in an organized manner. If the myocyte cells do not
beat in unison, heart arrhythmias can occur. Three ions, sodium ion (Na"), calcium ion
(Ca™) and potassium ion (K"), maintain the cardiac electrical system. The controlled
movement of Na' ions, Ca''ions, and K' ions provides the cardiac functions and
physiology. The sodium ions are responsible for initiating the myocyte depolarization as
well as the electrical conduction through the myocardium. The calcium ions are
responsible for the heart contractions. The potassium ions are responsible for the re-
polarization as well as the maintenance of the reference potential. The conduction system
keeps the heart beating in a normal rhythm and allows the continuous exchange of
oxygen-rich blood with oxygen-poor blood. Each electrical signal begins in a group of
cells called the sinus node, or sino-atrial (SA) node, located in the right atrium (the upper
right chamber of the heart). A normal, healthy adult heart at rest beats 60 to 100 times a
minute. The electrical signal (see Figures 2, 3 and 4), generated in the SA node, travels
through special pathways in the right and left atria and causes the atria to contract and
pump blood into the heart’s two lower chambers, the ventricles. When the electrical
signal reaches the atrio-ventricular (AV) node, located between the atria and the
ventricles, it is delayed to wait for the ventricles to fill with blood. Next, the electrical
signal leaves the AV node and travels along a pathway known as the Bundle of His. The
Bundle of His divides into a right bundle branch and a left bundle branch. The signal
goes down the right bundle branch and left bundle branch to the ventricles, causing them

to contract and pump blood out to the lungs and the rest of the body. The ventricles then
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relax, and the heartbeat process starts all over again in the SA node. A problem with any
part of this process can cause an arrhythmia.
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Figure 3: Understanding the heart’s electrical system

Doctors occasionally identify heart arrhythmias during a routine check-up. In some
people, arrhythmias do not provide any signs or symptoms, while in others; the signs and
symptoms of heart arrhythmias are very noticeable and may cause some distress. The
common symptoms of arrhythmia include a feeling of tiredness or light-headedness,

palpitations, pain in the chest, shortness of breath, and loss of consciousness.
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Figure 4: Intrinsic electrical activity of the heart [104]

2.1.2 Normal heart rhythm

A normal heartbeat begins when an electrical signal is sent by a tiny cluster of cells called
the sinus node. The signal then traverses the atria and passes through the atrio-ventricular
node. Next, the signal travels through the ventricles, causing them to contract and pump

out blood. The process recovers and repeats. Figure 5 explains a normal heart rhythm

process.
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1. The heart is a muscle that pumps blood
continuously. Each beat of the heart is initiated by an
electrical signal originating at the Sinoatrial node (SA).

EKG Diagram

2. When the right atrium is full of blood, the signal spreads
across the cells of the left and right atria causing the atria to
contract.
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3. The blood is squeezed through the open valves from the
atria into both ventricles. The contraction of the atria is
indicated by the P wave on the EKG.

16



ans
Compn

R Atrio-
ventricular
- « (AV) node

sagment || sogment

T

Right Ventricle ' Left Ventricle

4, The signal reaches the atrioventricular (AV) noce. There is a
100 msec delay to allow the ventricles to fill with blood,
represented by the line segment between P and Q wave.

Bundle
Branches

Purkinje
e AV bund : A ibers

Ventricular Depolarization
ft Ventricle
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left ventricle contracts slightly before the right ventricle.

» The contraction of the left ventricle is indicated by the R wave.

* The contraction of the right ventricle is marked by the S wave.
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Figure 5: Normal heart rhythm

2.1.3 EKG Interpretation

The standard 12-lead electrocardiogram is a depiction of the heart’s electrical activity
recorded from electrodes placed on specific locations on the body and translated into line
tracings on graph paper (see Table 1 for an example of electrocardiogram electrodes
placement). It plots the relative timing of a traveling impulse through the atria, AV
conduction system and ventricles on graph paper. The standard EKG is made up of 12
separate leads: six limb leads and six chest leads. A limb lead records signals from
electrodes connected to a left leg, a right arm and a left arm. A chest lead records signals
through suction cup electrodes positioned at six different positions on the chest. The
conditional standard for reading the EKG using the three locations for electrodes was
originally used by Willem Einthoven [99]. The EKG is recorded on 1 mm by 1 mm graph
paper (see Figures 6 and 7). It utilizes a long strip or a large sheet. Every fifth line is a
heavy line forming a square of 5 by 5 smaller squares. The graph has a time axis and an
amplitude (voltage) axis. A cardiac event is displayed as a wave that has height and

depth. The wave has either an upward or downward deflection or direction, and an

18



amplitude or magnitude. Segments of baseline may have elevation or depression. All

measurements are in millimeters (mm).
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Figure 6: EKG waves and intervals
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Figure 7: The EKG is recorded on 1 mm by 1 mm graph paper [17]

The EKG waves and intervals explained below are used to describe the heart electrical
signals (see Figure 6 and 7):
e P wave: The P wave represents the wave of depolarization that spreads from the
SA node throughout the atria, and is usually between 0.08 and 0.1 seconds in
duration. Atrial rate is calculated by determining the time interval between P

waves.
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PR interval: The PR interval is the period from the onset of the P wave to the
beginning of the QRS complex, which normally ranges from 0.12 to 0.20 seconds.
This interval represents the time between the onset of atrial depolarization and the
onset of ventricular depolarization.

QRS complex: The QRS complex represents ventricular depolarization consisting
of the Q, R, and S waves. Normally, the QRS interval is 0.06 to 0.10 sec.

QT interval: The QT interval is the time between onset of ventricular

depolarization and end of ventricular repolarization. The QT interval (< 0.44 sec)

ore = EL
must be corrected for heart rate using the J R where QT is the

corrected QT interval; R-R interval is the time between 2 QRS complexes.

ST segment: The ST segment represents completed ventricular myocardial
depolarization. Normally, it is horizontal along the baseline of the PR (or TP)
intervals or slightly off baseline.

T wave: The T wave reflects ventricular repolarization. It usually takes the same
direction as the QRS complex (concordance); opposite polarity (discordance) may
indicate past or current infarction.

The U wave’s origin is not clearly understood but the consensus is it
probably represents “after depolarization” in the ventricles.

The PP interval is the duration of the atrial cycle; it is an indicator of the

atrial rate.
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Electrode
label (in Electrode placement
the USA)

RA On the right arm, avoiding bony prominences.

LA In the same location that RA was placed, but on the left arm this time.

RL On the right leg, avoiding bony prominences.

LL In the same location that RL was placed, but on the left leg this time.
vi In the fourth intercostal space (between ribs 4 & 5) just to the right of the sternum
(breastbone).
V2 In the fourth inter-costal space (between ribs 4 & 5) just to the left of the sternum.
V3 Between leads V2 and V4. RA = Right
Arm
va In the fifth inter-costal space (between ribs 5 & 6) in the mid- clavicular line (the ~ |LA=Left Arm
imaginary line that extends down from the midpoint of the clavicle (collarbone). E:'; Right
LL = Left Le;
Horizontally even with V4, but in the anterior axillary line. (The anterior axillary
Vs line is the imaginary line that runs down from the point midway between the
middle of the clavicle and the lateral end of the clavicle; the lateral end of the "
collarbone is the end closer to the arm.)
V6 Horizontally even with V4 and V5 in the mid axillary line. (The mid axillary line is

the imaginary line that extends down from the middle of the patient's armpit.)

Table 1: Example of electrocardiogram electrodes placement

The 12-lead electrocardiogram is carefully measured and analyzed in order to determine
abnormalities of the waveforms. Usually, the analysis of the waveforms is performed in
the order in which they appear: P waves, QRS complexes, ST segments, T waves, and U
waves. The physician examines the P wave width and height, checks the QRS complex
width, the ST segments elevation and/or depression, the T wave height and direction, and
the U wave size and direction.

Though there are cases when atrial and ventricular rates are different, the phrase “heart
rate” typically refers to ventricular contractions but determining rates for both atrial and
ventricular rates is important. Using the EKG rhythm strip with recording taken from

Lead II, the atrial rate is determined by measuring the time intervals between P waves (P-
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R intervals) [18]. Similarly, ventricular rate is determined by measuring the time intervals

between the QRS complexes, or by measuring the R-R intervals (see Figure 8).

Standardization

H
i

Bipolar limb leads - >

Augmented unipolar
limb leads -

1 2 3 4
H <] B 0 <]
: I I '

| |
[ |
| |
|
:-_
| |
| |
| |
| |

Figure 8: Example of standard limb EKG leads and EKG record strip [101]
Ventricular rate measurements: Assuming the recording EKG strip speed of 25 mm/sec,
the following rates: 1500-300 - 150 - 100 - 75 - 60 may be used to calculate a heart rate:
Method 1: divide 1500 by the number of small squares between two R waves. The rate

between beats R1 and R2 in the above tracing is 68 beats per minute, i.e. 1500/22.
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Method 2: divide 300 by the number of large squares (red boxes in this diagram) between
two R waves. The rate between beats R1 and R2 in the above tracing is 68 beats per

minute, i.e. 300/4.4.

Method 3: count the number of large squares between two R waves with the following
rates: 300 - 150 - 100 - 75 - 60. For example, if there are four large squares between two
R waves, then the rate is 75 beats per minute. Extrapolation is sometimes needed between

squares.

Atrial rate measurement: Atrial rate measurements are calculated similarly to the

ventricular rate however, the P waves are used.

If the heart is in sinus rhythm and if there is a P wave for every QRS complete then the

atrial rate is equal to the ventricular rate.

If the rhythm is not consistent, that is the distances between the R waves are different, a
time-averaged rate over a 10 second interval or longer is calculated. Using the EKG
recording strip above where the recording time scale is 25 mm per second, the rate is 75
beats per minute if there are 12.5 beats in 10 seconds [17] [101].

2.1.4 Understanding cardiac arrhythmia and A-Fib

Cardiac arrhythmia, a common and mostly harmless condition, is defined by the presence
of irregular heartbeats. For many people, the experience usually goes unnoticed. They
feel as if the heart has skipped a beat, or has given an unexpected flutter. However, some
arrhythmia can be extremely dangerous and require medical treatment. Today, cardiac
arrhythmia is diagnosed under the supervision of a physician using various diagnostic

methods and tools. Arrhythmia could be due to strong emotions, excessive exercise,
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Coronary Artery Disease (CAD), electrolyte (i.e., Sodium or Potassium) imbalances in
the blood, changes in the heart muscle, injury from heart attack and the post-heart surgery
healing process. Sudden cardiac death (SCD) is a major cause of mortality in
industrialized nations [100]. People, especially the young, usually die from SCD
asymptomatically. Fatal arrhythmias are due to either genetic defects and/or mechanical
dysfunction and ischemic events (reduced blood supply to the heart). Patients who
survive life threatening ventricular arrhythmias remain at high risk of fatal arrhythmia.
The bad news: treatment for SCD has not progressed.
2.1.5 Types of Arrhythmia
Arrhythmia [19] varies in severity, point of origin, and the speed at which it causes the
heart to beat. Arrhythmia can be generally classified into three types, based on the heart
rate: Tachycardia, Bradycardia, and premature heartbeats. Tachycardia occurs when a
heartbeat is regular (i.e., sinus rhythm) but the rate is more than 100 beats per minute.
Bradycardia takes place when a heartbeat is regular but the rate is less than 60 beats per
minute. Premature heartbeats are revealed as an extra beat between two normal
heartbeats; they are generally not unsafe and do not damage the heart.

These arrhythmias are not necessarily dangerous unless they occur unexpectedly. During
an aerobic exercise or while having an anxiety attack, the normal heart rate is expected to
be greater than 100 beats per minute.

2.1.5.1 Atrial Arrhythmia:

These types of arrhythmia originate in the atria such as the A-Fib, the Atrial Flutter, and

the Supra-Ventricular Tachycardia (SVT).
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2.1.5.1.1 A-Fib:

The American College of Cardiology and the American Heart Association define A-Fib
as a supraventricular tachyarrhythmia characterized by uncoordinated atrial activation
accompanied by the deterioration of atrial mechanical function [19] [20]. On an EKG
diagram, A-Fib is characterized by the absence of P waves replaced by rapid oscillations
or irregular waves that vary in size, shape, and timing [20]. Normal rhythm begins in the
sino-atrial node but in A-Fib the electrical signals originate in a different part of the atria

where they become uncoordinated, with an irregular pattern (see Figure 9).

Sinoatrial
(SA| node ~

Atrial Fibrillation

Normal rhythm begins in the SA node but in A-Fib
the electrical signals originate in a different part of
the atria where they become chaotic, uncoordinated,
and irregular.

Abnormal quivering of
the ztria, signals firing
from multiple location

The AV node —unable in the atria

to prevent chaotic
signals from entering
the ventricles

Ventricles respond to
these extra, chaotic
signals by beating faster
than normal,

* During A-Fib, the ztria quiver rapidly and contract between 5
to 7 times faster than normal, beating at 300-400 beats/min

* Blood pools in the atria because it is not pumped efficiently
into the ventricles.

* A stroke may occur if blood clots form in the atria and travel
from the heart to the brain

Figure 9: A-Fib activity
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The atria pump the blood at an unusually fast and irregular rate without the heart fully
contracting. The heart’s two small upper chambers or atria quiver instead of beating
effectively. The heart may beat at about 300-400 beats per minute and contract between
five to seven times faster than normal. Blood may pool and clot because it is not pumped
completely out of the atria. A blood clot in the atria may end up lodged in an artery in the
brain, resulting in a stroke. A-Fib, a potentially dangerous condition, may lead to chronic

fatigue, heart rhythm problems, congestive heart failure and in extreme cases, a stroke.

A-Fib Type Defining Characteristics
First A-Fib Only one diagnosed episode that lasts longer than 30 seconds
detected when the heart is in and out of normal sinus rhythm.
Paroxysmal or — The heart is in and out of normal sinus rhythm.
intermittent A- — Episodes of A-Fib come and go on their own.
Fib — Episodes typically last less than 24 hours but can last up to

seven days before they terminate spontaneously.

Persistent A-Fib | — Episodes last longer than seven days.
— Episodes do not go away on their own.
— Medical treatment is necessary to restore normal sinus

rhythm.
Longstanding — Episodes of A-Fib are continuous.
persistent A-Fib | — Episodes last longer than one year.

Permanent A-Fib | A person’s irregular heartbeat does not return to normal sinus
rhythm, even with medical treatment.

Table 2: Progressive development of A-Fib
A-Fib is responsible for about 15 percent of the strokes occurring in people with A-Fib.
A-Fib is a condition found in 2.2 million Americans [21] but a study conducted by the
Mayo Clinic in Minnesota estimates that A-Fib would affect 15.9 million by 2050 [22].
The likelihood of developing A-Fib increases with age. Three to five percent of people

over age 65 have A-Fib [21][22]. After the first A-Fib is detected, there are four
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predominant types of A-Fib: Paroxysmal, persistent, longstanding persistent and
permanent (see Table 2).

2.15.1.2 Atrial Flutter:

Atrial Flutter is similar to A-Fib, except there is only a single electrical wave that
circulates very rapidly in the atria. The heart beats irregularly and rapidly, between 230-
380 beats per minute [19] [20].

2.1.5.1.3 Supra-Ventricular Tachycardia (SVT):

Usually not harmful, Supra-Ventricular (or Supraventricular) Tachycardia is a type of
tachycardia that originates either in the atria or in the middle region. It makes the heart
beat very fast in a regular rhythm for periods of time [19] [20].

2.1.5.1.4 Premature Atrial Contraction (PAC):

Premature Atrial Contraction (PAC) is a type of tachycardia that is common in children
and teenagers. PAC starts in the atria causing premature beats or extra beats that result in
irregular heart rhythms [19] [20].

2.1.5.1.5 Sick Sinus syndrome:

Sick Sinus syndrome occurs when the heart rhythm may switch between having
bradycardia (a slow heartbeat rate) and tachycardia (a fast heartbeat rate) because the
sino-atrial node does not fire the signals properly [19] [20].

2.1.5.1.6 Sinus Arrhythmia:

Sinus Arrhythmia is a condition in which the heart rate varies with breathing.

2.1.5.1.7 Sinus Tachycardia:

Sinus Tachycardia occurs when the heart experiences transient rapid heartbeat such as in

response to fever, excitement, anxiety, stress, or exercise.
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2.15.1.8 Wolff-Parkinson-White (WPW) syndrome:

Wolft-Parkinson-White (WPW) syndrome is the name given to episodes when there are
abnormal pathways for the electrical signals to travel between the atria and ventricles.
The electrical impulses go down one pathway from the atria to the ventricles and then
return to the atria through the other pathway, often accompanied with a fast heart rate
[19][20].

2.1.5.2 Ventricular Arrhythmias:

Ventricular Arrhythmias originate in the ventricles. They are typically fatal and therefore
require immediate medical attention [19] [20].

2.15.2.1  Ventricular Tachycardia (VT):

Ventricular Tachycardia (VT) is a rapid heartbeat that originates in the ventricles. The
heart beats at a rate of more than 100 beats per minute, with at least three irregular
heartbeats in a row [19] [20].

2.1.5.2.2 Premature Ventricular Contraction (PVC):

Premature Ventricular Contraction is a type of arrhythmia that originates in one of the
ventricles. It is caused by extra, abnormal heartbeats that disrupt the regular heart rhythm,
sometimes causing a feeling of a skipped beat. PVCs are very common in normal
children and teenagers [19] [20].

2.1.5.2.3 Ventricular Fibrillation:

Ventricular Fibrillation is a type of arrhythmia triggered by chaotic electrical activity,
which leads to rapid, unsynchronized ventricular contractions. The heart pumps little or
no blood during this episode of Ventricular Fibrillation, resulting in the patient’s collapse

or even sudden death [19] [20].
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2.1.6  Arrhythmia treatments

Drugs that treat arrhythmia are called anti-arrhythmic drugs. They affect ion channels
involved in the movement, suppressing arrhythmia by altering the movement of sodium,
calcium and potassium ions going in and out of the cell. As a result, they affect the
electrical activity of pacemaker and non-pacemaker cells.

The following sections survey literature on current arrhythmia testing methodology and
current portable healthcare monitoring systems. The different types of portable
arrhythmia testing devices and shortcomings are described.

2.1.7 Current arrhythmia monitoring and detection methods

Today, cardiac arrhythmia may be diagnosed under the supervision of a physician using
various methods and tools. Passive and active tests may be scripted to detect cardiac
arrhythmia ranging from blood tests, to electrocardiogram tests, to Holter monitoring, etc.
Passive tests are intended to check for cardiac arrhythmia during periods of normal
activity. Active tests are designed to induce arrhythmia in a closely monitored situation
so that it can be observed by a physician. Current portable healthcare monitoring systems
come in the form of Ambulatory Event Monitors (AEMs). They are small, portable
electrocardiograph (EKG) devices that are used to record the heart’s rhythm (Figure 10).
2.1.7.1  Holter monitor

A Holter monitor is a portable EKG recorder that is worn during normal daily activities
(including sleeping) over a period lasting typically 24 to 48 hours, in order to determine
whether there is a problem with the heart. The Holter monitor test offers a more
comprehensive picture of the heart’s health than the regular EKG, which monitors the

heart’s electrical activity during a short session in a doctor’s office. Its electrodes are
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placed on the skin of patient’s chest. Leads from the electrodes are connected to an
electronic box that is worn on a belt or carried with a shoulder strap. The electrical heart
impulses are continuously recorded and stored. A patient wearing a Holter monitor keeps
a diary of the daily activities and occurring symptoms, such as chest palpitations, rapid
heartbeats, feeling of dizziness or faintness. The logged activities and symptoms are
communicated to a physician. The data is downloaded to a computer and checked for any
heart rhythm abnormalities. A full report, including a printout of abnormal heart rhythms,
is generated.

2.1.7.2 Event monitor

Event monitoring is a diagnostic alternative to Holter monitoring in patients who
experience infrequent symptoms (less frequently than every 48 hours) suggestive of
cardiac arrhythmias (i.e., palpitations, dizziness, pre-syncope, or syncope). Electrodes are
placed on the skin of patient’s chest. Leads from the electrodes are connected to an
electronic box, which is worn on a belt or shoulder strap. When a patient feels symptoms,
he depresses a button to activate the recorder. The monitor records the heart electrical
impulses for 60 seconds prior to the button being pushed and up to 40 seconds
afterwards. The event monitor can store up to three events. The recorded data is
ultimately transmitted either to a physician’s office or to a central recording station. If the
reading indicates arrhythmia, the patient will be instructed to go to the emergency room.
2.1.7.3 Mobile Outpatient Cardiac Telemetry

Mobile Cardiac Outpatient Telemetry (MCOT) allows continuous heartbeat monitoring
lasting a few days. This device consists of a small sensor attached to three electrode pads,

worn either as a pendant on a chain around the neck or on a belt clip. The sensor sends
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each heartbeat to a handheld monitor. When the monitor detects a heart thythm problem,
it automatically transmits EKG information to the CardioNet [23] monitoring center. At
the CardioNet center, certified cardiac technicians analyze each transmission, respond
appropriately to each event and transmit diagnostic reports to the authorized physician.
The patient may use the touch screen on the CardioNet monitor to transmit the EKG from
any felt symptom to the CardioNet monitoring center. Integrated symptom and EKG data
can help doctors rule in, or rule out, cardiac causes for symptoms such as dizziness and

fainting.

Figure 10: Holter monitor (left and middle), Event monitor (right)

2.1.7.4  Shortcomings of monitoring

Holter and Event monitors have shortcomings. They are ineffective for patients who
experience infrequent symptoms outside the typical monitoring period of 24 to 48 hours.
These types of monitors require a patient’s activation and interaction, which is

impractical when the patient is incapacitated during symptomatic periods.
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Figure 11: Mobile Outpatient Cardiac Telemetry represented in the scheme
In addition, the patient has no knowledge of the state of his health while wearing the
monitor. Only a snapshot of recordings is sent to the monitoring center and the results are
not immediately known. The patient has to wait for the results of the data analysis and
medical recommendations performed by a remote care center.
Mobile Outpatient Cardiac Telemetry is generally more costly than alternate approaches.
The device is not practical for patients who experience infrequent (less frequently than
every 48 hours) symptoms suggestive of cardiac arrhythmias (i.e., palpitations, dizziness,
pre-syncope, or syncope). Figure 11 summarizes some of the concerns using telemetry
devices.
2.1.75  Echocardiogram
The echocardiogram test creates moving pictures of the beating heart. It sends sound
waves into the heart muscle, which are then bounced back to the monitoring device. An
Echocardiogram provides information about how well the heart chambers and valves are
functioning, determines the shape and the size of the heart, and identifies areas of

defective heart muscle and poor blood flow.
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2.1.7.6  Electrophysiological study (EPS)

An electrophysiological study is a more invasive procedure; it is used to assess serious
arrhythmia. During an electrophysiological test, a thin flexible wire or catheter is passed
to the heart by going through peripheral veins or peripheral arteries. The cardiac electrical
signals are recorded at various points to detect the point of origin of tachycardia. The
wire can be used to trigger an arrhythmia by electrically stimulating the heart. This
process helps the doctor to determine whether medication can stop the arrhythmia.

2.1.7.7  Esophageal electrophysiological procedure

The esophageal electrophysiological procedure records cardiac electrical signals by
inserting a thin, supple, and flexible plastic tube through a nostril and positioning it in the
esophagus. An electric stimulator is used to make the heart beat faster and trigger an
arrhythmia.

2.1.7.8  Treadmill testing

Treadmill testing requires the patient to walk or jog on an exercise treadmill. It is
prescribed for patients who are suspected of experiencing arrhythmia. The heart rate and
rhythm are monitored while the patient is exercising on a treadmill.

2179  Blood tests

Blood tests measure the sodium, potassium and thyroid hormone levels.

2.1.7.10  Electrocardiogram (EKG)

The Electrocardiogram (EKG) records the cardiac electrical activity and other
information about the heart’s structure and health status, such as rhythm and rate, by
connecting electrodes to the surface of the skin. Sensors or electrodes from the EKG

machine are placed on the skin to detect the heart’s electrical activities. The different
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signals emanating from the heart are recorded on scrolling paper and/or memory devices
for further analysis.

2.2 Wireless privacy and interference concerns

Advances in wireless sensor and networking technologies have been extended to
wearable computing systems. They provide a multitude of opportunities in the
development and integration of pervasive wireless communication for new and existing
specialized technologies in monitoring, data collection, and real-time analysis and
reporting. Today, healthcare applications can utilize wireless technologies such as
Bluetooth, Zigbee, RFID, UWB, Wireless Local Area Networks (WLAN), Wireless
Metropolitan Area Networks (WMAN), and Wireless Wide Area Networks (WWAN).
Although some of these wireless network solutions are acceptably secure, the nature of
the wireless ad hoc and the device addressing schemes still make them vulnerable to
possible attacks and privacy risks [24].

2.2.1 Bluetooth technology

In a Personal Area Network (PAN), Bluetooth frees mobile workers and allows them to
work unhindered while managing multiple devices.

Bluetooth operates in the unlicensed 2.4 gigahertz (GHz) to 2.4835 GHz ISM (Industrial,
Scientific, and Medical) frequency band. This bandwidth is commonly used by other
technologies such as the IEEE 802.11b/g WLAN standard, making it prone to
interference. The Bluetooth standard aims at guaranteeing reliability and robustness in the
presence of such interference through the utilization of Frequency-Hopping Spread
Spectrum (FHSS) and Error Correction techniques. Such a claim generated increasing

demand from the industrial, military and healthcare worlds and motivated research
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groups to perform specific environmental field tests on wireless communication
involving Bluetooth units. Several tests have concluded that Bluetooth is reliable enough
in industrial applications for monitoring conditions. Bluetooth robustness stems from
FHSS technique, which makes the protocol particularly robust in an environment where
interference from other radiating sources exists. Today, compared to other personal
electronics devices currently allowed in use on passenger airplanes during flight,
Bluetooth is classed as an intentional radiator. The test results show that the levels of
intentional emissions as well as spurious emissions from Bluetooth devices did not
interfere with the aircraft systems while in flight [25].

Bluetooth technology protocol supports voice and data communication. It provides built-
in security, serial and TCP/IP networking integration in both one-to-one and one-to-many
networking topologies. The protocol is regulated by governments worldwide. A plethora
of modern mobile devices incorporates Bluetooth technology to track and monitor
individual social interaction and location [26]. Bluetooth technology positions itself well
in the Wireless Personal Area Network (WPAN) and in the Body Area Network (BAN).
2.2.2  Bluetooth in wearable computing applications

Bluetooth architecture offers built-in security features that accommodate the simplest of
applications. It also provides adequate support for the most demanding security
requirements imposed on various Bluetooth healthcare applications. Bluetooth is a low-
cost, low-power technology, primarily used in short-range radio frequency (RF)
communication. It is used to establish wireless ad hoc or peer-to-peer (P2P)
communication between a wide variety of devices for the transfer of voice and data in a

personal area network. Bluetooth technology is pervasive in many consumer devices,
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including smartphones, headsets, personal digital assistants (PDA), laptops, automobiles,
printers, and wearable healthcare computing devices, among others.

A wearable computing Bluetooth network topology is comprised of a piconet and
scatternet topologies. A Bluetooth device operating in master mode can communicate
with up to seven slave devices. Piconet (see Figure 12) is a Bluetooth network that
contains one master and at least one slave within range sharing the same channel. When
Bluetooth devices come within range of each other, they automatically connect to each
other. One of them is the master and the rest are slaves. The master Bluetooth device
controls all the wireless traffic. It sends its own unique device address (similar to an
Ethernet address) and the value of its internal clock. This information helps the network

to calculate the frequency-hop sequence.

M= Master
A= Active slave
P = Parkedslave

Figure 12: Bluetooth piconets
The slaves on the other hand, take commands from the master. Slave devices in a piconet
can assume the following power-saving modes: active, sniff, hold or parked.
Bluetooth device address is preconfigured with a unique 48-bit number (IEEE 802
hardware or MAC address) [27]. A 3-bit address number is used to indicate whether a

Bluetooth device is active in a piconet, and an 8-bit address is used to indicate a parked
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Bluetooth device. Each piconet can include one master and up to seven slaves. Multiple
piconets can cover the same area.
A Bluetooth device can be a member of multiple overlapping piconets. When
connections exist between a group of piconets, a scatternet is formed. A Bluetooth device
can be master in only one piconet but a slave in many different piconets. Master and
slave roles can be switched between Bluetooth devices in a piconet.
2.2.3 Bluetooth security methodology
Bluetooth provides security in three ways:
e It uses pseudo-random frequency hopping to solve the problem of interference
from other signals after transmitting or receiving a packet.
e It utilizes authentication to restrict connectivity to devices. Authentication is
initiated when the device is in security mode 2 or in security mode 3.
e It employs encryption to use secret keys where only authorized users can make
data intelligible again.
A. Frequency-hopping scheme
Bluetooth uses frequency-hopping spread spectrum (FHSS) when transmitting signals
(see Figure 13). It hops (i.e., changes) between Bluetooth devices using 79 different radio
channels using frequencies of approximately 1600 times per second for data/voice links
and 3200 times per second during page and inquiry scanning [24].
A channel is used for a very short period (e.g. 625 microseconds for data/voice links),
followed by a hop marked by a pre-determined pseudo-random sequence to another
channel as shown in Figure 13. The frequency-hopping scheme enables the Bluetooth
device to avoid interference with other devices. Bluetooth also allows for radio link
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power control, a low power consumption adaptation output scheme, where devices can
negotiate and adjust their radio power consumption relative to the transmitted signal
intensity. The Bluetooth power control feature blocks any potential adversary to pose a
threat to a Bluetooth piconet. The combination of a frequency-hopping scheme and radio
link power control provide Bluetooth with some additional protection from
eavesdropping and malicious access.
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Figure 13: Bluetooth Frequency Hopping Spread Spectrum [27]

Because Bluetooth devices use the ISM band in its entirety, and transmit from a fixed
frequency in very short periods, they guarantee that any interference will be short-lived.
This makes it very difficult for an eavesdropping device to predict which frequency will
be used next by the Bluetooth devices. The Bluetooth specification ensures that
connected devices agree on the next frequency to use by first defining a master-slave
relationship between Bluetooth devices, and second by specifying an algorithm, that uses

device-specific information to calculate random frequency-hop sequences. Spread
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spectrum transmissions are less affected by outside signal interference since any noise
interference is likely to influence only a small portion of the signal and not impact the
entire signal. Bluetooth security is implemented in the generic access profile through two
methods, an authentication process and a choice of security modes. Bluetooth technology
arrived with security key types namely, the authentication generation keys, and the
ciphering keys.

B. Authentication and Ciphering

Security in Bluetooth uses symmetric key cryptographic mechanisms for authentication,
link encryption, and key generation. In Bluetooth, an authentication mechanism called
link key is used to determine that a link is established. The result of a successful pairing
between two Bluetooth devices will generate a link key that the two devices will use for
authentication and a link encryption. Bluetooth uses two types of link keys: temporary
keys and semi-permanent keys. The latter is composed of unit keys and combination
keys. A unit key is a link key that is generated by a specific Bluetooth device and used as
a link key with another Bluetooth device. It is used when there is full trust among the
devices that are paired with the same unit key. Since Bluetooth version 1.2, unit keys
have been deprecated. On the other hand, a combination key is a link key that a device
generates in combination with another Bluetooth device. Besides the combination and the
unit keys, there are two other key types called temporary keys: the initialization key and
the master key. The initialization key exists temporarily during the pairing of two
devices. The master key is a link key generated by a master prior to the setup of an
encrypted broadcast communication. There are three other link keys of interest, called

ciphering keys: the encryption key K¢, the constrained encryption key K’c and the
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payload key Kp. The encryption key K¢ is the main key that controls the ciphering. This

key may have too many bits that exceed an allowed key length, at which point K¢ is

replaced by the constrained encryption key K’¢ [28].

C. Security Modes

All Bluetooth-enabled devices implement the Generic Access Profile. This profile defines

a security model that includes three security modes:

1) Security Mode 1:

Mode 1 is an insecure mode of operation. It provides no security.
When a Bluetooth device is in security mode 1, no security procedure is initiated.
Devices operating in this mode are able to pair with devices operating in the same

mode because neither device implements security controls.

2) Security Mode 2:

Mode 2, known as service-level enforced security, provides security at the service
level, after the channel has been established. This mode enables applications to
run in parallel and have different access policies.

When a Bluetooth device is in security mode 2, no security procedure is initiated
before a channel establishment request has been received or a channel
establishment procedure has been initiated by itself.

Devices operating in this mode enforce service level security at the L2CAP layer
and above by invoking a combination of authorization and authentication

schemes.

3) Security Mode 3:
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e Mode 3, known as link-level enforced security, provides security at the link level
before the channel is established.

e Link encryption is enforced by devices operating in mode 3 at the LMP layer.
4) Security Mode 4:
Security Mode 4 calls for Bluetooth services to use an authenticated link key, an
unauthenticated link key, or no security at all. In this mode, Secure Simple Pairing (SSP)
is used to simplify the pairing process, and protect against passive eavesdropping and
man-in-the-middle attacks by utilizing a public key cryptography. Secure Simple Pairing
offers four association models: Numeric Comparison, Passkey Entry, Just Works, and
Out of Band.
In the Numeric Comparison model, both pairing devices display a six digit number and
allow the user to enter a “yes’ response if the numbers match. A “no” response makes the
pairing fail. A Passkey Entry association model is offered for Secure Simple Pairing of
two Bluetooth devices where one device has input capability such as Bluetooth enabled
keyboard and the second device has no input capability. A six-digit number is entered
into the device with the keyboard capability and shown to the other device with the
display-only capability. Both Numeric Comparison and Passkey Entry association models
do not incorporate the six-digit number into the link key generation, therefore an attacker
finds no value to the six-digit number. The Just Works association model is applicable
where either one or both pairing devices lack a display for viewing the six-digit number
or a keyboard for inputting it. In this case, the user is forced to accept the pairing
connection without being able to verify the six-digit number allowing for man-in-the-
middle protection to fail. Finally, the Out of Band association model supports a wireless
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technology alternative to Bluetooth such as Near Field. This model performs device
pairing by having the user accept the pairing by pushing a button on the device following
tapping one device against the other. Except for the Just Works association model, all of
the association models described above provide authenticated link keys.

D. Trust Levels and Service Levels

Bluetooth provides two levels of trust and three levels of service security. The two levels
of trust are trusted and un-trusted. A trusted Bluetooth device has full access to all
services, whereas an un-trusted device does not have an established relationship with
another Bluetooth device, and as a result receives restricted access to services.

The three levels of Bluetooth service security deal with authorization, authentication, and
encryption. Service Level 1 requires both authorization and authentication. Automatic
access is granted only to trusted units; as for un-trusted devices, manual authorization is
required. Service Level 2 requires authentication only; authorization is not necessary.
Service Level 3 requires no authentication, access is granted automatically to all devices.
E. Bluetooth potential security risks

Bluetooth protocol is a Personal Area Network (PAN) protocol used in devices that
communicate wirelessly with one another when within 300 feet. Bluetooth is designed to
run in a peer-to-peer short-range wireless network. If the security of Bluetooth is
compromised, and if one or more devices in the network are used as gateways to other
connected networks, it could expose the devices or their attached networks. Bluetooth
supports third party extensions. The security of a device or local network connected to
these extensions could be compromised if these extensions do not use proper security and

authentication procedures.

42



CHAPTER 3
3 APPLYING MACHINE LEARNING METHODS TO PREDICT A-FIB

Classification is learning a function that maps (classifies) a data item into one of several
predefined classes [29].

”A computer program is said to learn from experience E with respect to some task T and
some performance measure P, if its performance on T, as measured by P, improves with
experience E” [30]. Data mining is a task used to discover unknown rules, patterns and
relationships hidden in vast amount of raw data that is available as datasets stored in
databases [31]. Machine learning is the study of methods and algorithms that learn and
improve their performance with experience. Few machine learning algorithms and
statistical approaches have been applied in medical applications; for example, algorithmic
and statistical approaches for finding biomarkers that could be potential factors causing
prostate cancer among African American men [32], classification of electrocardiogram
arrhythmias using neural networks [33], EKG arrhythmia classification based on logistic
model tree [34], and analysis of EKG signals using self-organizing maps (SOM). Much
of the related work dealing with classification of cardiac arrhythmia has been based on
neural networks, Markov chain models and support vector machines (SVMs).

Although several clinical ways exist and have been applied to treat arrhythmia, these
medical interventions and clinical treatments come after the fact and are expensive.
Moreover they do not come without risks to the patients [35]; there would be a greater
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positive public health impact from predicting arrhythmia and preventing heart attacks.
This detection can be regarded as a general classification/prediction problem.

3.1  Data mining overview

Data became ubiquitous, and new technologies have made retrieval of large amounts of
data easy and fast. Uncovering meaningful information and hidden patterns from the data
remain keys to the success of research. The goal of data mining is to extract knowledge
and hidden patterns from the data. “Data mining is the process of extracting valid,
previously unknown, comprehensible, and actionable information from large databases
and using it to make crucial business decisions.” [36]. Data mining relies on technologies
such as statistics, machine learning, and databases, to facilitate the uncovering of
information from the data. Statistics is concerned with parameters and characteristics of
the data whereas machine learning derives models and patterns from the data. Database
technology stores and manages data for selective data retrieval. Data mining is not an
exact science. Human interaction is sometimes required to decipher ambiguities during
the four phases of data mining process: data collection, data pre-processing, data mining
and information evaluation and interpretation. Classical data mining tasks such as
classification, clustering, and association are used repeatedly in bioinformatics. The
following overview will review each task (Figure 14 illustrates a graphical representation

and visualization of the data mining process).

3.2  Data cleaning and data pre-processing
Biomedical data is highly distributed and sometimes uncontrollably generated. Data may
contain information that simply does not make sense and must be cleaned. Data cleaning

defined as a pre-processing step is an essential procedure in data mining to ensure
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accuracy, completeness, and consistency of data [37]. Understanding the data and how it
was gathered before proceeding with data cleaning helps eliminate outliers and data

corruption.
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Figure 14: The four phases of a data mining process
3.3  Preparing the dataset
The dataset is partitioned using cross-validation. The training set is used to train the
learning algorithm, and the induced decision rules are tested on the test set.
3.4  Cross-Validation
The model is to be first built and evaluated using 10-fold cross-validation on the fit data
set, and then validated using the test data set. In 10-fold cross-validation, the dataset is
divided into 10 subsets of (approximately) equal size. The dataset is trained 10 times,
each time leaving out one of the subsets to use for testing. The basic idea is to use 90% of

the dataset to build a model and 10% to test the performance of the model. The simplest
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cross-validation is the holdout method where the two datasets, referred to as the training
set and the test set are used in a single evaluation but this method allows for high
variance and dependency in the dataset. A solution to this problem is the k-fold cross-
validation where k is the number of subsets and where the model is built repeatedly each
time for k-1 subsets. The remaining subset is used as a test dataset. The cross validation
errors are computed for each of the k test subsets and then averaged to give the k-fold
estimate of the cross-validation errors. Cross-validation is preferred over percentage split-
sample for small data sets [38] [39].

35  Classification

Classification is a data-mining task that defines the class or group where each data
instance belongs. A classification model requires at least two pre-defined classes. The
attributes of a training data set constitute the input to the classification model. The pre-
defined class defines the output where the different instances belong. A classification
model requires supervised learning. In supervised classification, data is labeled i.e.,
belonging to a specific class [66].

3.6 Clustering

Clustering, also referred to as segmentations, is a technique that divides the data into
natural groups, i.e., similar data is put into the same clusters or categories [66]. Unlike
classification and association learning covered in the next section, clustering is
unsupervised learning. The number of clusters is not known in advance. Iterative
distance-based clustering technique such as the k-means, which employs the Euclidean
distance, can be used to form clusters. An example of clustering is illustrated by

examining how Amazon.com groups customers in clusters, based on the books they buy.
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Customers in the same clusters are recommended the most commonly purchased book in
the cluster because these customers appear to share the same taste in reading. A problem
with clustering is deciding on an appropriate arbitrary number of clusters. This is a trial
and error process. The user inputs the number of clusters. If the results are not
satisfactory, another cluster number is chosen. Different clustering methodologies such as
probabilistic clustering, top-down and bottom-top hierarchical clustering are available.
The top-down hierarchical approach separates the data into different clusters based on the
similarity measurement criteria. It starts with one single cluster housing all the data and
ends up with each data sample being a single cluster. The bottom-top approach starts with
the data being grouped into separate clusters containing a single data sample and end up
with all data grouped into one cluster.

3.7  Association

Association rules, sometimes referred to as affinity analysis, search for dependencies
between a data subset and the rest of the data set. They can predict any attribute or a
combination of attributes. The association rule A => B means that when A exists B also
exists with high probability. The Market Basket Analysis is an example of an association
rule. Beer => chips implies that people who bought beer on Saturday night also bought
chips. The association rule A => B exists when both the support and confidence of the
rule is larger than the respective threshold. Support (a.k.a. coverage) of an association
rule is defined as the number of instances for which it predicts correctly; while
confidence (a.k.a. accuracy) of an association rule is the number of instances that it

predicts correctly, expressed as a proportion of all instances to which it applies.
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3.8 Other data mining

In text mining, the mined data is text. Keywords or phrases are used to find related
documents in the database. Advanced text mining utilizes classification, association and
clustering techniques. Similarity measures identify relationships between documents and
terms. Text mining is useful when searching and retrieving large amounts of biomedical
information.

Similarly, graphics mining technology is helpful in retrieving protein structures in

bioinformatics. It retrieves graphics from databases.

3.9  Detection performance measurement

In this section, we focus on the binary classification of arrhythmia, in which a classifier
yields two discrete results: positive, or presence of arrhythmia and negative, or absence
of arrhythmia. Given an EKG record, a binary classification has four possible outcomes:
number of True Negatives (TN), number of False Positives (FP), number of True
Positives (TP), and number of False Negatives (FN), and correspondingly four possible
rates: True Negative rate (tn), False Positive rate (fp), True Positive rate (tp), and False
Negative rate (fn).

3.9.1 Specificity and sensitivity

Detection rates are measured in terms of specificity and sensitivity.

Specificity or true negative rate designated as tn measures the proportion of negatives
that are correctly identified (i.e. the percentage of arrhythmia-free people who are
correctly identified as not having arrhythmia). It is the ability of a test to identify

correctly those patients without the disease (TN rate) [40].
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TN
ifici _ 0
Specificity or tn TN + Fp 100%

A specificity equal to 100% means no negatives are incorrectly classified as positive. A
positive result in a high specificity test is used to confirm the presence of arrhythmia. The
specificity test alone does not necessarily express how well the test recognizes the
presence of arrhythmia. The sensitivity is also needed.

Sensitivity or true positive rate designated as tp (a.k.a. the recall rate in data mining)
measures the proportion of actual positives (people having arrhythmia) which are
correctly identified. It is the ability of a test to identify correctly those patients with the

disease (tp) [40].

TP
Sensitivity or tp = TP T FN 100%

Sensitivity equal to 100% signifies that the test identifies all actual positives. All
instances suggestive of arrhythmia are recognized as having arrhythmia present.
Compared to a high specificity test, negative results in a high sensitivity test are used to
rule out the presence of arrhythmia.

If 1,000 patients diagnosed to have arrhythmia present are tested, and 640 test positive,
then the test would suggest 64% sensitivity. On the other hand, if 1,000 patients that are
known not to have arrhythmia are tested and 950 come back with a negative result, then
the test suggests 95% specificity. A very highly specific test is not likely to give a false
positive result. A positive finding should therefore indicate the presence of arrhythmia.
Likewise a highly sensitive test rarely misses, thus a negative result should signify the

absence of arrhythmia.
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Both sensitivity and specificity are needed in the binary classification, as sensitivity alone
does not indicate how well the test predicts the negative instances and specificity alone

does not specify how well the test recognizes positive instances.

3.9.2 Typel and Type Il errors

A theoretical, optimal detection can realize 100% sensitivity (i.e. predict all instances
belonging to the arrhythmia group as having arrhythmia) and 100% specificity (i.e. not
predict anyone from the healthy group as having arrhythmia). If each instance is correctly
classified, then the values of the detection parameters are equal to one. These two
measures are closely related to the concepts of Type I and Type II errors.

Type I error, a.k.a. a error or false positive, occurs when a model classifies a patient as
having arrhythmia when in fact the patient does not have arrhythmia. This is described by
poor specificity. Type II error, a.k.a. B error or false negative, occurs when a model
classifies a patient as not having arrhythmia when the patient has arrhythmia. This is
characterized by poor sensitivity. A model that offers a good balance between Type I and

Type II errors with Type II error as low as possible is the goal for our model selection.

False Positives

False Negatives

Figure 15: An example of false positives versus false negatives
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A test with a high specificity has a low Type I error rate. A test with a high sensitivity has
a low Type II error rate. There is an inverse relationship between False Positives versus
False Negatives as depicted in Figure 15. As Type I error rate goes up, Type Il error rate
goes down.

For the overall error rate, the false positive rate, and the false negative rate, the best
performance measure values are the lowest. For the F-measure, the best values are the
highest values.

Type II or False Negative rate designated as fn (i.e. when a positive instance is wrongly

classified as negative),

fn 100%

“FN + TP

and Type I error or False Positive rate (i.e. when a negative instance is wrongly classified

as positive).

__ P oow
P =5p 3 T 100%

are significant issues in medical diagnostics. False negative test results may provide
patients and doctors a falsely reassuring message that arrhythmia is absent, when it is
actually present. This may lead to inappropriate or inadequate treatment of the disease
and sometimes unforgiving consequences to the patient. In statistical hypothesis testing,
the False Negative rate is known as . On the other hand, False Positive arrhythmia
results may produce unnecessary worries and lead to needless financial expenses. The

false positive rate is represented as o, significance level in statistics.
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3.9.3 ROC for the evaluation of arrhythmia classification performance

Receiver Operating Characteristics curves (or ROC curves) have been used in biomedical
informatics [41]. They are useful in expressing the sensitivity versus specificity of
classifiers (see Figure 16). The ROC curve plot displays the FP rate on the X-axis (1-
Specificity) and the TP rate (Sensitivity) on the Y-axis. Each point on the ROC curve
represents a sensitivity/specificity pair corresponding to a particular decision threshold.
The area under the ROC curve measures how well a particular parameter can distinguish
between two diagnostic groups (such as presence of a disease/ absence of a disease). It
plays an important role in the evaluation and analysis of class imbalance. It provides an
effective approach to characterize the performance of classifiers [42] [43] [44].

To judge how well a classifier performs, the area under the curve (a.k.a. AUC) is a good
indicator. The closer an ROC curve is to the upper left hand corner [45] [46] the better
the performance of the classifier. When comparing the performance of two classifiers, the
classifier with the corresponding ROC curve that is located closer to the upper left hand
corner and above the ROC curve of another classifier produces better global
performance. For example, classifier ‘a’ outperforms classifier ‘b’ as shown in the Figure
16. The perfect classifier has an area under the ROC curve equal to 1. Its ROC curve runs
from point (0, 0) to point (1, 1) bending towards (0, 1). An ROC curve with an area of 0.5
follows a diagonal path from (0, 0) to (1, 1). A typical ROC curve lies in the upper left of
the plot, and the corresponding AUC is between 0.5 and 1.0. The bigger the area is and

the closest to 1, the better the classifier performance.
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Figure 16: Specificity versus Sensitivity Curve
When considering the results of a particular test in two populations, one population with

a disease, the other population without the disease, there is no clear separation between

the two groups. The distribution of the test results will overlap, as shown in Figure 17.

Cut-off values

Without \ With
A-Fib . AfFib
TN TP
i ) FN PP S i

Figure 17: Example of A-Fib test results

Figure 18 shows the possible cut-off points in the test:
e Some cases with the disease that are correctly classified as positive (TP),
e Some cases with the disease that are incorrectly classified as negative (FN).
e Some cases without the disease that are correctly classified as negative (TN),

e Some cases without the disease that are incorrectly classified as positive (FP).
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Figure 18: Sensitivity-Specificity trade-off

When opting for a high cut-off value, the false positive measure will decrease with
increased specificity (fp = 1 — specificity) and the true positive measure or
sensitivity will decrease. On the other hand, when selecting a lower criterion value, the
true positive measure or sensitivity will increase and the false positive measure will also
increase, and therefore the true negative measure and specificity will decrease.

3.9.4 Outcomes of a test

The confusion matrix (see Table 3) for our binary classification model (present, absent) is
a 2x2 matrix that displays the counts of the four types of detections that will help us

measure the classifier performance.

Actual
Confusion Positive Negative
Matrix Arrhythmia | Arrhythmia
is present is absent
Arrhythmia is Fp Positive Predictive Value
present. TP (Type 1 Exror) TP
(Positive) P ~ TP + FP
32 Arrhythmia is EN Negative Predictive Value
2 absent. (Type II Error) ™ = —TN
3 (Negative) " TN +FN
o
Positive Likelihood |  Sensitivity Specificity Negative Likelihood
Ratio TP _IN Ratio
~ TP +FN ~ TN + FP
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_ Sensitivity _ 1 — Sensitivity
1 — Specificity ~ Specificity

3.95

Table 3: Confusion matrix
Sensitivity is the probability that a result is predicted to be positive when the
disease is present.
Specificity is the probability that a result is predicted to be negative when the
disease is not present.
Positive likelihood ratio is the ratio between the probability of a positive test
result given the presence of the disease and the probability of a positive test result
given the absence of the disease, Sensitivity / (1-Specificity).
Negative likelihood ratio is the ratio between the probability of a negative test
result given the presence of the disease and the probability of a negative test result
given the absence of the disease, (1-Sensitivity) / Specificity.
Positive predictive value is the probability that the disease is present when the test
is positive.
Negative predictive value is the probability that the disease is not present when
the test is negative.

Overall classification accuracy and the overall classification error

Classification accuracy of a model is measured in terms of Type I and Type II errors.

Both the overall classification accuracy and the overall classification error defined below

can be used to evaluate the performance of a classifier, but when the costs of

misclassifications of the different classes are uneven, this measure may be unacceptable.
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In order to take into account the unevenness of misclassification costs when evaluating a
classifier, one may explore the following metrics: error types, tp, fp, fn, tn,

F-measure, and arca under the ROC curve.

TP+ TN
TP + TN+ FP+FN

Overall Accuracy =

FP + FN
TP + TN+ FP+FN

Overall Error rate = 1 — Overall Accuracy =

Both the overall accuracy and the overall error rate are poor performance metrics. Both
metrics favor the majority class and penalize the minority class. Accuracy places more
emphasis on the common classes than on rare classes. For example, given a two-class
problem with distribution 90:10, the performance of the classifier on the majority class
will be counted nine times more than the performance on the minority class. Accuracy
leads to poor minority-class performance. Minority class has lower precision and recall
than majority class. Recall and precision are inversely related (see Figure 19).

Recall (a.k.a. effectiveness) is a metric which is the same as True Positive Rate metric
and defined as the proportion of positives that are correctly predicted positives. It is the
ratio of the number of relevant records retrieved, to the total number of relevant records
in the database, and is usually expressed as a percentage. In binary classification, recall is
called sensitivity. It is trivial to achieve recall of 100% by returning all documents in
response to any query. Therefore, recall alone is not enough but one must also measure

the number of irrelevant document, for example by computing the precision.

Recall = — = 100%
T TPy EN "

Precision (a.k.a. efficiency) refers to the proportion of instances predicted to be of the

positive class when actually they are from the positive class. It is the ratio of the number
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Figure 19: Recall and precision are inversely related.

of relevant records retrieved to the total number of irrelevant and relevant records

retrieved. It is usually expressed as a percentage.

TP
Precisi = ———1009¢
recision TP + FP Y%

Because both Precision and Recall are defined with respect to the Positive (rare) class,
rare cases/classes can be appropriately assessed using these two metrics. Many systems
have used a variation of both metrics like Geometric Mean (Gyean) and F-Measure

The Gyean tends to maximize the accuracies of both classes while keeping them balanced.

Guean = VRecall x Precision
The Fumeasure 1S defined with respect to the Recall metric and the Precision metric. It
indicates the combined relative importance of both metrics.

(1 + Beta?®)Precision X Recall
(Beta? x Recall + Precision)

Fyeasure =

A larger Beta gives more weight to Recall. Two commonly used Fyeasure Values are the F
measure (Beta =1) and Fys. F, measure emphasizes Recall twice as much as Precision,

and the Fy s measure weights Precision twice as much as Recall.
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CHAPTER 4
4 A-FIB PREDICTORS AND DETECTION CHALLENGES

A-Fib is the most common cardiac arrhythmia [47] [48]. A-Fib prevalence varies
between 1.1 per 1,000 patients at age 40, and 105 at age 90 [49]. A-Fib symptoms start
with the fast and irregular heart rate, palpitations, racing or heart-skipping sensations.
The patient may have shortness of breath, lightheadedness, chest discomfort or fatigue.
The important risk of A-Fib is blood clots and stroke due to uncoordinated upper
chambers contractions. It can be diagnosed by reading and interpreting an
electrocardiogram record in a primary care setting, whether by a general practitioner, a
referred cardiologist, interpretative software, or a practice nurse during a routine
screening visit or scheduled check-up. Traditionally, a 24-hour Holter monitor, or for
longer periods an “event monitor”, are worn by the patients in order to capture the first
episode of A-Fib. A-Fib affects 2.5 million people in the United States or close to 1% of
the total population [12]. The Manitoba study [50] and the Framingham Heart study [51]
draw attention to the significance of the higher frequency of A-Fib with advancing age.
Patients with A-Fib have a 1.5 to 2 fold increase in mortality rate when compared with
the general population as suggested by Framingham Heart study data [6] [52]. Early
recognition of A-Fib is difficult because most people are not aware of this silent rhythm
disturbance [53]. Today, frequent monitoring and screening of patients allow for early
detection of arrhythmia.
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At least one-third of the A-Fib episodes go undetected [8] because either people are not
screened often or a general practitioner or a practice nurse misses the A-Fib diagnosis.
Few studies have addressed the misdiagnosis of A-Fib from an electrocardiogram (EKG)
and the potential risk of A-Fib misinterpretation errors. Knight et al. [54] concluded that
A-Fib is more often misdiagnosed by internists than cardiology fellows and cardiologists.
Mant et al. [55] discovered that general practitioners correctly detected A-Fib 80% (true
positive) of the time when interpreting 12-lead EKG data and misinterpreted 8% (false
positive) of sinus rhythm cases as A-Fib. One of the major misdiagnosis confuses A-Fib
with atrial flutter [56].

4.1  Predictors of A-Fib

A-Fib is the most prevalent arrhythmia in the United States and accounts for more than
750,000 strokes per year [11]. According to classification guidelines used by
cardiologists and electro-physiologists, for the management of patients with A-Fib [57],
after the first A-Fib is detected, there are four types of A-Fib: Paroxysmal, persistent,
longstanding persistent, and permanent. A-Fib is termed progressive. Once a patient is
diagnosed with a paroxysmal A-Fib he or she will eventually migrate to persistent A-Fib.
Similarly, a patient diagnosed with persistent A-Fib will drift to longstanding persistent
A-Fib and in time to permanent A-Fib [58]. The EKG waves and intervals represented in
Figure 20 are used to describe the predictors of A-Fib.

From Section 2.1.3, the QRS interval is the duration of the ventricular muscle
depolarization. The P wave is a record of the electrical activity or the sequential
activation (depolarization) through the right and left atria. The PR interval is the time

interval measured from the beginning of the P wave (atrial depolarization) to the onset of
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the QRS complex (ventricular depolarization). The RR interval is the duration of the
ventricular cardiac cycle; it is an indicator of the ventricular rate. The PP interval is the

duration of the atrial cycle; it is an indicator of the atrial rate.
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Figure 20: Typical EKG record.
A strong indicator of A-Fib presence is the absence of P waves on the EKG plot and an
erratic noise-like activity in their place combined with irregular R-R intervals [20] (see
Figure 21). Sometimes when the heart rate is too fast, irregular R-R intervals may be
difficult to determine [50]. In addition, wide QRS complexes may be present with rapid

ventricular response.

No P-Wave

X

A-Fib
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Figure 21: A-Fib depicted by the presence of the P-Wave [20]
Other factors that may contribute to A-Fib: Age, Gender, Body Mass Index (BMI),

Systolic Blood Pressure (SBP), Treatment for Hypertension (TH), Significant Heart
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Murmur (SHM), Prevalent Heart Failure (PHF), PR Interval, QRS duration, and
Heartrate [6] .

4.2  A-Fib Telemetry Data Analysis

Telemetry is widely accepted in healthcare for remotely collecting and sending vital data
to a monitoring station for analysis and interpretation of all types of arrhythmia in
outpatients. Today, when prescribed by a physician, telemetry may be applied
continuously for few days in the hope of capturing episodes of A-Fib. Telemetry may
also be user-triggered by the patient as soon as he or she feels symptoms of A-Fib (such
as heart palpitations). Using triggered events to start an A-Fib telemetry monitoring
device runs the risk of missing the first 30 seconds of A-Fib. Moreover, triggering events
might not be possible if the user is incapacitated.

The telemetry model continuously senses EKG signals, transmits EKG data, receives
EKG records, and reports EKG information to a healthcare center for further diagnostics
and analysis by a doctor or a healthcare specialist. The telemetry report includes all
positive and negative results. We assume that telemetry EKG interpretations are
conducted by a cardiologist or a cardio-physiologist who are experts at EKG readings;
thus all judgments of what constitutes A-Fib are going to be assumed to be as accurate as
possible. Unfortunately, not every physician is a cardiologist, so general practitioners are
often the first to interpret EKG readings during a general screening evaluation. General
practitioners introduce human errors when interpreting EKG readings leading to a false

positive rate of 8% and a false negative rate of 20% [54].
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CHAPTER 5

5 DEVELOPING A-FIB RISK FACTOR AND DETECTION ALGORITHMS

Several clinical methods of treating arrhythmia exist. These medical interventions and
clinical treatments come after the fact and are expensive. Moreover, the average patient’s
condition progressively deteriorates for five days before seeking emergency treatment.
The longer the heart remains out of rthythm, the more difficult for the doctor to restore the
normal sinus rhythm to the heart. Knowing one’s A-Fib risk factor and using an A-Fib
detection algorithm will alleviate most of the aforementioned problems and one may plan
an early and appropriate course of action to treat arrhythmia and A-Fib in particular.

5.1 Developing A-Fib risk factor

The risk of developing A-Fib may depend on several factors—some associated with
lifestyle and some from heredity. Many of these factors behave nonlinearly, complicating
accurate A-Fib risk assessment. Standardizing the prediction of A-Fib from mere clinical
diagnoses is difficult [59]. Few studies have addressed the misdiagnosis of A-Fib from an
electrocardiogram (EKG) [8] and the potential risk of A-Fib misinterpretation errors.
Data mining techniques and statistical methods such as the Cox proportional hazards
model [60] and the logistic regression model are used in many epidemiological studies.
The Cox Proportional Hazards Model is a multivariate statistical method used to compare

survival in two different groups and determines the contribution of different variables on
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survival. The Framingham Heart study in the United States and the Prospective
Cardiovascular Miinster (PROCAM) study in Europe used the Cox model to develop
standardized risk factor assessments that may complement clinical practice. The Cox
proportional-hazards regression is used to analyze the effect of risk factors on survival.
The probability of the end game (onset of A-Fib) is called the hazard. The covariates and
their corresponding coefficients (listed in Table 4) responsible for predicting A-Fib risk
in people aged between 45 and 95 years old are extracted from the Framingham Heart
study [6][51]: Age, Age2, Gender, Body Mass Index (BMI), Systolic Blood Pressure
(SBP), Treatment for Hypertension (TH), Significant Heart Murmur (SHM), Prevalent
Heart Failure (PHF), Gender*Agez, and Age*PHF, PR Interval (PRinwerval). We can

express the hazard or risk of getting A-Fib at time t as:

H(t) = Hy(t) * eZis1 BiXi

We can linearize this model by dividing both sides of the equation by H,(t) and then

taking the natural logarithm of both sides:

HON _ vk py
In (Ho(t)) - i=1 BIXL

Yk . BiX; = PBiGender + P,Age + PsBMI + BSBP + bsTH + BsSHM + B,PHF +

Bg Age? + BoGender x Age? + BioAge x SHM + By1Age * PHF + B1,PRintervar

The quantity Hy(t)is the baseline or underlying hazard function. It is practically the
probability of getting A-Fib when all the other covariates are set equal to zero. The

baseline hazard function is analogous to the intercept in linear regression. The regression
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coefficients B1 to B12 provide the model with the proportional change or contribution
from each covariate. The derived Cox proportional hazards equation is described below:

In(H(t)/(Ho(t)) = Y1 B, Xi = 1.994060 Gender + 0.150520Age + 0.019300 BMI +

0.006150 SBP + 0.424100 TH + 3.795860 SHM + 9.428330 PHF — 0.000380Age? —

0.000280 Gender * Age? — 0.042380 Age * SHM — 0.123070 Age * PHF + 0.070650 PRy nzorvar

Where Hy (10) = 0.96337 is the 10 year baseline survival or cumulative hazard function at
time t = 10 years extracted from the Framingham Heart study [6] [51]. The values of the

means for each covariate are tabulated below:

Covariate | Xbar Covariate Xbar
Gender 0.4464 SHM 0.0281
Age 60.9022 PHF 0.0087
BMI 26.2861 Age’ 3806.90
SBP 136.1674 Gender*Age” | 1654.66
TH 0.2413 Age*SHM 1.8961
PRigtervar | 16.3901 Age*PHF 0.61

Table 4: A-Fib risk covariates coefficients
The probability of getting A-Fib or having a risk is:

P(AFib) = 1 — Hy®*P (=1 BiXi -Zic BiXbary
For example, we calculate the risk factor of a male person who is 70 years old, weighing
70 kg, with a body mass index of 22.96, a systolic blood pressure of 130, with no
hypertension, a PRiyeerva measuring 16 mms, with no significant heart murmur, and no
previous heart failure.

Comparing to the mean values of the 10-year study from the Framingham Heart study [6]

[51] we get:
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YK BiX; - YK, B;Xbar; = 11.669 — 10.786 = 0.883

e(Z%(:l BiX;j —Z§‘=1 BiXbar) — 50883 — 2 418

The predicted risk factor is:

k gy gk 3o .
k=1— Hye@=PXiZimBiXbar) _ 4 963372418 = (0863
The predicted Risk Factor is 0.0863 compared to a risk for a person of the same age and

gender with BMI 20 to 24.9, Normal SBP (120 to 129), No Treatment for Hypertension,

PRinterval 16, No significant murmur or prevalent heart failure.

Risk Factor Units 0.021 0.083 0.1788 0.1003
Age years 50 70 70 70
Gender M,F M M M F
Body Mass Index (I23MI) kg/mz 24 24 35 35
Weight/height
Systolic Blood mmHg 120 120 150 150
Pressure (SBP)
Treatment for yes/no no no yes yes
Hypertension (TH)
Significant Heart yes/no no no no no
Murmur (SHM)
Prevalent Heart yes/no no no no no
Failure (PHF)
PRinterval mm 16 16 16 16

Table 5: Examples of risk factors

In Table 5, we fix values for some covariates while varying other covariates. Varying the
age value from 50 to 70 while keeping the rest of the covariates fixed increases the A-Fib
risk factor from 0.021 to approximately four times, 0.083. Similarly, everything else

being the same, switching the gender from male to female, drops the A-Fib risk factor

from 0.1788 to 0.1003.
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A-Fib risk factors may be classified in three categories made up of risk ranges such as k <
0.05, 0.05 <k <0.15, k > 0.15. Knowing the A-Fib risk factor of a patient allows one to
prescribe an A-Fib monitoring schedule (see Table 6). A high A-Fib risk factor may

suggest more frequent monitoring compared to a low A-Fib risk factor.

Risk Factor Category Risk Factor Range
Risk factor category 1 would be for a user who is k <0.05
healthy, athletic; this is similar to wearing a sports watch.
Risk factor category 2 would be for a user who wants to 0.05<k<0.15
monitor A-Fib daily during an AM/PM windows.
Risk factor category 3 is for the chronic case where a k>0.15
user monitors continuously with the data and detection
results transmitted to a care center.

Table 6: Risk factor category

5.2 Developing A-Fib detection algorithm

There would be a greater positive public health impact from predicting arrhythmia risk
and detecting it to prevent heart attacks. Few machine learning algorithms and statistical
approaches have been applied in medical applications; for example, classification of EKG
arrhythmias using neural networks [29], EKG arrhythmia classification based on logistic
model tree [61], and analysis of EKG signals using self-organizing maps (SOM). In this
section, we concentrate on the design of a real-time early detection algorithm. We
compare accuracy of machine learning schemes such as J48, Naive Bayes, and Logistic
Regression and choose the best algorithm to classify A-Fib from EKG medical data.

5.2.1 Classification and analysis environment

The Waikato Environment for Knowledge Analysis (WEKA) software environment for
Machine Learning [62] is used to analyze the dataset and classify cardiac arrhythmia

types. WEKA contains tools for data pre-processing, classification, regression, clustering,
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association rules, and visualization. It is also well suited for developing new machine
learning schemes. Figure 22 displays a screen shot of the WEKA tool.

5.2.2 Cardiac A-Fib dataset

The input dataset used in the analysis is a combination of data retrieved from a repository
located at the University of California in Irvine, California [63] and MIT-BIH A-Fib
database [64]. The A-Fib dataset consists of 304 instances, (224 instances free of A-Fib
and 80 instances with A-Fib, containing seven attributes and two classes described in

Tables 7 and 8 and Figures 22 and 23).
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Figure 22: Screen shot of WEKA tool [62]

The dataset describes the attributes for diagnosing cardiac A-Fib where each instance or
patient is classified into two categories: presence of A-Fib and absence of A-Fib. Few

instances in the dataset were deleted because they contained omitted entries. The names
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and ID numbers of the patients that took part in the cardiac arrhythmia study were

removed from the dataset.

Variable Description

Age Age in years, linear | real
2| Age’ Age’ in years’ real
3| Gender Gender (0 = male; 1 = female), nominal {0, 1}
4| BMI Kg/m’, Linear real
5| QRSduration | Average of QRS duration in msec., linear real
6| PRinerval Average duration between onset of P and Q waves in msec., linear | real
7| Heartrate Number of heart beats per min, linear real
8| Class {A-Fib present, A-Fib absent} binary
Table 7: List of selected attributes for the detection of A-Fib
Class Type Number of Instances
01 A-Fib Absent 224
02 A-Fib Present 80

Table 8: Absent and present A-Fib classes in the pre-processed dataset
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Figure 23: Typical EKG record
The objective of the analysis is to predict the absence (indicated by normal EKG) or the
presence of cardiac A-Fib (see Figure 23). The cardiologist’s classification is used as a
reference. The aim is to minimize the error, i.e. the difference between the cardiologist’s

results and those obtained from the dataset analysis.
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5.2.3 Classification of A-Fib

Classification is a popular data mining technique that is used to extract the relationships
that exist among the various attributes and may be hidden in the data. The detection
results were extracted from running WEKA tool using a dataset containing 304 instances
using 10-fold cross validation to predict the detection of the presence or absence of
arrhythmia.

The training dataset sports two classes, presence of A-Fib and absence of A-Fib. The idea
behind this A-Fib classification is that when a new patient record is presented, it can be
automatically determined whether the patient is having A-Fib or not. Classification has
been used in statistics, data mining, and machine learning [65] [66].

In this dissertation, logistic regression is applied to the same dataset to classify a cardiac
arrhythmia. The resulting detection accuracy will be compared to the accuracy obtained
from the three applied machine learning techniques (i.e. OneR, J48, and Naive Bayes
algorithms) in the paper by Soman and Bobbie [10]. The number of attributes is reduced
with the aim to yield only a marginal decrease in the accuracy. The approach will
guarantee an energy-aware classification detection algorithm that is adequately accurate
but consumes as little energy as optimally possible. Therefore, the criterion for the
chosen classification detection algorithm is a trade-off between the highest level of
accuracy achieved and the minimum number of possible attributes. The following
sections explore classification algorithms using J48, Naive Bayes, and Logistic
Regression. We choose the best algorithm to classify A-Fib by deriving the accuracy of
predicting the presence/absence of cardiac A-Fib. The resulting classification detection

algorithm is portable to a Bluetooth-enabled wearable computing device. We will derive
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the overall accuracy as well as Type I and Type II misclassification errors, sensitivity
rate, and specificity rate in later sections.
5.2.4 Classification of A-Fib using the J48 decision tree classifier
Decision trees are tree-like graphs with human-readable and interpretable rules where
each branch node represents a choice between a number of alternatives, and each leaf
node represents a classification or decision. Some of decision tree classifiers are C4.5,
C5.0, J48, NBTree, SimpleCart, REPTree and others [66]. J48 classifier is an
implementation of the C4.5 decision tree learner in WEKA. The C4.5 implementation
produces rule-sets and a decision tree model. These models are human readable, easy to
understand and straightforward. J48 generates decision trees, the nodes of which evaluate
the significance of individual features, such as age, gender, BMI, QRSduration, PRierval,
and heartrate. The decision trees are constructed in a top-down fashion starting from the
main root and selecting the most significant feature at each branch. Tables 9, 10 and
Figure 24 show the results of J48 decision tree results.

=== Run information ===

Scheme:  weka.classifiers.trees.J48 -C 0.25 -M 2

Relation:  arrhythmia-weka.filters.unsupervised.attribute.Remove-R4

Instances: 304

Attributes: 7

Classes: 2

Test mode: 10-fold cross-validation

Figure 24 displays the resulting J48 pruned tree

PRinterval <= 0

| heartrate <= 68: NOAF (6.0)

| heartrate > 68: AF (87.0/7.0)

PRinterval > 0: NOAF (211.0)

Number of Leaves: 3
Size of the tree: 5
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=== Detailed Accuracy by Class ===

TP FP - F- ROC
Rate | Rate Precision | Recall Measure Area Class
0.975 | 0.036 0.907 0.975 0.940 0.979 | AF
0.964 | 0.025 0.991 0.964 0.977 0.979 | NOAF
Weight | 6 967 | 0.028 | 0969 | 0.967 | 0967 | 0.979
Avg.
Correctly Classified Instances 294 96.7105 %
Incorrectly Classified Instances 10 3.2895 %

Table 9: J48 classification classes

a b Classified as
78 2 a = Present
8 216 b = Absent

Table 10: J48 classification confusion matrix
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Figure 24: J48 A-Fib decision tree

5.2.5 Classification of A-Fib using Naive Bayes classifier

A Naive Bayes classifier is based on the Bayes' theorem and all the attributes are assumed

independent given a class membership. In most real-world applications, this conditional
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independence assumption fails, however the algorithm tends to perform well in many
class predictions. Tables 11 and 12 show results Naive Bayes classifier.
=== Run information ===
Scheme:  weka.classifiers.bayes.NaiveBayes
Relation:  arrhythmia-weka.filters.unsupervised.attribute.Remove-R4
Instances: 304
Attributes: 7
Classes: 2
10-fold cross-validation

Test mode:

Naive Bayes Classifier

Class
Attribute AF NOAF
(0.26) (0.74)

age

mean 60.5893 56.1967

std. dev. 6.3297 13.1467

weight sum 80 224

precision 1.0357 1.0357
ageage

mean 3687.0911 3322.257

std. dev. 743.3334 1410.1275

weight sum 80 224

precision 111.8571 111.8571
sex

0 17.0 96.0

1 65.0 130.0

[total] 82.0 226.0
BMI

mean 29.2111 26.2917

std. dev. 4.2079 4.8099

weight sum 80 224

precision 1.6538 1.6538
QRSduration

mean 91.2467 89.6563

std. dev. 16.4217 17.3387
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weight sum 80 224

precision 2.1803 2.1803
PRinterval

mean 0 153.8372

std. dev. 0.5698 45.627

weight sum 80 224

precision 3.4186 3.4186
heartrate

mean 91.9031 73.31

std. dev. 17.3869 12.4025

weight sum 80 224

precision 1.2615 1.2615
=== Detailed Accuracy By Class ===

TP FP . F- ROC
Rate | Rate Precision | Recall Measure | Area Class
1 0.049 | 0.879 1 0.936 0.989 | AF
0.951 0 1 0.951 0.975 0.989 | NOAF
Weight | ) 964 | 0.013 | 0968 | 0964 | 0965 | 0.989

Avg.
Correctly Classified Instances 293 96.3816 %
Incorrectly Classified Instances 11 3.6184 %

Table 11: Naive Bayes classification classes

a b Classified as
80 0 a = Present
11 213 b = Absent

Table 12: Naive Bayes classification confusion matrix
5.2.6 Classification of A-Fib using logistic regression
Regression analysis is used to find a model that best fits the observation data. The logistic
function is bounded by 0 and 1. It is a statistical modeling technique, a form of regression
where the dependent variable or class is categorical and the independent variables are

continuous, discrete and/or categorical. Generally, the dependent or response variable is
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dichotomous, such as presence/absence or success/failure. When the dependent variable

takes more than two ordered categories, a multinomial logistic regression is applied.

LOGISTIC REGRESSION MODEL

LINEAR REGRESSION MODEL

Y=0 - T T

X
Figure 25: Logistic regression compared to linear regression

The dependent variable or class in logistic regression is said to be dichotomous (a.k.a.
Bernoulli or binary) when it takes only two values, a value 1 with a probability of success
p and a value 0 with probability of failure (1-p). When the logistic regression is applied to
cases where the dependent variable has more than two choices, it is known as
multinomial [67] [68]. Logistic regression makes no assumption about the distribution of
the independent variables. Unlike linear regression, logistic regression does not require
the relationship between the predicting variables and response variable to be normally
distributed nor linearly related (see Figure 25). Logistic regression determines the relative
effect of independent variables on the dependent variable or class and their statistical

significance. This effect is usually explained in terms of odds ratios where the odds of an
event x that occurs with probability p is defined as: odds(p) = lt;p . The odds function
maps probabilities p of an event (where p is between 0 and 1) to values between 0 and
infinity (see Figure 26).
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Figure 26: The odds function maps probabilities (0 to 1) to values (0 to infinity)
Logistic regression predicts the natural logarithm of the odds of the dependent event,
called the logit function. In a binary logistic regression where dependent value is either 0
or 1, the event is equal to 1 and the reference category is equal to 0. For multinomial
logistic regression, the event is equal to the value of interest and the reference category is
equal to 1. In the case where there are only two classes, the logistic regression replaces
the original target value: p(1|x4, X5, ..., Xi) which is constrained to [0, 1] interval with

( p(L[X1,X2,-XK)

) which is called the logit transformation and can lie anywhere in [-oo,
1-p(1]x1,X2,.XK)

o] interval.

P(1[X1, X3, -or, Xic) >

logit(p(1|xq, X3, ..., Xi) =ln(
& (p X1, %2 k) 1 —p(1|xq,X5, .r ) XK)

= In(odds(p(1[xq, Xz, -, Xi)))
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Figure 27: Logit function
The logit function has all the desired properties of a linear regression and still allows the
response variable to follow a binomial distribution where the values of the probability p
are bounded to values between 0 and 1 (See Figure 27). The linear expression of the
logit(p) for input variable p is:

10g1t(p(1|X1, X2, ...,Xk)) = bO + b1X1 + bzXz + -+ kak

Where:

logit(p) = In(odds(event)) = ln(%)

by is a constant and the “by” terms are the logistic regression coefficients, also called

parameter estimates. An alternative form of the logit(p) is:

In (%) = bo + b1X+ b2X2 + 4 kak

OddS = 1L = ebw0+ b1X+ b2X2+---+ kak
-Pp
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Which becomes:

1
P(1]x1, Xz, oor, X)) = 1+e—(bo+bix+boXp+-+ byxy)

Classification:
In summary, linear regression predicts:
class = 1if p(1|x4, X3, ..., xK) > 0.5

otherwise, class = 0
The following section describes the test results pertaining to a logistic regression method
involving the detection of the presence or absence of A-Fib using a 7-attribute case and a
10-fold cross-validation (see Tables 13 and 14). We derive the logistic regression
coefficients, overall accuracy (see Table 15), Type I and Type II misclassification errors,
sensitivity rate, specificity rate, and confusion matrix (see Tables 16 and 17).

Table 13 describes the attributes selected and their derived coefficients.

Variable Description Value
1| Age Age in years, linear real
2| Age’ Age’ in years’ real
3| Gender Gender (0 = male; 1 = female), nominal {0, 1}
4| BMI Kg/m’, Linear real
5| QRSduration | Average of QRS duration in msec., linear real
6 | PRigerval Average duration between onset of P and Q waves in msec., | real
linear
7 | Heartrate Number of heart beats per min, linear real
8| Class {A-Fib present, A-Fib absent} binary

Table 13: A-Fib attributes

Tables 14, 15, 16 and 17 show the results of A-Fib logistic regression classification.

=== Run information ===

Scheme:  weka.classifiers.functions.Logistic -R 1.0E-8 -M -1
Relation:  arrhythmia-weka.filters.unsupervised.attribute.Remove-R4
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Instances: 304
Attributes: 7
Classes: 2
Test mode: 10-fold cross-validation
Class ‘ Type Number of instances
01 A-FIB present 80
02 A-FIB absent 224
Table 14: Classification classes of A-Fib
Logistic Regression Coefficients
Variable Coefficient
Age 0.8203
Age’ -0.0062
Gender 47368
BMI -0.0471
QRSduration 0.0982
PRinterval -0. 1 776
Heartrate 0.0657
Intercept -41.1751
Odds Ratios
Variable Value
Age 22712
Age’ 0.9938
Gender 114.0704
BMI 0.954
QRSduration 1.1032
PRinterval 0 . 8 3 72
Heartrate 1.0679
Correctly Classified Instances 296 97.3684 %
Incorrectly Classified Instances 8 2.6316 %
TP FP | Precision | Recall | F-Measure | ROC Area Class
0.988 | 0.031 0.919 0.988 0.952 0.986 A-Fib present
0.969 | 0.013 0.995 0.969 0.982 0.986 A-Fib absent
0.974 1 0.017 0.975 0.974 0.974 0.986 V\f\i/%ht
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Table 15: A-Fib results summary from WEKA tool
The confusion matrix for our binary classification model (A-Fib is present, A-Fib is
absent) is a 2x2 matrix that displays the counts of the four types of detections that will

help measure the classifier performance.

a b Classified as
79 1 a = A-Fib present
7 217 b = A-Fib absent

Table 16: A-Fib confusion matrix from WEKA tool results

Confusion Actual A-Fib
Matrix A-Fib Positive A-Fib Negative
(Present) (Absent)
TP=79 FP=7
A-Fib SenS’Il‘tliVlty (TypeFIPError)
o | Present. o
L? (Positive) TP+FN TN + FP
<
s 98.7% 3.1%
© FN=1 TN=217
5 .
o A-Fib (TypeFIII\IError) SpeC{Tﬁﬁlty
a Absent —_— -
(Negative) TP + FN TN + FP
1.3 % 96.9%

Table 17: A-Fib detailed confusion matrix

Positive Predictive Value | Positive Likelihood Ratio

TP Sensitivity
_ = 0, D — 1
TP + FP 919% 1 — Specificity 38/

Negative Predictive Value | Negative Likelihood Raio

TN 1 — Sensitivity
= = 0 =2 =1/1
TN + FN 995 % Specificity /
. TP + FP
Positive rate = =283 %

" TN + FP + TP + FN
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Negative rate = — S TN _ 79 70
ceaverate = IN+FP+TP+EN 0

Note: more data for the classification of A-Fib may be needed to corroborate the false
positive rate of 3.1%.

True positive rate = TP / (TP + FN) =79 /(79 + 1) = .988

True negative rate or specificity = TN / (TN+FP) =217/ (217+7) = .969

False positive rate (o) =FP / (FP + TN)=7/(7 + 217) = 0.031 = 1 — specificity

False negative rate (B) =FN /(TP + FN)=1/(79 + 1) =0.013= 1 — sensitivity

Power = sensitivity =1 — B =1-.013 =0.987

Positive Likelihood ratio = sensitivity / (1 — specificity) =.987/ (1 —.969) =38 / 1

Likelihood ratio negative = (1 — sensitivity) / specificity = (1 —.987) /.969=1/ 1

Positive rate = (TP + FP) / (TP + FP + TN + FN)

Negative rate = (TN + FN) / (TP + FP + TN + FN)

Positive predictive value (PPV): probability that the disease is present when the test is
positive (expressed as a percentage).

Negative predictive value (NPV): probability that the disease is not present when the test
is negative (expressed as a percentage).

The derived logistic regression algorithm is selected as the A-Fib detection algorithm. It
identifies the instances with the A-Fib disease with 98.8% sensitivity, and identifies those
without the disease with 96.9% specificity. A specificity of 96.9% leads to a false

positive result of 3.1%. A sensitivity of 98.8% means that the classifier does not
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recognize all actual positives. A sensitivity of 100% implies that the test extracted all
actual positives whereas in a high specificity test, negative results are used to rule out the
disease.

The outcomes of the Logistic Regression include True Positive and False Positive results.
They may be triggered at A-Fib incidence rates reported by the Manitoba studies [50] in

Section 4.

A-Fib is predicted present if probability p (A-Fib is Present | Age, Age®, Gender, BMI,
QRSduration, PRiyerval, Heartrate) > 0.5
Otherwise, A-Fib is absent.

logit(p) = - 41.175 + 0.820 Age — 0.006 Age”+ 4.737 Gender — 0.047 BMI +
0.098 QRSduration - 0.178 PRiperval + 0.066 Heartrate

And
p=1/(1+e'"e®)

1.0
& B
Eo3
Prob. 0.5 > - L 2
& L 2
L3
0.0 ®
(0] 2 4 6 8 10

Episodes of A-Fib
Figure 28: Probability of A-Fib prediction
The A-Fib detection algorithm is triggered by the onset of A-Fib. The incidence rate of
A-Fib is higher in older people. Suggested studies [59] reveal that clinical measurement
of sensitivity (True Positive rate) of 80% and specificity (True Negative rate) of 92%
when A-Fib is diagnosed by internists and general practitioners instead of cardiologists.

Our logistic regression classification of A-Fib has a measurement of sensitivity of 98.8%
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and specificity of 96.9%. The false positive results, usually interpreted as false alarms,
contribute to wasted or needless energy spent in transmitting inaccurate information. In
this analysis the logistic regression algorithm with a False Positive rate of 3.1% (see
Figure 10, Confusion matrix of A-Fib logistic regression) rivals the clinical measurement
of False Positive rate of 8% diagnosed by internists and general practitioners.

Both the overall classification error rate and the overall classification accuracy are:

FP+FN
Overall Error rate = =2.63%
TP + TN+ FP + FN

Overall Accuracy = % =97.37%

The area under the ROC curve measures how well a particular parameter can distinguish
between two diagnostic groups (such as presence of a disease/absence of A-Fib). The
bigger the area is and the closest to 1, the better the classifier performance. The area
under the ROC curve for the derived logistic regression model is 0.986.

5.2.7 Comparing accuracies in J48, Naive Bayes and logistic regression

Three machine learning techniques, J48, Naive Bayes algorithms, and logistic regression
analysis are explored to test for the detection of the presence or absence of A-Fib: A 7-
attribute case and a 10-fold cross-validation are used. The differences in accuracies from
all three machine-learning algorithms are not significant (see Table 18). Though there are
other methods to classify A-Fib, we select logistic regression for its simpler
programmable implementation into mobile devices. The results of the experiment in
terms of accuracy or number of correctly classified instances on the dataset between J48,

Naive Bayes and logistic regression are illustrated in Table 18:
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Test Criteria Algorithms Detecting A-Fib

J48 Naive Bayes logistic regression
Accuracy 96.71% 96.38% 97.37 %

Table 18: Comparing accuracy of J48, Naive Bayes and logistic regression

5.2.8 The impact of Type I error and Type Il error on A-Fib classification

False positive outcomes, known as Type I error, are classification results that predict the
patient as having A-Fib when actually the patient does not have the disease, usually
interpreted as a false alarm. They contribute to wasted or needless energy spent in

transmitting inaccurate information. Clinical results suggest the A-Fib specificity is 92%.

False positive rate = 1 — specificity = 1 — 0.92 = 0.08

In an ideal classification, the positive rate would be the same as the incidence rate. If the
positive rate is less than the incidence rate then the number of positive results reported by
the classification algorithm is underestimated. Likewise, if the positive rate is greater than
the incidence rate, the classification algorithm is exaggerating the number of positive
results. The false positive results embedded in the positive results may prove to be costly
and may erode the algorithm accuracy and confidence. A false positive rate in a
classification should be as small as possible, preferably zero. Our proposed classifier is
97.37% accurate, and its False Positive error rate is 3.1% compared to the clinical False
Positive rate of 8%.

On the other hand, failing to detect A-Fib and predicting the patient as not having A-Fib

when the patient actually has the disease is serious and costly; this is known as Type II or
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false negative error. The goal of any classification is to minimize the false negative.
Clinical measurement results have an A-Fib sensitivity of 80%,

False negative rate = 1 — sensitivity = 1 — 0.80 = 0.20

Our proposed model has a false negative rate of 1.3%.

Ideally a classification system would consist of sensing EKG signals, transmitting EKG
signals to the master device, receiving EKG by the device, classifying received data, and
reporting the results that are guaranteed to be 100% True Positive (TP). In other words,
there would be no False Positive (FP) results in the monitored data. In real life, the
classification scheme would correctly classify the presence or absence of A-Fib with
some accuracy and would transmit the positive results of the classifier when arrhythmia
is present at the positive rate Ip. The classification positive rate plays an important role in
the validity of the energy reduction scheme. If the positive rate is equal to the incidence
rate then if the classification detection algorithm correctly classifies 100 % of the
episodes of A-Fib then one concludes that the classification positive rate is made up of all
True Positive results and no False Positives. Because classification rarely classifies 100%
of the instances correctly, the goal in classification remains to minimize both the False
Negative and the False Positive results. Minimizing the latter reduces the unnecessary
transmission of information.

Further studies involving larger A-Fib datasets are needed to corroborate the results. As
shown in later sections, the classification schemes using an incidence rate and prevalence
window delivers better results in energy consumption than the telemetry model but has a
risk of introducing False Positive results. Moreover, the classification model accuracy,

the False Positive and the False Negative rates are also better than those obtained in a
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clinical setting where practitioners and nurses interpret EKG data during patient

screenings and/or during medical physical exam visits (see Table 19).

Error Type
FP = Type I error and FN = Type II error FP | FN

Telemetry Device:

e  Telemetry by Cardiologist | reference | reference
Manual EKG readings during Screening and doctor visits:

e General practitioner EKG interpretation | 0.08 0.20
Wearable Computing Device:

e Detecting A-Fib | 0.031 0.013

Table 19: Error types summary
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CHAPTER 6

6 ENERGY MODELS FOR MONITORING AND DETECTING THE FIRST
EPISODE OF A-FIB

Today telemetry is widely accepted in healthcare for remotely collecting and sending
vital data to a monitoring station for analysis and interpretation of all types of arrhythmia
in outpatients. Mobile outpatient cardiac telemetry devices typically are not energy-
aware; they consume battery energy continuously and necessitate outpatients to replace
batteries often, sometimes daily. Moreover the device is not practical for patients who
experience infrequent (less frequently than every 48 hours) symptoms suggestive of
cardiac arrhythmias (i.e., palpitations, dizziness, pre-syncope, or syncope). As a
prerequisite to this design, we first identify and calculate the energy requirements for the
current telemetry and for the wearable healthcare computing devices. Next, we develop a
reference energy model, then the proposed wearable computing energy models. Using the
telemetry energy as reference, we compare each proposed energy model to the telemetry
energy model by calculating the percent of relative energy reduction contributed from
each proposed energy model. We adapt an evolutionary approach to the design of the
proposed energy models (see Figure 29): we develop three primary energy models which
incorporate the following features one at the time: an A-Fib detection algorithm, an A-Fib

positive rate, an A-Fib incidence rate, and a prevalence window. Then by using the three
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primary models, we generate a hybrid model by combining the three features with the
aim to achieve the most efficient energy model for the detection and reporting of
progressive development of cardiac A-Fib to be used in battery operated wearable

healthcare computing devices.

Prevalence
Window-Based
Detection
Model

Primary .
/‘—‘

Model \i_) i Hybrid
Incidence —l}:;”;f; Prevalence idodel
Reference ‘ Rate SAadei Window
T l t | T
;‘:{':;Zl“y l | Thciderce i Window-based
3 Gcner.a] AN Rate ’“\ [ Incidence Rate
(‘l) Detection |- Ki-/ > Det=oHom g '& g Detection
Model Model Model

Detection _| |
Algorithm Primary 4 .
Model ( \\l\__ J F_’auem __:G\‘
— Triggered | S

Patient-Triggered
Window-based
Incidence Rate
Detection

Patient-Triggered

Incidence Rate
Detection

Model

Figure 29: Telemetry and proposed detection energy models
Preliminary results showed that some proposed energy models performed better, i.e.
consume less energy than the telemetry energy model. The performance varied from
model to model depending on which feature and combination of features were used in the
primary and hybrid models.
The following sections present the energy requirements of telemetry and wearable

computing devices followed by the proposed energy models.
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6.1  Energy requirements of wearable healthcare computing devices

Excluding the operating system and support, wearable healthcare monitoring devices are
comprised of three main parts: sensing, detection, and reporting. In an energy-constrained
environment, one cannot afford to run each component continuously. One must make
judicious use of the energy that is available and run components in an optimized scheme.
The operation of continuously sensing, analyzing, detecting, and reporting affects energy
consumption. Furthermore, the combination of wearable mobility, a high performance
requirement in ever-increasing healthcare applications, and high quality user-interactivity
place severe resource demands on an already energy-constrained environment. Current
healthcare systems must budget energy consumption in order to deliver optimum results,

keep battery lifetime high and monetary expenditure low.

The proposed schemes are energy-aware of the timely importance as to when to process
sensing, versus reporting, versus detection and any combination thereof. Though the
proposed energy-aware budgeting schemes could be applied to a variety of healthcare
detection and monitoring applications, their intent here would be for the detection and
reporting of cardiac arrhythmia and more specifically, A-Fib. The schemes allow the
wearable devices to be automatic, scalable, adaptive, and user-transparent as the user may
be engaged in daily activities or even incapacitated. Wearable computing devices using
wireless sensor networks and a smartphone offer an alternative to telemetry devices and
significantly improve the monitoring and detection of arrhythmia and other measurable
healthcare conditions. The three main components in a wearable computing system are
monitoring, detection, and transmission. The following sections describe the energy

requirements (see Figure 30):
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e For the process of signal sensing
e For Bluetooth signal transmitting from the sensor to the GSM (Global System for
Mobile communication) smartphone
e For the GSM smartphone receiving the signal from the Bluetooth sensor
e For smartphone conditioning and classifying the received data, and
e For smartphone transmitting the telemetry data and the detection results
£ . .| e+ Bluetooth
5 iy * Bio-Sensing « Wi-Fi
£ Monitoring * User-Profile
o
=
~ ‘ * Simple Classifier
c . ' « Detailed Classifier
=]
s Operating C Energy a o
@ Classification
s System Budget
o e 8
L ‘ * Special Classifier
5 * In energy-constrained environments,
'ﬁ one cannot afford to run each
"E' B * Bluetooth _ companent continuously.
2 * Wi-Fi Reporting *+ One must make judicious use of the
o * Cellular energy that is available and run
= companents in an optimized scheme,
= — Telem etrv or an Energy Aware Scheme

— Analysis Results

Figure 30: Wearable computing system requirements

6.1.1 Energy requirements of signal sensing

The sensing task receives its reading input from EKG sensors, and performs data
collection and data aggregation. The sensed signals may be compressed to improve the
system’s performance further. Compressed EKG data reduces memory footprint and

improves network traffic efficiency during transmission. User-profile and patient medical

89



history, usually a one-time input during initial set-up, are collected to improve the

detection of arrhythmia.

Today, mobile devices use Bluetooth network to collect data wirelessly, whereas
standalone systems (usually AC-wired) might use Wi-Fi or wired network where the
energy is adequately abundant. Energy consumption might be reduced in a wearable
healthcare device if one adapts a periodic monitoring sequence and a monitoring

frequency.

In this dissertation, a portable, low-power wireless two-lead EKG system integrated with
the University of California (UC) Berkley’s MICA2 mote promises a potential solution to
the challenges of monitoring and detection in a wearable healthcare computing device.
The MICA2 mote is a wireless measurement system developed by UC Berkley and
manufactured by Crossbow Technology, Inc. [69].

The design of our proposed energy-aware model uses measurements and characteristics
from the aforementioned portable, low-power, wireless two-lead EKG system [70]. The
device uses a two-lead connection and continuously monitors electrocardiogram activity
and therefore arrhythmia. The device compares favorably with today‘s 12-lead EKG
device which records only a snapshot of the heart’s electrical activity, a short sample of
no more than thirty seconds [71]. Today, each pair of electrodes in the standard EKG
provides detailed information of the cardiac rhythm in a snapshot from different angles of
the heart. A cardiologist will interpret the tracings engendered on paper or on a screen to
diagnose the presence or absence of arrhythmia. However, sporadic or intermittent
arrhythmia may not be easily identifiable since the cardiac abnormal conditions may have

been missed because they were present only temporarily. Few healthcare centers
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overcome these shortcomings by prescribing continuous EKG telemetry either by
admitting the patient to an intensive care unit or by having the patient wear a portable
heart monitoring device such as a Holter monitor or event monitor for a period of time.
The data from these cardiac monitoring devices is transmitted to a healthcare center for
analysis and detection indicating the presence or absence of arrhythmia. The EKG
machines that are found in medical offices are AC powered and experience no energy
constraints; however, the patient has to be coincidently present while he is experiencing
arrhythmia. On the other hand, battery-operated portable monitoring devices such as
Holter monitors and Event monitors exhibit many shortcomings including energy
constraints, short sampling, and no local analysis or detection of arrhythmia.

6.1.2 Description of the sensing system

The MICA2 Mote is a third generation mote, or tiny wireless smart sensors system,
developed by UC Berkley and manufactured by Crossbow Technologies Inc. to enable
low-power, wireless, sensor networks. MICA2 wireless platform is used as a foundation
for various wireless sensor network applications and research groups. One such
application is the low power wireless 2-lead EKG circuit developed by the Division of
Engineering and Applied Sciences at Harvard University, which plugs into the MICA2
platform through an expansion port. The MICA2 measures a compact 2.25 by 1.25 by 2.2
inches. It includes an embedded microcontroller, a multi-channel radio transceiver
operating in the ISM band at 433MHz or 916MHz with an extended range between 20-30
meters and a data rate of 76,800 bps. It runs on a specialized event-driven TinyOS (TOS)
[72] and supports a wide range of sensor boards and data acquisition add-on boards.

TinyOS 1.0 is a small, open source, energy efficient, software operating system
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developed by UC Berkeley which supports large scale, self-configuring sensor networks.
The processor is based on the Atmel low power microcontroller ATmega 128L, which
runs TOS from its internal flash memory. The MICA2 sports a 51-pin expansion
connector and supports a wide variety of external peripherals through its Analog Inputs,
Digital I/O, 12C, SPI, and UART interfaces. The MICA2 and the piggybacked low power
wireless 2-lead EKG circuit make the monitoring and transmission of continuous
electrocardiographic data possible. Performance evaluation of the device was assessed by
medical expertise and pronounced indeed comparable to that of a commercial EKG [73].
The circuit reads from two electrodes and delivers the resulting trace to the MICA2 built-
in ADC converter via the 51-pin expansion connector. The transmitted data is ultimately
received by smartphones and computers equipped with receiver cards.

The device consumes 60mW of power when monitoring continuously in active mode and
30 microwatts in standby mode where monitoring is disabled. The EKG information is
read at 120Hz sampling rate with four transmissions per second of 30 samples each.

6.1.3 Energy requirements of transmitting and receiving data using Bluetooth

We consider using Bluetooth wireless technology when transmitting data from an EKG
data acquisition module (i.e. a portable, low power, wireless two-lead EKG system) to a
smartphone and receiving the EKG information into the smartphone. Bluetooth transmits
and receives data at rates up to 2Mbps in the 2.45GHz band. Radio communications
expend 107 J/bit for transmission using Bluetooth [74] [105]. The Bluetooth Core
Specification and Health Device Profile offer further low power features to help maintain
and extend minimum battery life. Though this dissertation uses Bluetooth only for

transferring data between devices, it is worthwhile to mention the power-saving modes
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that are inherent in Bluetooth such as Sniff mode and Sniff Subtrate mode. The Sniff
mode prolongs battery life by allowing two devices to only exchange data periodically
and still stay connected between data transfers and frees the transmission bandwidth.
Sniff Subrating mode reduces power consumption by allowing devices to increase the
time between listening for data packets therefore reducing the number of packets
exchanged. The normal mode in Bluetooth stays active at all times even when there is no
data for transfer.

6.1.4 Energy requirements of reporting and transmitting using GSM/EDGE

The reporting task transmits data that may be compressed and encrypted, as well as
detection results. We consider transmitting data using GSM/EDGE network to report
arrhythmia results and telemetry information to a remote server. GSM (Global System for
Mobile communication) is a digital mobile telephony system that operates in the 900
MHz band in Europe and Asia and in the 1.9 GHz band in the United States. EDGE is an

enhanced GSM. It provides data at rates up to 384 Kbps. Radio communications expend

4¥10  J/bit using GSM smartphone [74] [105].

6.1.5 Energy requirements to detect A-Fib

Data mining, a process of extracting patterns from a dataset, is increasingly used in
bioinformatics for medical discovery. Classification in data mining is used to build
models that can correctly predict the class of instances in a dataset. Classification
algorithms shall be selected using machine learning algorithms [62] and adapted to detect
the presence or absence of cardiac arrhythmia. The classifier is adaptive to different
health profiles and different needs, which may require changing parameters. Patient’s

condition (data containing mostly outliers) sometimes varies, necessitating different
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algorithm and analysis. The scheme may seamlessly adopt newly derived learning
algorithms sent from remote application servers [75]. A-Fib detection typically executes
in few mathematical operations (such as exponentiation, multiplication and
addition/subtraction). The energy required to detect A-Fib is typical negligible compared
to the energy to receive or transmit EKG signals.

6.1.6 Energy concerns

Holter monitoring, a battery operated portable continuous EKG monitoring and recording
device, is used for 24/48 hours to capture any episodes of A-Fib and arrhythmias. Holter
monitoring data is collected and saved together with patient’s activities for later analysis
and correlation by a physician. If the episodes are too infrequent to detect by Holter
monitoring then Event monitoring is prescribed for a longer period such as a month. The
recorder is activated by the patient when symptoms of arrhythmia occur. A memory loop
enables EKG information to be stored for seconds before and after activation. The patient
transmits the collected data to a physician via telephone. The continuous monitoring and
reporting by these devices drains batteries very quickly. Batteries are the Achilles‘ heel of
these portable devices. Batteries have to be changed periodically, sometimes as often as
once a day such as in the Cardionet sensor [24].

6.1.7 Energy in a battery used in a wearable computing device

An electrical battery is a combination of one or more electrochemical cells that convert
stored chemical energy into electrical energy. Batteries are simple devices used as a
source of direct current in portable electric and electronic equipment. There are two
types of batteries: disposable batteries, and rechargeable batteries. Disposable batteries

are designed to be used once and discarded, while rechargeable batteries are designed to
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be recharged and used multiple times. The capacity in a battery cell is expressed in
ampere-hours. The energy (E) is expressed in Joules and watt-hours. The Joule is the
international standard unit of energy defined as one watt-second. 3600 Joules are
contained in one watt-hour.

E=P.T=V.LT

Where E = Energy (watt-hour), P =Power (watts), T=Time (hours), I=DC Current
(amperes), V = Electromotive force (volts).

Device battery lifetime varies depending on device power consumption, usage time,
usage mode, and battery quality. The Duracell Copper Top MN 1500 — AA alkaline [76]
battery has a nominal voltage of 1.5 volts, and comes with a rated capacity of 2.850
ampere-hours or (2.85 Ah) (1.5 V) (3600 s/h) =15,390 Joules. The fully rechargeable 3.7
V, 550 mAh Li-ion battery of type Casio NP20 or PowerSmart delivers an energy of
7326 Joules, (3.7 V) (550 mAh) (0.001 A/mA) (3600 s/h). In this analysis, we consider
the BlackBerry Torch 9800 [77] which has a capacity of 1270 mAh or (1.270 Ah) (3.7 V)
(3600 s/h) = 16,916.4 Joules. The Torch’s battery life lasts 5.5 hours in GSM/EDGE Talk
Time.

Figure 31 depicts an example of smartphone battery in various modes: a standby mode,
an idle mode with Bluetooth connection (to a Bluetooth device), a continuous active
mode while receiving and transmitting via Bluetooth (i.e. continuously listening to
music), and a continuous talk mode using EDGE. Figure 32 displays typical battery life

in a smartphone.
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Figure 32: Typical battery life in a smartphone [102]

6.2  Energy models for the A-Fib detection schemes

There is an energy cost associated with each cycle of monitoring, classification and
reporting. Decisions of when and what critical process needs to run must be made in
order to deliver essential results where a critical battery capacity shortage exists. Today,
telemetry and wearable computing devices are ubiquitous in healthcare monitoring. They
are equipped with small batteries that have a limited life. They are used to monitor a
patient heart’s abnormal activity for periods ranging from days to weeks. Sensed or
recorded EKG data is sent to a doctor or a care center for analysis and reporting (see

Figure 33). Telemetry and wearable healthcare computing systems are concerned with
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three main components: monitoring, detection, and transmission. In an energy-aware

environment, the different components must run sensibly in order to extend battery life.

Figure 33: Overall view of a wearable computing system
6.3  Parameters affecting A-Fib detection and energy models
A-Fib monitoring and detection outcome accuracy and energy consumption levels depend
on parameters such as the incidence rate of A-Fib, the distribution of the onset of A-Fib
during a circadian rhythm, and the accuracy of a clinical diagnosis of the onset of A-Fib.
6.3.1 The incidence rate of A-Fib
The Manitoba follow-up study continuously observed 3,983 male aircrew recruits for 44
years and calculated the incidence of A-Fib based on 154,131 person-years of
observation [50]. The study concluded that the incidence of A-Fib is 0.23 per 1,000
person-years at 95% confidence interval, 0.13 to 0.36 for people aged between 25 and 60
years, 5.7 per 1,000 person-years after age 60, and 9.7 per 1,000 person-years after age
70 (see Figure 34).
Similarly, the Framingham Heart study [6] [51] involving 2,325 men aged 25 to 65 years

at enrollment reported the 22 year incidence of atrial fibrillation as 1.0 per 1,000 person
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years, and later reported an incidence of 12 per 1,000 person-years after age 70 [50]. The
Ruigomez et al. study found that A-Fib incidence increases with advancing age [78],
where the incidence rate of A-Fib varies between 0.4 and 0.7 per 1,000 person-years at

The incidence of A-Fib is:
0.13 to 0.36 per 1000 person-years for people
10 j between 25 and 60 years old,
5.7 per 1,000 person-years after age 60,
8 | and 9.7 per 1,000 person-years after age 70
( 27 to 75 times the rate of young people)

Cases/1,000 person-years

<40 40-44 45-49 50-54 55-59 60-64 B5-69 70-74 >74
Age (years)

Figure 34: Incidence rate of A-Fib by age group [50]
age 50, and between 10 and 20 per 1,000 person-years at age 80. The incidence rate of
chronic A-Fib was 1.7 per 1,000 person-years. In the Renfrew-Paisley project [79], the
incidence of A-Fib was 0.54 cases per 1000 person years, and 0.3% for all cases of A-Fib
in the Carroll and Majeed project [80]. All of the aforementioned studies draw attention
to the significance of the higher frequency of A-Fib with advancing age. Early
recognition of A-Fib is difficult because most people are not aware of this silent rhythm
disturbance [81]. The first episode of A-Fib is diagnosed when heart palpitations last
longer than 30 seconds. Frequent monitoring and screening of patients allow for early
detection of arrhythmia. The latter might protect patients from the consequences of
arrhythmia by introducing therapies early. It is worthwhile mentioning that at least one-
third of the A-Fib episodes go undetected [50] because either people are not screened

often or A-Fib diagnosis is missed by a general practitioner or a practice nurse.
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The longer the heart remains out of normal sinus rhythm, the more difficult for the doctor
to restore the normal sinus rhythm to the heart. The incidence of A-Fib is expected to
more than double by the year 2050 [51] as the elderly population in America is expected
to increase. The prevalence of A-FIB in persons younger than 55 years accounts for 0.1%
and 3.8% in persons 60 years or older [48] [82] [83]. Incidence of A-Fib seems to be
significantly higher in men than in women [78] (see Figure 35). The cost to treat A-Fib in
the United States exceeds $6.4 billion per year [12]. People affected by A-Fib visit
emergency rooms more often, and are four times more likely to be admitted into
hospitals, than people who do not have A-Fib.

12
|

10

8

—A—Male_‘
~fii—Female|

Incidence rate per 1000 person-year

4(-59 60-69 70-79 80-89
Age groups
‘Relative  Risk
(males) 2.59 1.81 1.15 1.28

Figure 35: Incidence rates of chronic atrial fibrillation by sex [78].
6.3.2 The distribution of the onset of A-Fib during a circadian rhythm
The study by Georg Delle Karth et al. [84] assessed the diurnal distribution of ventricular
tachycardia (VT) and A-Fib in critically ill patients during a circadian rhythm, the
cyclical 24-hour period of human biological activity where a person usually sleeps

approximately 8 hours and is awake 16. The study concluded that the onset of A-Fib
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over a 24-hour period is non-uniformly distributed. A-Fib was prominent in the morning

between 8:00 A.M. and 10:00 A.M. and around midnight (see Figure 36).
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Figure 36: Circadian distribution of the onset of A-Fib episodes [84]

Another study by S. Viskin et al. [85] which used a large patient population (almost
10,000 episodes of A-Fib) suggests that the onset of paroxysmal A-Fib does not occur
randomly, and that the circadian rhythm of paroxysmal A-Fib happens in clusters of
events in the morning and (to a lesser degree) late in the evening. The findings are similar
to those in the study by Georg Delle Karth et al. [84].

Among all arrhythmia, A-Fib is the most frequently diagnosed and affects 2.5 million
people in the United States or close to 1% of the total population [12]. Its prevalence
increases with a person’s age, and it affects as many as 9% of the people older than 80
years [86]. Patients with A-Fib have a 1.5-2 fold increase in mortality rate when
compared with the general population as suggested by Framingham Heart study data [6]

[51].
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6.3.3 The accuracy of a clinical diagnosis of the onset of A-Fib

Few studies have addressed the misdiagnosis of A-Fib from an electrocardiogram (EKG)
and the potential risk of A-Fib misinterpretation errors. Knight et al. [54] concluded that
A-Fib is more often misdiagnosed by internists than cardiology fellows and cardiologists.
Mant et al. [55] discovered that general practitioners correctly detected A-Fib 80% (true
positive) of the time when interpreting 12-lead EKG data and misinterpreted 8% (false
positive) of sinus rhythm cases as A-Fib. Confusing A-Fib with atrial flutter is one of the
most common misdiagnoses. Though both A-Fib and atrial flutter are clinically and
electrocardiographically similar, the distinction between them is important since their
treatment strategies may be different. Shiyovich et al. [56] concluded the misdiagnosis
rate of electrocardiograms (EKG) consisting of 268 patients, interpreted as A-Fib by
medical internists and corroborated by a cardiologist was 16%. The baseline diagnosis
was correct in 212 of 246 (86%) for A-Fib, p < 0.001. Jonathan Mant et al. [55]
discovered that general practitioners detected A-Fib on a 12 lead electrocardiogram with
a sensitivity or True Positive rate of 80% at 95% confidence interval and misinterpreted
cases of sinus rhythm as A-Fib with a specificity or True Negative rate of 92%. Similarly,

practice nurses detected performed with a sensitivity of 77% and a specificity of 85%.
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CHAPTER 7
7 THE BASELINE ENERGY MODEL

7.1  Defining the A-Fib telemetry energy components

Typically, a telemetry device may sense, store, and send the acquired EKG data to a
remote server for analysis by a care center expert or a cardiologist. These on-body
healthcare devices lack local detection, and are not energy-aware. The system transmits
the EKG data wirelessly or through a phone line to a service center. The patient can also
manually send the EKG data by pressing a button when experiencing a symptom. The
results are not immediately known to the patient. The latter has to wait for analysis results

to be available days later (see Figure 37).
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Figure 37: A telemetry monitoring device diagram
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In our analysis, we adopt the MICA2 mote, a wireless EKG sensor developed by UC
Berkley and manufactured by Crossbow Technology, Inc., and a smartphone. Figure 38
and Table 20 describe the energy components of a telemetry energy model capable of

monitoring and transmitting EKG data.
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Figure 38: A-Fib telemetry energy distribution

The following calculations are estimates of the energy required in order to
continuously transmit EKG records for a 24 hour period
Battery capacity of 1270mAh or (1.270 | The rechargeable smartphone battery such
Ah) x (3.7V) x §36?0 s/h) =16,916.4 | as the 3.7-volt Li-Polymer F-S1 battery [77]
oules

The total energy required by A-Fib
telemetry model to continuously sense and
transmit EKG records for a 24-hour period
The total energy required by event-triggered
ETEtelemetry telemetry model to continuously sense and
transmit EKG records for a 24-hour period

_ Sec The 24 hour period in seconds of sensing
Tsense = 3600 ho 24h EKG signals

= 86400 s

Etelemetry

The power consumed by a EKG sensing

device (MICA?2) sensing EKG signals

E - P T The energy consumed by a EKG sensing
EKGsense Sense “Sense device (MICA2) when continuously reading

Psense = 60 * 1073 Watts
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=60 %10 ~3W % 86400 sec
= 5184 Joules

EKG signals for a 24 hour period

Sampling rate = 120 Hz
samples
= 120 ———
sec
One sample size in bits
samples
=120———
sec

bits
* 8 =
sample

bits

SecC

MICA2 EKG Sampling rate where 1 sample
=1 byte = 8 bits

bits sec
NTxSense = 960; * 3600E *

24 hr = 82,944,000 bits = 10.368

The number of sensed EKG bits transmitted
by the MICA2 EKG sensing device to the
GSM/EDGE smartphone for a 24-hour

Mbytes period
Bluetooth transmits and receives data at
_ . _,Joules rates up to 2Mbps in the 2.45GHz band.
Wrx = bit Radio communications expend 107 J/bit for
transmission using Bluetooth. [74]
EEkGr, = DTxSenseWTx The energy consumed by an EKG sensing
_ _, Joules device (Mica2) when continuously
= 82,944,000 bits » 10 bit transmitting sensed EKG information via
= 8.3 Joules Bluetooth for a 24-hour period

NRxSense = NTxSense

The number of EKG bits received by
smartphone for a 24-hour period

Bluetooth transmits and receives data at

_ . _,Joules rates up to 2Mbps in the 2.45GHz band.
Wrx = bit Radio communications expend 107 J/bit for
transmission using Bluetooth. [74]
EEKGr, = DRxSenseWRx The energy consumed by a smartphone
_ Joules when continuously reading EKG
= 82,944,000 bits * 1077 bit information via Bluetooth for a 24-hour
= 8.3 Joules period
NRep = Npxsense T Positive results in | The number of sensed EKG and positive

bits
Slightly above 82,944,000 bits

results in bits transmitted via GSM/EDGE
for a 24-hour period

Wrep = 4 * 10 7> Joules/bit

GSM (Global System for Mobile)
5

communication expends 4* 10 J/bit [74]

ERep = NRepWRep =
82,944,000 bits * 4 * 1075 % -
3318 Joules.

The energy consumed by the phone when
continuously transmitting all EKG
information (in case of telemetry) plus
reporting all positive results (in case of
detection model) via GSM/EDGE during a
24-hour period

Table 20: Energy requirements for a wearable computing device
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7.2 Using telemetry as a baseline energy model

Healthcare physicians prescribe telemetry in one of two modes: continuous monitoring or
user triggered monitoring. In the subsequent sections, A-Fib detection energy models will
be compared to the continuous telemetry energy model.

7.2.1 Energy model of telemetry with continuous monitoring

Ambulatory Monitors such as Holter Monitors, Event Monitors, and telemetry fall short
of providing adaptive, scalable, energy-aware real-time monitoring and analysis.
Continuous monitoring, detecting and reporting of cardiac arrhythmia drain the battery
quickly. Batteries in current devices last as a little as one day such as in Cardionet
telemetry. Energy shortcomings may happen at the most unfortunate time and the onset
of A-Fib goes undetected because the battery in the device is dead. Today, telemetry
systems continuously sense EKG information for a period of time and transmit it to a
healthcare center for further diagnostics and analysis by a doctor or a healthcare
specialist. The system transmits all the monitored data including positive results as well

as negative results.

EEKGgense 18 the energy consumed by an EKG sensing device (MICA2) when

continuously reading EKG signals for a 24-hour period.

Egkgy, 18 the energy consumed by an EKG sensing device (MICA2) when
continuously transmitting sensed EKG information via Bluetooth for a 24 hour period.

Egkgg, 1 the energy consumed by a smartphone when continuously reading EKG
information via Bluetooth for a 24-hour period.

Egep 1s the energy consumed by the phone when continuously transmitting all EKG
information via GSM/EDGE during a 24-hour period.
Table 21: Telemetry energy requirements
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Today, when prescribed by a physician, telemetry is applied continuously for a few days
in the hope of capturing episodes of A-Fib. However, the procedure is burdened by the
need to replace drained batteries daily [23]. The telemetry energy model continuously

senses EKG signals, transmits EKG data, receives EKG records, and reports.

Emonitor + Etransmission

Etelemetry

Where:

Emonitor = EEKGSense + EEKGTX + EEKGRX =5184 + 8.3 + 8.3 = 5200.6 ]OUIQS

Etransmission = ERep = 3318 Joules

E:telemetry = 8519 Joules

The telemetry report includes all positive and negative results, depicted by the rate r

and rate r,, respectively.

Positive rate = rp, = (TP + FP)/(TP + FP + TN + FN)

Negativerate = r, = (TN + FN)/(TP + FP + TN + FN)

Etelemetry = E:EKGSEHSE + EEKGTX + E:EKGRX + (rp + 1) ERep

This mode of operation causes quick battery drainage and necessitates frequent battery

replacement.

The total energy consumed is approximately 8519 Joules, i.e. the sum of the energies that
are required for sensing EKG signals, transmitting to the smartphone via Bluetooth,

receiving EKG record, and reporting EKG record for a period of 24 hours.
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In a 24-hour period, such a telemetry system would use approximately 50% of the
capacity of the 3.7-volt Li-Polymer F-S1 battery. Continuous telemetry does not
discriminate between positive and negative results, in fact telemetry reports all the results
to a remote healthcare center where physicians perform the detection of positive results.
If we assume that telemetry EKG interpretations are conducted by a cardiologist or a
cardio-physiologist who are trained experts at EKG readings, then all judgments of what
constitutes A-Fib is going to be assumed to be as accurate as possible. Unfortunately, not
every physician is a cardiologist, so general practitioners are often the first to interpret
EKG readings during a general screening evaluation. General practitioners introduce
human errors when interpreting EKG readings leading to a false positive rate of 8% and a
false negative of 20%.

7.2.2 Energy model of telemetry with user-triggered event

The patient may trigger the detection of the first episode of A-Fib as soon as he or she
feels symptoms of A-Fib such as heart palpitations. The telemetry system starts
consuming energy as soon the user triggers the event. Similar to the continuous telemetry
model, the user-triggered event energy model continually senses EKG signals, transmits

EKG data, receives EKG records, and reports all data to a remote healthcare center.

ETEtelemetry = Emonitor T Etransmission = 8519 Joules

The total energy consumed is approximately 8519 joules, i.e. the sum of the energies that
are required for sensing EKG signals, transmitting to the smartphone via Bluetooth,
receiving EKG records, and reporting EKG records for a period of 24 hours. Using

triggered events to start an A-Fib telemetry-monitoring device saves energy early in
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standby mode but runs the risk of missing the first 30 seconds of A-Fib. Moreover,
triggering events might not be possible if the user is incapacitated.
In a 24-hour period, the user-triggered event energy model would use approximately 50%

of the capacity of the 3.7-volt Li-Polymer F-S1 battery.
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CHAPTER 8
8 A-FIBDETECTION ENERGY MODELS

8.1  Detection energy model of A-Fib

Typically, the detection A-Fib model discovers the first episode of A-Fib, by sensing
EKG signals using the low-power, wireless two-lead EKG system [69] [87], transmitting
EKG data to a smartphone via Bluetooth, receiving EKG records into a smartphone via
Bluetooth, detecting A-Fib using the smartphone, and transmitting data via GSM/EDGE
to a care center. The device senses, stores and processes the acquired data on the local,
on-body network, or on a remote server to provide feedback of a patients’ physiological
and vital signals. Figure 39 describes schematically, the typical features of a wearable
healthcare computing system capable of monitoring, detecting, and transmitting A-Fib

EKG data and results.
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Figure 39: Typical wearable computing diagram
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The energy model of a wearable healthcare device is typically comprised of the energy

components described in Figure 40 and defined in Table 22.
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Figure 40: A-Fib monitoring and detection energy distribution

The following calculations are estimates of the energy required in order to
continuously transmit EKG records for a 24 hour period

TP = True Positive

Sensitivity, or TP rate (a.k.a. recall rate in
data mining) measures the proportion of
actual positives (people having arrhythmia)
which are correctly identified

FP = False Positive

Type 1 error, a.k.a. a error or false positive
is when a model classifies a patient as
having arrhythmia when in fact the patient
does not have arrhythmia

TN = True Negative

Specificity, or TN rate, measures the
proportion of negatives that are correctly
identified (i.e. the percentage of arrhythmia
free people who are correctly identified as
not having arrhythmia)

FN = False Negative

Type Il error, a.k.a. B error or false
negative, is when a model classifies a
patient as not having arrhythmia when the
patient has arrhythmia

Positive rate = r, = TP + FP

The proportion of subjects with positive test

110




results who are correctly or incorrectly
diagnosed

Negativerate = r, = TN+ FN

The proportion of subjects with negative
test results who are correctly or incorrectly
diagnosed.

r, + rp, =1

Inclusive of all test results possibilities

Battery capacity = 16,916.4 Joules

3.7-volt Li-Polymer F-S1 battery

Required energy to keep the system in

Eactive active or working mode
Nominal energy to keep the system in
Estandby standby or sleep mode, equal 30 micro-
A battery would last approximately | watts for MICA2
168 hours on standby.
The total energy required by A-Fib
Etelemetry telemetry to continuously sense and

transmit EKG records for a 24-hour period

ETEtelemetry

The total energy required by event-triggered
telemetry to continuously sense and
transmit EKG records for a 24-hour period

ETotalAFib

The total energy required to continuously
sense, detect and transmit EKG records for
a 24-hour period

MICAZ2? is a portable, low power,
wireless two-lead EKG system
integrated with the UC Berkley’s
MICA2 mote developed by UC
Berkley and manufactured by
Crossbow Technology, Inc. [69].

The device consumes 60mW of power when
monitoring continuously (active mode) and
30 microwatts in standby mode where
monitoring is disabled. The EKG
information is read at 120Hz sampling rate
with four transmissions per second of 30
samples each

sec

Tsense = 3600 — * 24 hr
hr

= 86400 sec

The 24 hour period in seconds of sensing
EKG signals

Psense = 60 * 1073 Watts

The power consumed by a EKG sensing
device (MICA?2) sensing EKG signals

EEKGSenSe = PsenseTsense
= 60 * 10 ~3W x 86400 sec
= 5184 Joules

The energy consumed by a EKG sensing
device (MICA2) when continuously reading
EKG signals for a 24 hour period

Sampling rate = 120 Hz
samples
= 120———
sec

MICA2 EKG Sampling rate where 1 sample
=1 byte = 8 bits
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One sample size in bits

samples
=120———
sec
bits bits
* = _—
sample sec
bits sec The number of sensed EKG bits transmitted

NTxSense = 960@ * 3600F*
24 hr = 82,944,000 bits = 10.368

by the MICA2 EKG sensing device to the
GSM/EDGE smartphone for a 24-hour

Mbytes period

Bluetooth transmits and receives data at
_,Joules rates up to 2Mbps in the 2.45GHz band.
wrx = 10 bit Radio communications expend 107 J/bit for

transmission using Bluetooth. [74]

— The energy consumed by an EKG sensing

By nszenseWT)ioules device (MICA2) when continuously
= 82,944,000 bits x 1077 it transmitting sensed EKG information via
— 8.3 Joules Bluetooth for a 24-hour period

NRxSense — DTxSense

The number of sensed EKG bits received by
GSM/EDGE smartphone for a 24-hour
period

Bluetooth transmits and receives data at

_ _,Joules rates up to 2Mbps in the 2.45GHz band.
Wrx = bit Radio communications expend 107 J/bit for
transmission using Bluetooth. [74]
— The energy consumed by a smartphone
E =n w
ERGrx RxSense R)]( oules when continuously reading EKG
= 82,944,000 bits * 1077 bit information via Bluetooth for a 24-hour
1 .
= 8.3 Joules period

NRep = Npysense T POSitive results in
bits

Slightly above 82,944,000 bits

The number of sensed EKG and positive
results in bits transmitted via GSM/EDGE
for a 24-hour period

Wrep = 4 %10 73 Joules/bit

GSM (Global System for Mobile)

-5
communication expends 4*10 J/bit [74].

ERep = NRepWRep =

—g Joules

82,944,000 bits * 4 * 10 it

3318 Joules.

The energy consumed by the phone when
continuously transmitting all EKG
information (in case of telemetry) plus
reporting all positive results (in case of
detection model) via GSM/EDGE during a
24-hour period
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EEkGgense 18 the energy consumed by an EKG sensing device (MICA2) when
continuously reading EKG signals for a 24-hour period

Egkcr, 18 the energy consumed by an EKG sensing device (MICA2) when

continuously transmitting sensed EKG information via Bluetooth for a 24-hour
period

Egkcg, 18 the energy consumed by a smartphone when continuously reading EKG
information via Bluetooth for a 24-hour period

E.ctive 1S the energy required to keep the system in monitoring, detecting and
transmission mode

Estandby 18 the energy required to keep the system in standby or sleep mode., A
battery would last approximately 168 hours on standby

Edetecting AFib 1S the energy required by A-Fib detection algorithm to detect A-Fib

EtotalaFip is the total energy required to detect A-Fib during a 24-hour period

Erep 18 the energy consumed by the phone when continuously transmitting all EKG

information plus reporting all positive results via GSM/EDGE during a 24-hour
period

Positive rate = r, = True Positive + False Positive

Table 22: Energy requirements for a general detection model

An A-Fib detection energy model and an A-Fib telemetry energy model are different

models. Both energy models are capable of sensing EKG signals, transmitting EKG data,

receiving EKG records, and reporting results; however, an A-Fib detection energy model

has the capability of detecting A-Fib locally and transmitting the results when an episode

of A-Fib is detected.

The telemetry energy model:

Etelemetry Emonitor + Etransmission
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Etelemetry = EEKGgense T EEKGry T EEKGRy T ERep

For the detection energy model of A-Fib, we propose a basic general energy model,
starting with telemetry energy model as reference platform to which we add features such
as an A-Fib risk factor, an incidence rate, a prevalent window, and/or a user-triggered
event in order to create primary and hybrid energy models.

Figure 41 shows the design progression of our energy models starting with a telemetry
model as a reference. We add an A-Fib detection algorithm in order to get a general
detection model. We inject an incidence rate to the general detection model to get an
incidence based detection energy model. We finally include an A-Fib prevalence window
in order to achieve the Adaptive Energy-aware Real-time Detection Models for Cardiac

Atrial Fibrillation.

Figure 41: telemetry to detection energy-aware models design progression
The general A-Fib detection energy model:
Case 1: If one assumes there is plenty of energy then one could use a telemetry model
with a detection algorithm where monitoring, detection and reporting are on

continuously.

ETotalAFib = Emonitor + EdetectingAFib + Etransmission

Emonitor = EEKGSense + EEKGTX + EEKGRX = 5184 + 8.3 + 8.3 =5200.6 ]OUIQS
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Etransmission = ERep = 3318 Joules

Etotalarib = 8519 + EgetectingaFrib
Case 2: Today, energy is scarce and needs to be optimized in order to extend battery life
in wearable computing healthcare devices. The general detection energy model below
will be modified in order to achieve energy consumption optimization. The model would
transmit the positive results of the classifier and the corresponding data at the positive

rate Iy .

ETotalAFib = Emonitor + EdetectingAFib + I'pEtransmission

EtotalaFib = EEkGsense T EEKGry T EEKGpy T Edetectingariv + TpErep

Emonitor = EEKGgense T EEKGry T EEKGR, = 2200.6 Joules
Etransmission = ERep = 3318 Joules

Etotalarip = 5200.6 + EdetectingAFib + 1p 3318

A-Fib is predicted present, with an accuracy of 98.67%, a false positive of 3.1% and a
false negative of 1.3% (see Section 5.2.6), if probability p (A-Fib is Present | Age, Age’,

Gender, BMI, QRSduration, PRjyerval, Heartrate) > 0.5

Otherwise, A-Fib is absent

logit(p) = - 41.175 + 0.820 Age — 0.006 Age” + 4.737 Gender — 0.047 BMI +
0.098 QRSduration - 0.178 PRjyervai + 0.066 Heartrate

And
p=1/(1+e")
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8.2  Detection energy model based on a risk factor, an incidence rate, a
prevalence window, and/or a user-triggered event

Since A-Fib is not a common occurrence [94] and, in order to judiciously optimize
energy consumption in wearable healthcare monitoring and detection devices, monitoring
should occur during a window in time when A-Fib is more prevalent, or should a patient
feel heart palpitations. The implementation of a risk and incidence based A-Fib detection
within a prevalence window in such devices helps extends the monitoring device battery
life. A-Fib risk factors k may be classified in categories made up of risk ranges such as k
<0.05, 0.05 <k <0.15, k > 0.15. Knowing the A-Fib risk factor of a patient allows one
to prescribe an A-Fib monitoring and detection schedule (see Figure 42). A high A-Fib
risk factor may suggest more frequent monitoring compared to a low A-Fib risk factor.

In the following sections, we explore the design of an A-Fib detection energy model by
adopting an A-Fib risk factor assessment algorithm from [89], an A-Fib incidence rate, an
A-Fib detection algorithm, and an A-Fib prevalence window. We consider an incidence

rate equal to 0.02 for illustrative purposes.
" Assess
5 A-Fib Risk Factor k
)  \[k<005[ 005<k<015 [k>0.15]
A-Fib Monitoring ' =
and Detection
Select

Scheme a Circadian
Prevalence Window D

—

AgeZS!oBOwars kgoﬁ-t)to?ﬁwars Age: > 70
Detection Detection Detection
triggered at Incidence Rate || triggered at Incidence triggered at Incidence
i=0.13 to 0.36 per 1,000 Rate Rate
person-years i=57 per 1,000 i=9.7 per 1,000
potson years porson-years

- Repon o
Detection Results to Patient
nd / or Physician

Figure 42: Overview of an efficient wearable computing device
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8.2.1 Detection energy model based on a A-Fib group incidence rate i

We design an incidence rate based A-Fib detection energy model by integrating the
incidence rate into the general energy model for A-Fib [88]. In this dissertation, we
consider an incidence rate i equal to 2% for illustration purposes. If the detection
algorithm is as accurate as the cardiologist’s interpretation of EKG readings, then having
a detection positive rate equal to the clinical incidence rate gives our energy-aware model
the best energy performance. Because A-Fib is not a common occurrence [56], energy
consumption can be reduced and therefore device battery life extended if A-Fib is
reported only when there is an actual occurrence of A-Fib. The incidence rate based A-
Fib energy model detects the first episode of A-Fib by continually sensing EKG signals,
transmitting EKG data, receiving EKG records, classifying, and reporting when the
classifier detects the first 30 seconds of A-Fib. The report includes all positive results,

that is all True Positive and False Positive outcomes and the corresponding data.

A-Fib is predicted present, with an accuracy of 98.67%, a false positive of 3.1% and a
false negative of 1.3% (see Section 5.2.6), if probability p (A-Fib is Present | Age, Age’,

Gender, BMI, QRSduration, PRjyerval, Heartrate) > 0.5

Otherwise, A-Fib is absent.

The covariates coefficients are extracted from the logistic regression results in Section
5.2.6:

logit(p) = - 41.175 + 0.820 Age — 0.006 Age” + 4.737 Gender — 0.047 BMI +
0.098 QRSduration - 0.178 PRipterval + 0.066 Heartrate

p=1/(1+¢"H®)
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The A-Fib detection model executes in twenty arithmetic operations (ten multiplication
operations and ten additions/subtractions). About 98% of all mobile phones use at least
one ARM-designed core on their motherboards [89]. ARM processors account for
approximately 90% of all embedded 32-bit RISC processors. Using a 32 bit 512 MHz

processor [90], the energy Egetectingarib required when executing 20 arithmetic
operations is negligible compared to the energy Eg., expended when transmitting

reports.

ETotalAFib = Emonitor + EdetectingAFib + rp Etransmission

Emonitor = EEKGSense + EEKGTX + EEKGRX = 5200.6]0“,[@5

Etransmission = ERep = 3318 Joules

ETotalAFib = 5200.6 + E:detectingAFib + I-p 3318

The ideal general detection energy model for predicting A-Fib is when r, =i = 0.02

Etotalarip = 5200.6 + EdetectingAFib + 13318

Etotalarip = 5267 Joules ifr, =i = 0.02 and Ejeectingarin 18 negligible

Figure 43 illustrates the energy consumption as the positive detection rate varies with

respect to the clinical incidence rate.
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5000 Energy consumption versus A-FIB detection positive rate in a 24 hour period
Mo Energy 4 . .
- =
Consumed R ,Et?;tlon pO:ItIVE rate ‘/Ax’
= i =incidencerate
3 ;
0.02 >267 £  E =energy consumed i
0.1 5532 = oo r, =1, E=8519 Joules
0.2 5864 £ continuousdetection
03 6196 35000 S continuousReporting
- 3 oo _ Theideal case is whenr, = i
0.4 6528 g then E= 5267 Joules
0.5 6860 8 000
06 7191 - r,=0, E=5201 loules
. D 2000 continuous monitoring
0.7 7523 &’ 1000 no detection
0.8 7855 W No Reporting Detection positive rate
1]
0.9 8187 0 0.2 0a TP 0.6 0.8 1
1 8519

Figure 43: Energy required depends on A-Fib positive rate

Figure 44 suggests that the ideal detection case is when the logistic regression positive
rate rp, is equal to cardiologist referenced A-Fib incidence rate 1. The worst case is when

the positive rate equals 1, that is, the telemetry energy model.

o {i-rp},r’i| Corresponding|  Percent e r, = detection positive rate
EdetectingA-Fi Energy Change @ 0 i =incidence rate ®

0.02 0 5967 0.0% g E =energy consumed

50.0
01 | 400 | 55324 5.0% 2
0.2 900 5864.2 11.3% § «0 1 ideal case when

v =i .
03 | 1400 6136 17.6% & w0 { fp=1 61.7 % energy increase when
04 | 1900 6527.8 23.9% S r, =1 compared to i= 0.02
0.5 | 2400 6859.6 30.2% g
0.6 | 2900 71914 36.5% cu? s s
0.7 | 3400 7523.2 42.8% (rp-i)/i*100%
0.8 | 3900 7855 49.1% oe v ”
0 500 1000 1500 2000 2500 3000 3500 4000 4500

0.9 | 4400 8186.3 55.4% _ - ‘ o
1 4900 2518.6 61.7% Percentincrease of positive rate with respect to incidence rate

Figure 44: Energy required as positive rate varies with respect to incidence rate
Ideally, when there are no A-Fib episodes (1, is equal to 0), the model spends its time in a
monitoring state. On the other hand, when the model continuously monitors, and
continuously transmits, 1, is equal 1. False positive outcomes result in wasted energy that

is needlessly spent transmitting inaccurate information. The total energy consumed is

approximately 5267 Joules, i.e. when rp, =i=0.02 and Egecingarn is negligible, the
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sum of the energies that are required for sensing EKG signals, transmitting to the
smartphone via Bluetooth, receiving EKG records, detecting and reporting EKG records
and positive results during a 24-hour period. In a 24-hour period, such a detection system
would necessitate 31% of the capacity of the 3.7-volt Li-Polymer F-S1 battery.

8.2.2 Detection energy model based on prevalence window D

We design a prevalence window-based A-Fib detection energy model by incorporating
the prevalence window into the general energy model for A-Fib [91] [92]. Prevalence
window D is defined as the fraction of the period the device is in one of two states. A
state could be defined as ON (monitoring) and OFF (not monitoring or sleeping). We
apply the model for a short time during the morning and evening and turn it off the rest of
the day because when A-Fib exists it is prominent in the morning between 8 AM and 10
AM and also around 10 PM and 12 AM [85][86] (see Figure 45). The energy model in
this case runs continuously two hours in the morning and two hours in the evening with
the anticipation that A-Fib occurs predominantly during these prescribed windows of
time. In a 24-hour period, the energy model is on during the two 2-hour windows and off
during twenty hours.

Essentially this scheme senses EKG signals, transmits EKG data, receives EKG records,

classifies and reports positive results depicted by the rate r, and the corresponding data

during a prevalence window D = % =2=1 /6 = 16.67% of the 24-hour period. The

24
prevalence windows widths, when A-Fib monitoring occurs, are described by

tlyn and t2,, .

tlon + 200 Ton
revaience window 24 24

Etotalarib = EactiveD + Estandby(1 —D)
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Where:
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Figure 45: First diagnosed episode of A-Fib using prevalence window

Eactive = (Emonitor + EdetectingAFib + Iy Etransmission)

Estanaby = energy to keep the system in standby or sleep mode

Egetectingarib 18 assumed to be negligible compared to the other energies.
Erotaiarip =

(Emonitor + EdetectingAFib + I'p Etransmission)D + Estandby(1 - D)

Special case 1: The energy model monitoring and transmitting continuously inside a
prevalence window D =4 hours

We run the proposed prevalence window-based energy model during window D = % =

1/6 = 16.67% of the 24-hour period. This scheme senses EKG signals, transmits EKG
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data, receives EKG records, detects A-Fib locally and reports all data to a remote care

center, a remote server, or cardiologist.

ETotalAFib = (Emonitor + EdetectingAFib + I'p Etransmission ) (g) + Estandby <g>

Forr, =1
P 1 24 5
= 8518 * - + 16919 * Tes e 3334 Joules

The prevalence window-based A-Fib detection energy model uses 3334 Joules or 19.7%
of the battery capacity as compared to the full time telemetry; it represents 39.1% of the
energy consumed by telemetry.

Special case 2: The energy model monitoring continuously inside a prevalence
window D = 4 hours but transmits with incidence rate = 0.02

This model runs continuously two hours in the morning and two hours in the evening
with the anticipation that A-Fib occurs predominantly during these prescribed windows
of time at the incidence rate r,. This scheme is overridden by a user-triggered event as
soon as the patient feels heart palpitations. In this case, the model senses EKG signals,
transmits EKG data, receives EKG records, classifies A-Fib locally and reports detection

positive results to a care center or cardiologist at the incidence rate r, = 0.02 during

prevalence window D = 4 hours or 1/6 of the 24-hour period.

1 5
ETotalAFib = (Emonitor + EdetectingAFib + Iy Etransmission ) (g) + Estandby <g>

For incidence rate = 0.02

1

5
ETotalAFib = (Emonitor + EdetectingAFib + 0.02 Etransmission ) (g) + Estandby (g)

1 24 5
= (5200.6 + 0.02 * 3318) * 3 + 16919 * * r 2892 Joules

168
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The prevalence window-based A-Fib detection energy model uses 2892 Joules or 17 % of
the battery capacity; it represents 33.9 % of the energy consumed by telemetry.
8.2.3 A user-triggered event energy model of A-Fib detection
The patient may trigger the detection of the first episode of A-Fib as soon as he or she
feels symptoms of A-Fib, such as heart palpitations. The energy model then continually
senses EKG signals, transmits EKG data, receives EKG records, classifies, and reports all
the EKG data and detection results. The report includes all results, i.e., positive and
negative results.

Erotaarib = Emonitor T Edetectingarib + T'p Etransmission

For incidence rate = 1, the model approaches a telemetry model

Etotalarip = 8518.6 Joules
For incidence rate = 0.02,
Etotalarib = 5267 Joules
The total energy consumed is approximately 5267 Joules, i.e. once the device is
activated, the sum of the energies that are required for sensing EKG signals, transmitting
to the smartphone via Bluetooth, receiving EKG records, classifying and reporting EKG

records for a period of 24 hours.

In a 24-hour period, such a detection system would use approximately 31% of the capacity

of the 3.7-volt Li-Polymer F-S1 battery or 61.8 % as compared to telemetry.

A user-triggered monitoring device saves energy because the device is in standby mode, but

runs the risk of missing the first 30 seconds of A-Fib especially if the user is incapacitated.
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8.3  Summary of A-Fib energy models

Figures 46 and 47 show the design progression using energy equations for a telemetry
energy model, a general detection energy model, an incidence based energy model, and a

prevalence-window energy model.

Telemetry Energy Model as Reference
ET:CIl:mc]:r}.r = Emonitor + Etransmission : —®‘— Detection

Detection Model for local detection of A-Fib

ETota[AFib = E:monimr'+' EdetectingAFib + Etmnsmission <

—_—
:@--: | PositiveRater, |

Detection Model to detect and report A-Fib J
| Evotaaris = Emonitor + EdetectingaAFib + TpEtransmission -
_@(_—. | Posﬁwe;Rate Mo
Incidence based Detection Model to detect and report A-Fib ‘ ‘ IncldenceRgtel J
‘ ETotalAFib = Emun[lur'iw EdetectingAFib + iElransmisston <

g _ _. Prevalence .
' @ | WindowD
Prevalence Window based Detection Model to detect and report A-Fib -

. Tl
ETotalAFib =~ (Emonimr + EdctectingAFib +* lEtransmissi{m)D + Estandby(l = D) i"""'

Figure 46: General description of A-Fib energy models
8.4  Comparing A-Fib detection and telemetry energy models
Telemetry is widely accepted in healthcare for remotely collecting and sending vital data
to a monitoring station for analysis and interpretation. However telemetry drains the
battery quickly which forces the patient to replace the battery as often as every day.
Wearable computing in healthcare offers the benefits of telemetry when needed, provides
detection results when available, and saves energy when compared to telemetry. Table 23

and Figure 48 summarize the energy consumption from the various models.
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Telemetry Energy Model as Reference

—

Ecetemerry = EexGgpe, T FexGr, T FenGp, T Erep | 4 )<
' &

Detection Model for local detection of A-Fib

Etoralariv = EExGeunse T EExor, T EExcp, T Edetectinzariv T Erep

| {4 )

Detection Model to detect and report A-Fib

Etoralarib = Erkcgenee T EExery + Eencpy + Edetectinzarib + I'pErep e

4
.11\.‘+/|| <
Incidence based Detection Model to detect and report A-Fib
Etotalarib = Eexcgense T EExer, + EExcpy T Edetectingarib + 1Erep E
) (,—_"\\ .
> I\-‘-}-‘J’II-..

Detection

Positive Ratevrgu

Positive Rater,

Incidence Ratei

Prevalence
Window D

Prevalence Window based Detection Model to detect and report A-Fib

Eroralarin = (EE{GSBMB+ Eexcry + Erkcpy + Edetectingarin + iERep:]D"‘ Etandby(1 — D)

L

Figure 47: A-Fib energy-aware models

Percentage | Joules
Battery : 3.7-volt Li-Polymer F-S1 100% 16,916
Energy consumption during a 24-hour period
Telemetry Device:
e Telemetry (continuous monitoring and transmission) | 50.4% | 8,519
Wearable Computing Device:
e Incidence rate = 1, prevalence window = 4 hours
o Detection + incidence rate 50.4% 8,519
o0 Detection + incidence rate + prevalence window 19.7% 3,334
e incidence rate = 0.02, prevalence window = 4 hours
o0 Detection + incidence rate 31.1% 5,267
0 Detection + incidence rate + prevalence window 17.0% 2,892

Table 23: Energy consumption of energy models in a 24-hour period

battery capacity).
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The largest energy consumed during a 24-hour period is by continuous telemetry; (about
50.4% of battery capacity), compared to the energy consumed by the detection energy

model using an incidence rate of 0.02 and a 4-hour circadian prevalence window (17% of



Summary of energy models for a 24-hour period

Battery : 3.7 volts Li-Polymer F-51 | —
Telemetry (continuous monitoring and transmission) IR 5( % 100%

Incidence rate =1
Detection + incidence rate [N 50 %

Incidence rate = 1, prevalence window = 4 hours
Detection + incidence rate + prevalence window I 20 9

incidence rate= 0.02

Detection + incidence rate | 31 %

incidence rate = 0.02, prevalence window = 4 hours
Detection + incidence rate + prevalence window I 17 %

0% bz 40% B0% B0% 100%

Figure 48: Ranking of 24-hour energy consumption percentage by model type
Adapting any one of the detection energy schemes above is an improvement over
telemetry. The 24-hour general detection energy model for the detection of A-Fib
includes an incidence rate i or positive rate rp and operating windows with a period D
such as the AM/PM windows. It expends less energy than telemetry but unfortunately
introduces Type I, False Positive and Type II, False Negative errors.

Type I and Type 1II errors of detection may be costly and dangerous; one may want to
transmit all the EKG raw data just as telemetry would, plus the results to a remote care
center where cardiologists can expertly determine the presence or absence of A-Fib. This
approach would favor the hybrid energy model that combines an incidence rate, a

prevalence window-based energy model, and user-triggered event model.
Erotaarip =

(Emonitor + EdetectingAFib + iEtransmission)D + Estandby(1 - D)

. 1 5
E:TotalAFib = (Emonitor + E:detectingAFib + lE:transmission ) (g) + Estandby (g)
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This decision also offers the benefit of having all the telemetry data remotely available
and the ability to retrain and update the A-Fib detection algorithm in order to achieve
better detection accuracy and confidence. Table 24 and Figure 49 compare the energy

models to the telemetry model.

Energy consumption during a 24 hour period

Telemetry Device:
e Telemetry (continuous monitoring and transmission) 100% 8,519

Wearable Computing Device:
e Incidence rate=1

o General Detection + incidence rate 100% 8,519
e Incidence rate = 1, prevalence window = 4 hours

o0 Detection + incidence rate + prevalence window 39.1% 3,334
e Incidence rate = 0.02, prevalence window = 4 hours

0 General Detection + incidence rate 61.8% 5,267
e Incidence rate = 0.02, prevalence window = 4 hours

0 Detection + incidence rate + prevalence window 33.9% 2,892

Table 24: Energy models compared to telemetry

Telemetry (continuous monitoring and transmission) |

Incidence rate=1
Detection + incidence rate e E——
Incidence rate = 1, prevalence window =4 hours 100%
Detection + incidence rate + prevalence window — 35

incidence rate =0.02
Detection + incidencerate  EE—————— N 6%
incidence rate = 0.02, prevalence window = 4 hours |
Detection + incidence rate + prevalence window — 3%

0% 20% 40% 60% 80% 100%

Figure 49: Comparing the proposed energy models to telemetry energy model
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8.4.1 Special cases of A-Fib detection energy model

In the following section, we determine the amount of energy that would be saved when
replacing the telemetry with a detection model under different special cases of incidence
rate and prevalence window.

Telemetry energy equation:

Etelemetry = EEKGgense T EEKGry T EEKGry T ERep

The general detection energy equation:

Etotalarib =

(EkGsepee + EEKGry + EEKGpy T Edetectingarib + T'p Erep)D + Estandby(1 — D)

Etelemetry - ETotalAFib
= EgKGsense T EEKG, T EEKGRry T ERrep

— (EEKGSense + Egkcr, T Eekcg, T Edetectingariv + Tp ERep)D

- Estandby(l - D)

Where: 0<D<1, 0<r
The difference in energy is dependent on the positive rate r, and the prevalence window
D.

If Etelemetry — Etotaiarin = 0  implies that there is no energy consumption difference
between telemetry and a detection model.

If Etelemetry — Erotaiarip < 0 implies that the energy consumption caused by detection

exceeds the one caused by telemetry.
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If Etelemetry — Erotaiari > 0 implies that there is a gain in switching monitoring from a
telemetry model to a detection model.

Assuming ( Egetectingarib )D to be negligible compared to Ecive , We explore some special
cases.

Casel: D=0, r,=0o0ri=1

The detection model never runs because the prevalence window is 0. The difference is all

telemetry assuming Eganqpy is negligible.

Etelemetry — Etotalarib = EEkGgense T EEKGry T EEkGry T Erep

Case?2: D=1, rp=0

The detection model never runs because the incidence rate is set to 0.

Etelemetry_ Etotalarib = 0

Case3: D=1, r,=1
The detection model runs continuously during the 24-hour period because the incidence

rate 1 is set to 1 and the prevalence window is 100%, and continuously reports. The

difference is Egep assuming Egetectingarib is negligible when comparing it to Egep

Etelemetry_ Etotalarib = ERep
Experimental cases:
Etelemetry - ETotalAFib
= EgkGgense T EEKGry T EEkGry T Erep
— (EgKGsepse T EEkGry + EEKGpy + Edetectingarib + I'p Erep)D
- Estandby(l - D)

Etelemetry = 8519 Joules
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Etelemetry - ETotalAFib

= 8519 — (5184 + 8.3 + 8.3 + Egetectingarib + 3,318 1, ) D
- Estandby(l - D)
Using a 32-bit 512 MHz processor [90], the energy Ejagsify required when executing 20

arithmetic operations is negligible compared to the energy Ege, expended when

transmitting reports.

24
Estandby = 16919 =

1-D)=2417+«(1—-D
5 (1-D) “«(1-D)

Etelemetry — Etotaiarin = 8519 — (5200.6 + 3,318 r,)D — 2417 * (1 — D)

Etelemetry — Etotalarib

Energy Reduction = R = * 100%
Etelemetry
8519— (5200.6+3,318* r,)D—2417*(1-D
R = (5200.6+3318+ r,) =D 100%
8519
Where: 0<Dh<1, 0<r,<1

In the following section, we examine the range of values of different D and rj, for which
the energy reduction between telemetry and detection scheme is significant.

What would be the energy reduction when switching from telemetry to detection scheme?
Fixing D=1, r,=1 R= 0%

Fixing D=1, r,=.02

o _ 8519 — (52006 + 3,318+ 0.02) — 2417 (1 - D)

0/ — 0
3519 100% = 14.5%

o _ 8519~ (52006) — 2417« (1 - D)

0 = 0
8519 100% = 15.3%
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Fixing D =.167, r,=1,

8519 — (5200.6 + 3,318)0.167 — 2417 + (1 — D)
k= 8519

100% = 59.7%

Fixing D=.167, r,=.02,

. 8519 — (5200.6 + 3,318 * 0.02)0.167 — 2014
B 8519

100% = 66.0%

Fixing D=.167, r,=0,

R = 8519 — (5200.6)0.167 — 2014

0 = 0
8519 100% = 66.2%

Table 25 and Figure 50 summarize the energy reduction when switching from telemetry

to a detection model while applying a different prevalence window and positive rate:

R
Energy _ _ _
D | % | peduction | . 8519 (5200.6 + 3,318 * 1,)D — 2417(1 — D) 100%
8519
1 1 0% Running and reporting continuously for the 24-hour period.

Running continuously for the 24-hour period and reporting 2%
of the time. Incidence rate is enabled.

Only local storage is allowed.

Running continuously for the 24-hour period, but no reporting.
Running and reporting continuously for 16.7% of the 24-hour
period.

Running continuously for 16.7% of the 24-hour period and
reporting 2% of the time.

Only local storage is allowed.

A67 1 0 66.2% Running and reporting continuously for 16.7% of the 24-hour
period but no reporting.

1 .02 38.2%

1 0 39 %

67| 1 59.7%

167 | .02 66%

Table 25: Varying positive rate r,, and prevalence window D affects energy reduction

Figure 50 shows the energy consumption with respect to prevalence window D given an

A-Fib incidence rate of 0.02.

ETotalarib =

(EgkGsenee + EERGr T EEKGRy T+ Egetectingarib + Ip Egrep)D + Estandby(1 — D)
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= (5200.6 + 3,318 r,,)D + 2417 * (1 — D)

Energy Reduction from telemetry to classification
based on positive rp and prevalence window D
100%
90%

80%
70% 66.00%  66.20%

s 59.70%
o
0,
jg O//“ 3805 39.00%
0

30%
20%
10% | gos

0%

p=1,D=1 1p=0.02, p=0,D=1 1p=1,D= 1p=0.02, p=0,
D=1 0.167 D=0.167 D=0.167

Figure 50: Energy reduction when varying incidence rate r, and prevalence window D

Prevalence r, =0.02 (1=0.02, D=1, E=5267 Joules)
Window D Evotalarib 6000 continuously monitor, detect,
0.167 2892 _ and report during 24 hours ™~
ﬂ sooo At (D=0, E=2417 Joules)
0.200 2987 3 No monitering, in standby
0.250 3129 ‘E’ a000 No detection
0.300 3272 2 Noveporting
0.400 3557 £ o0
0.500 3842 5 -\ (i=0.02, D=1/6, E=2892 Joules)
O 2000 . z %
0.600 4127 % Continuously monitor, detect,
0.700 4412 '?g 1000 and report within Window D
. w
0.800 4697 o :. Window width D =Ton / 24
0.900 4982 0.000 0.200 0.400 0.600 0.800 1.000
1.000 5267

Figure 51: Energy consumption versus prevalence window D

8.5  Scalability of the energy models based on risk factors
The various combinations of the proposed energy models save more energy than
telemetry models in practically every case. A recommendation would be to use the

proposed models based on a scalability risk factor. The implementation helps extend the
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battery life of a monitoring device. For instance, A-Fib risk factors may be classified in
three categories made up of risk ranges such as k < 0.05, 0.05 < k < 0.15, k > 0.15.
Knowing the A-Fib risk factor of a patient allows one to prescribe an A-Fib monitoring
and detection scheme (see Figures 52 and 53) and schedule (see Table 26). A high A-Fib

risk factor may suggest more frequent monitoring compared to a low A-Fib risk factor.

Use Compared
Select Ener_gy Model based on Risk Factor Energy to Telemetry
Risk Factor

Model Energy
Risk factor category 1 would be for k <0.05 Incidence and 33.9%
a user who is healthy, athletic; this prevalence
is similar to wearing a sports watch. window
Risk factor category 2 would be for | 0.05<k <0.15 Incidence 39.1%

a user who wants to monitor A-Fib
daily during an AM/PM windows.
Risk factor category 3 is for the k>0.15 Telemetry 100.0%
chronic case where a user monitors
continuously with the data and
detection results transmitted to a
care center.

Table 26: Risk factors and energy models

For example, a user who is healthy, and athletic, having an A-Fib risk factor category 1,
k < 0.05, would require occasional A-Fib monitoring as depicted by Figure 52. The
proposed scheme would select a schedule requiring an assessed A-Fib risk factors k, a
circadian prevalence window D, and an age dependent incidence rate. However, a user
with a risk factor category 2, 0.05< k < 0.15, or category 3, k > 0.15 would be interested
in monitoring A-Fib daily as depicted by Figure 53. In this case, the proposed scheme
would select a schedule requiring an assessed A-Fib risk factors k, and an age dependent
incidence rate, requiring continuous monitoring and detection.

Figure 52 proposes a schedule for an A-Fib risk with K < 0.05 that would casually

monitor A-Fib episodes. This is the case for a rare A-Fib condition requiring less frequent
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monitoring. The schedule depends on an assessed A-Fib risk factor, a prevalence window

and an age dependent incidence rate.

Assess
A-Fib Risk Factor k

| k<005 [ 0.05<k<015 [k>015

[ ' A-Fib Risk Factork:

I k=1- Hﬂ,gzii Bu¥;-TE, fiXbar

Select
a Circadian
Prevalence Window D

' [ A-Fibis predicted presant if probability
P (A-Fib is Present | Age, AgeZ, Gender, BMI,

A-Fib Monitoring and Detection —  QRSduration, PRinterval Heartrate) = 0.5

Otherwise, A-Fib is absent.

3

Age: 25 to B0 years Age: 60 to 70 years Age: > 70 — 0=ETpzizl
Detection Detection Detection —
triggered at Incidence Rate || ftriggered at Incidence triggered at Incidence
i=0.13 to 0.36 per 1,000 Rate Rate Energy Aware Model:
person-years i =5.7 per 1,000 i = 9.7 per 1,000
person-years person-years ) J Etotalarib= (Emonitor

+ Edetec tingAFib

Report T Etraﬂsmission)D
Detection Results to Patient 4+ Eonapy(1—D)
and / or Physicia B iy

Figure 52: Efficient wearable monitoring and detection scheme based on A-Fib Risk
Factor k, Incidence Rate r, and Circadian Prevalence Window D

Figure 53 proposes a schedule for a high A-Fib risk factor with K > 0.15 that would
continuously monitor A-Fib episodes and transmit detection results to a care center. This
is the case for a chronic A-Fib condition requiring frequent monitoring. The aggressive
schedule does not depend on the prevalence window and only requires an assessed A-Fib

risk factor K, and an age dependent incidence rate.

134



Assess
A-Fib Risk Factor k

k<005 [ 005<k<045 [Kk>0.15

Start
A-Fib Monitoring and Detection

* A-Fib Risk Factork:

k=1— Hueﬂ[:l BiX;-Tiz, fiXbary

T A-Fibis predicted presant if probability
P (A-Fib is Present | Age, Age?, Gender, BM
—  (QRSduration, PRinterval Heartrate) = 0.5

Otherwise, A-Fib is absent.

al Incidence Rate | tiggesed at Incidence ||  riggered at Incidence
i=0.13 10 0.36 per 1.000 Rate Rate
person-years between i= 5.7 per 1,000 i=9.7 per 1,000
25 and 60 years person-years between || person-years after age 70
60 and 70 years

0=1p=zi=1

Energy Aware Model:

ETo talAFib :{Emonitor
+ EdetectimAFib

+ Tp Etraﬂsmission)

Figure 53: Efficient wearable monitoring and detection scheme based on A-Fib Risk
Factor k and A-Fib Incidence Rate r,,

135



CHAPTER 9

9 ADAPTING THE ENERGY-AWARE MODELS TO THE PAROXYSMAL
A-FIB PHASE

In order to optimize the execution of an energy-constrained healthcare application such as
A-Fib, one must make sensible use of the energy that is available. One must make
judicious decision as to when to run different components and dynamically switch on and
off monitoring and detection. Three parameters identified as incidence rate, prevalence
window, and positive rate, have a decisive impact on energy consumption. They must be
sensibly selected to reduce energy consumption, extend battery life and ultimately expand
A-Fib monitoring and detection. We design a hierarchical scheme to detect A-Fib from
its onset to its final stage. The total energy model would be a combination of a first
episode of A-Fib energy model, a paroxysmal energy model, and if necessary a
persistent/permanent energy model (see Figure 54). First, we diagnose the first episode of
A-Fib by applying a classifier that would detect heart palpitations that last longer than 30
seconds in the received data packet. If the result is positive, we check for the next stage
of A-Fib known as paroxysmal A-Fib. A strong indicator of A-Fib presence is the
absence of P waves on the EKG plot and an erratic noise-like activity in their place,
combined with irregular R-R intervals [20]. Sometimes when the heart rate is too fast,
irregular R-R intervals may be difficult to determine [93]. In addition, wide QRS

complexes may be present with rapid ventricular response.
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Figure 54: Flow diagram of A-Fib

9.1  Detecting paroxysmal A-Fib

After the first episode of A-Fib has been detected, it becomes critically important to

diagnose the next level of A-Fib, paroxysmal A-Fib. In paroxysmal A-Fib, the heart is in

and out of normal sinus rhythm. Episodes of A-Fib come and go on their own. They

typically last less than 24 hours but can last up to seven days before they terminate

spontaneously [94] [95]. Figure 55 reveals how prevalent paroxysmal A-Fib is during a

24-hour period while examining 100 patients [96].
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Usual time of onset of paroxysmal atrial fibrillation
in 100 patients

Number of
patients

20 -

(o]

o]e] 03 o6 09 12 15 18 21 24

Clock time
Figure 55: Most palpitations typically start in the morning or at night
The corresponding energy model in Figure 56 would run continuously until it detects the
suggestive paroxysmal A-Fib within each 24-hour period for seven days straight. That
would require a minimum sustainable energy lasting seven days. Considering a 2%
incidence rate and a four hour circadian prevalence window, the energy model for
detecting paroxysmal A-Fib is
Egetectingarib =

(EEKGSense + Egkcr, T EekGry T Edetectingarib + 1 ERep)D + Estandby(1 — D)

Etotalarib =

1 5
(EEKGSense + Egker, T EEkGry T Edetectingarin 1 -02 ERep) (g) + Estandby (g)

The smallest energy consumption (2892 Joules, 17% of battery capacity) occurs when A-
Fib is detected as early as possible, that is at the 30-second marker. Next in the
progression of A-Fib development is the paroxysmal, which typically lasts less than 24

hours but can last up to seven days before palpitations terminate spontaneously. The
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corresponding energy that would be spent in seven days is approximately 7 days * 2892
Joules / day = 20244 Joules or about 120% battery capacity (compared to telemetry
where the progression from the first episode of A-Fib to paroxysmal phase would require
8519 Joules / day * 7 days = 59633 Joules representing 353% battery capacity, see Figure

57). Once we confirm the presence of paroxysmal A-Fib, we start checking for persistent A-Fib

in the next stage.

A-Fib Prediction - logit (p) = |n(IL_p)
10 » |
¢ Eiy 5z | _
Prob. 05 =" 4 e S
. _* 2
0.0 * - |
L oesof Afb A-FibIncidence Rate i
. X i . E M d fA.Fh S I ncl ence a E @ 01 8r 03 04 0% 06 LF o8 0% 1
Using Logistic Regression i e,s. il i=0.02 ! s
A-Fibis detected _________1|-—————_ e wmeh
when Prob. > 05— L On on —__
_ Sleepmode | mode Sleep mode mode :
I t3 off t1 on t4 off t2 on /
I . . v v T L4 7 ] ] y 4
) 6 7 12 18 rd
_S——_ Hoursoftheday

TV N N N N o N O« I O Y O s M 1

e S 0 T ' ' " " 0 v o

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Figure 56: Detection of A-Fib progression from onset to paroxysmal phase

Battery : 3.7 volts Li-Polymer F-S1 | 100%
Telemetry (continuous monitoring and transmission) I R
' 353%
Incidence rate = 1, prevalence window =4 hours
{ 353%
Detection + incidence rate |IIEEEEEGEEEEE_—_—_—_—N
Detection + incidence rate + prevalence window |GGG 138%
incidence rate = 0.02, prevalence window =4 hours
Detection + incidence rate NSNS 218%
Detection + incidence rate + prevalence window |IIEEGEG_——_ 120%
0% 100% 200% 300% 400%

Figure 57: A 7-day energy consumption from first episode to paroxysmal A-Fib
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9.2  Detecting persistent A-Fib

In persistent A-Fib, episodes last longer than seven days and do not go away on their
own. Medical treatment is necessary to restore normal sinus rhythm. The next stage is
longstanding persistent where episodes of A-Fib are continuous and last longer than one
year leading to a permanent A-Fib where a person's irregular heartbeat does not return to
normal sinus thythm, even with medical treatment.

9.3 Detecting permanent A-Fib

In permanent A-Fib, a person's irregular heartbeat does not return to normal sinus

rhythm, even with medical treatment [55] [56].
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CHAPTER 10

VALIDATING A-FIB ENERGY-AWARE DETECTION MODELS

The following sub-sections validate our A-Fib energy-aware detection models by first

summarizing the energy consumption results of our study and then validating them by

testing a few cases. Figure 58 summarizes the energy distribution for a wearable

computing system.

g E E

;= ECGRx ECGTx
b <

.E 1 Bluetooth

E (Bluetooth)

|

« EKG-Signals:
QRSduration,
PRinterval, Heartrate

Sensing

+ User-Protile
Age, Weight, Height,
Sex

(Bluetooth)

Detection

W

About 98% of all mobile phones use 512 MHz 32-
bit ARM processors.

The energy required to execute detecticn is
neqgligible compared to the monitoring cnd
transmission enerqy.

Transmission

A-Fib detected

Figure 58: Wearable computing system requirements

10.1

Study results summarized

The results in our study show that the energy-aware detection models perform better, i.e.

consume less energy than the telemetry energy model. We used a theoretical model
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borrowing specification from the MICA2, a portable, low power, wireless two-lead EKG
system integrated with the UC Berkley’s MICA2 mote developed by UC Berkley and
manufactured by Crossbow Technology, Inc. [69], and a GSM/EDGE smartphone.

Telemetry is widely accepted in healthcare for remotely collecting and sending vital data
to a monitoring station for analysis and interpretation. However telemetry drains the
battery quickly which forces the patient to replace the battery often, as often as every day.

Telemetry energy equation:

Etelemetry = Emonitor T Etransmission = 8519 Joules
Our energy-aware detection models use an efficient wearable computing scheme that
outperforms telemetry energy models. They include an A-Fib incidence ratei or a
detection positive rate r, and A-Fib prevalence window D. The prevalence window D is
defined as the fraction of the period the device is ON monitoring (T,n) during a 24-hour
period. The energy model is active (Eactive) during two hours in the morning t;,, and two
hours in the evening ty,, with the anticipation that A-Fib occurs predominantly during

these windows of time; otherwise it is on standby (Estandby)-

Ton _ tlon + t20p

Window = D = -
indow Ty + Togr 24

Eroraiarip = EactiveD + Estandby(1 —D)

The general energy-aware detection model equation:

ETotalAFib = (Emonitor + EdetectingAFib + I'p Etransmission)D + Estandby(l - D)

(EekGsepee T EEKGry + EEkGpy T Edetectingarib + I'p Erep)D + Estandby(1 — D)

0<D<1, 0<Tr
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We use a detection positive rate i = 0.02 and a prevalence window D = 1/6 representing

monitoring two hours in the morning and two hours in the evening.

Etotalarib = 2892 Joules
Our study suggests that the largest energy consumed is by continuous telemetry,
compared to the energy consumed by the energy-aware detection model using an
incidence rate r, of 0.02 and a 4-hour circadian prevalence window D (see Table 27)

34% of telemetry energy model < Proposed Models < 100% of telemetry energy model

Energy consumption during a 24-hour period
Telemetry Device:
e Telemetry (continuous monitoring and 100% 8,519
transmission)

e incidence rate = 1, prevalence window = 4 hours

0 detection + incidence rate + prevalence 39% 3,334
window
e incidence rate = 0.02, prevalence window = 4 hours
0 detection + incidence rate + prevalence 34% 2,892
window

Table 27: Energy models compared to telemetry

10.2  Validating the Results

In this section, we validate our study results summarized in Section 10.1 using a two-lead
EKG Heart Monitor A102D7 device from Alive Technologies wirelessly [88] connected
to an Apple MacBook computer via Bluetooth. Although our validation uses a different
wearable healthcare device depicted in Figure 59, our goal is to confirm comparable
results to our study findings where the proposed energy-aware models consumption
varies as follows:

34% of telemetry energy model < Proposed Models < 100% of telemetry energy model
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The following sub-sections describe the validation set-up, the testing methodology, and
the different testing scenarios such as establishing the battery lifetime when the device is
in standby.

10.2.1 Describing the validation set-up

In this validation, we connect the Heart Monitor device A102D7 to an Apple MacBook
laptop via Bluetooth and use the AliveECG software for Windows to display the captured
EKG recordings.

The Alive Heart Monitor is a data acquisition, wireless EK.G transmitter and recording
device. The captured EKG recordings are displayed with a title bar, a serial number of the
connected device, and a status area. The status area displays information including the
connected symbol, the battery level of the heart monitor, the recording duration, and

current heart rate.

[}~ Shortcut meny

View area

Figure 59: Monitoring and transmitting EKG signals via Bluetooth using a two-lead
Heart Monitor A102D7 from Alive Technologies and an Apple MacBook
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10.2.2 Methodology

We use a standard two lead configuration to connect the Alive Heart Monitor to the
human body as shown in Figure 60. In all cases, we initiate the test by pushing the record
button and capture different views displaying the heart rate, the elapsed time, and the
percentage of battery capacity remaining. All tests start with the battery at 100% capacity
and stop when the battery capacity reaches 0%.

The Alive Heart Monitor is powered by a rechargeable 3.7V, 650mAh Li-ion battery of
type Casio NP20 or PowerSmart. The energy delivered by a full battery is 8658 Joules,
(650mAh * 0.001* 3.7V * 3600 seconds). Table 28 describes the estimated battery life of

the Alive Heart Monitor from Alive Technologies.

Mode Estimated Battery Life
Recording to SD card 5 days
Continuous wireless transmission 2.5 days
Both recording to SD card and wireless transmission 2 days
Standby 7 days

Table 28: Alive Technologies Heart Monitor energy profile

Figure 60: Heart Monitor A102D7 electrodes placement
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10.2.2.1 Test cases

Typically, batteries discharge nonlinearly with respect to time. In the following test cases,

we focus on battery lifetime and average rate of energy consumption. The following

steps enumerate the various test cases:

a. Establishing the battery lifetime and the average rate of energy consumption for
when the device is in standby.

b. Establishing the baseline battery lifetime and the average rate of energy
consumption for when the device is monitoring and transmitting continuously.

C. Measuring the battery lifetime and the average rate of energy consumption
required for a risk, incidence and window-based model:

e (ase one: Using an incidence rate of 1 to represent a worst-case scenario, (i.e.
monitoring continuously and transmitting continuously inside two 2-hour
windows to simulate A-Fib prevalence circadian windows between 8 AM — 10
AM and 10 PM- 12 AM).

e Case two: Repeating case 1 except we use an incidence rate of 0.02 to represent
an optimum case scenario when the detection algorithm is as accurate as possible,
and the positive rate is equal to the incidence rate.

d. Summarizing the validation results: we compare the energy consumption of the
detection models from steps ¢ and d to the energy consumption of the telemetry

model in step b.
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10.2.2.1.1 Establishing the battery lifetime and the average consumption for when the
device is in standby mode

In the standby mode, we turn off both the monitoring and the transmission. Using the
two-lead Heart Monitor A102D7 device from Alive Technologies wirelessly connected to
an Apple MacBook laptop via Bluetooth, we run the device in standby starting with the
battery (rechargeable Li-ion battery of type Casio NP-20 3.7V 670mAh) at full capacity
(100%) and let it run until the battery is fully discharged (0%). Table 29 and Figure 61
display the cumulative Joules consumed versus the corresponding elapsed time. In
standby mode, the estimated battery lifetime, for the two-lead Heart Monitoring device
A102D7 from Alive Technologies is 168 hours. The estimated cumulative consumed

energy is 8658 Joules; that is, 51.54 joules per hour.

Standby
Elapsed | Decimal Percent of Current | Cumulative
Time Hours Battery Joules Joules
Value Capacity Consumed | Consumed
Remaining

0 0 O 0.0 100 0 0
0 54 29 3.4 98 173.2 173.2
2 34 47 10.1 94 346.3 519.5
5 02 38 20.2 88 519.5 1039.0
8 04 01 28.6 83 432.9 1471.9
11 06 11 42.0 75 692.6 2164.5
13 44 11 50.4 70 432.9 2597.4
15 21 58| 57.1 66 346.3 2943.7
18 26 09 67.2 60 519.5 3463.2
21 25 24 80.6 52 692.6 4155.8
23 32 11 87.4 48 346.3 4502.2
24 59 06| 95.8 43 432.9 4935.1
26 39 54 | 100.8 40 259.7 5194.8
28 00 50 | 105.8 37 259.7 5454.5
29 03 18| 112.6 33 346.3 5800.9
32 19 14| 122.6 27 519.5 6320.3
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34 58 55| 1344 20 606.1 6926.4

37 00 15| 142.8 15 432.9 7359.3
39 02 48 | 147.8 12 259.7 7619.0
40 03 41| 151.2 10 173.2 7792.2
41 02 38 | 154.6 8 173.2 7965.4
42 05 54| 157.9 6 173.2 8138.5
43 04 23| 161.3 4 173.2 8311.7
44 00 13| 164.6 2 173.2 8484.8
45 05 28 | 166.3 1 86.6 8571.4
46 04 35| 168.0 0 86.6 8658.0

Table 29: Alive Technologies Heart Monitoring Device A102D7 in standby

Battery Lifetime For Continuous A-Fib Monitoring and
Transmission via Bluetooth from Alive Technologies Heart
Monitoring Device A102D7 to a MacBook using Standby

51.54 joules per hour for standby

El‘. Y, Battery Capadcity = ES5E boules
= - =550maAh *3.7 * 3500 seconds
= 0
E
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2 60
-
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E 50
=
ap 40
=
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Figure 61: Alive Technologies Heart Monitoring Device A102D7 in standby
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10.2.2.1.2 Establishing the baseline battery lifetime and the average consumption rate
for when the device is in telemetry mode

In telemetry mode (incidence rate =1), we turn on both the monitoring and the
transmission on the Alive Heart Monitor. The two-lead Heart Monitor A102D7 device
from Alive Technologies is wirelessly connected to an Apple MacBook laptop via
Bluetooth. We run the device in telemetry mode, starting with the battery (rechargeable
Li-ion battery of type Casio NP-20 3.7V 670mAh) at full capacity (100%) and let it run
until the battery is fully discharged (0%). Figure 62 displays the monitored and

transmitted EKG recordings and their remaining battery capacity.
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Figure 62: Timed EKG recordings and remaining battery capacity for monitoring and
transmitting EKG signals via Bluetooth using a two-lead Heart Monitor A102D7 from
Alive Technologies and an Apple MacBook

Table 30 and Figure 63 display the cumulative consumed Joules and the corresponding
elapsed time. In telemetry mode, the estimated battery lifetime, for the two-lead Heart

Monitoring device A102D7 from Alive Technologies, is 46 Hours, 4 Minutes and 35
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Seconds. The estimated cumulative consumed energy is 8658 Joules; that is, 187.81 joules

per hour.

Telemetry: continuous monitoring and transmission with Incidence rate = 1

Percent Current
. Elapsed Decimal Battery Joules Cumulative
Detection Mode . i Joules
Time (hours) Capacity Consumed | =onsumed
hr min sec Remaining

Continuous Transmission 0 0 O 0 100 0 0
Continuous Transmission | 0 54 29 0.9 98 169.0 169.0
Continuous Transmission 2 34 47 2.6 94 319.3 488.3
Continuous Transmission 5 02 38 5.0 89 450.7 939.0
Continuous Transmission 8 04 01 8.1 82 582.2 1521.3
Continuous Transmission 11 06 11 11.1 76 563.4 2084.7
Continuous Transmission | 13 44 11 13.7 70 488.3 2573.0
Continuous Transmission 15 21 58 154 67 319.3 2892.3
Continuous Transmission | 18 26 09 18.4 60 563.4 3455.7
Continuous Transmission | 21 25 24 21.4 54 563.4 4019.1
Continuous Transmission | 23 32 11 23.5 49 394.4 4413.5
Continuous Transmission | 24 59 06 25.0 46 281.7 4695.2
Continuous Transmission | 26 39 54 26.7 42 319.3 5014.5
Continuous Transmission | 28 00 50 28.0 39 2442 5258.7
Continuous Transmission | 29 03 18 29.1 37 206.6 5465.2
Continuous Transmission | 32 19 14 32.3 30 601.0 6066.2
Continuous Transmission | 34 58 55 35.0 24 507.1 6573.3
Continuous Transmission | 37 00 15 37.0 20 375.6 6948.9
Continuous Transmission | 39 02 48 39.0 15 375.6 7324.6
Continuous Transmission | 40 03 41 40.1 13 206.6 7531.1
Continuous Transmission | 41 02 38 41.0 11 169.0 7700.2
Continuous Transmission | 42 05 54 42.1 9 206.6 7906.8
Continuous Transmission | 43 04 23 43.1 7 187.8 8094.6
Continuous Transmission | 44 00 13 44.0 5 169.0 8263.6
Continuous Transmission | 45 05 28 45.1 2 206.6 8470.2
Continuous Transmission | 46 04 35 46.1 0 187.8 8658.0

Table 30: Baseline percent battery capacity remaining versus elapsed time
(Telemetry mode)
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Battery Lifetime For Continuous A-Fib Monitoring and
Transmission via Bluetooth from Alive Technologies Heart
Monitoring Device A102D7 to a MacBook using incidence

rate =1, telemetry mode
100

— 187.81 joules per hour for continuous
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Battery Capacity = 8658 Joules
= 650mAh *3.7V * 3600 seconds
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Figure 63: Battery lifetime for A-Fib continuously monitoring and transmission via
Bluetooth using Alive Technologies Heart Monitor A102D7 and an Apple MacBook

10.2.2.1.3 Measuring the battery lifetime and the energy consumption rate required
for a risk-based, incidence and window-based A-Fib detection model

The implementation of a risk and incidence-based A-Fib detection helps extend the
battery life of the Alive Technologies Heart Monitor A102D7 device. Knowing the A-Fib
risk factor of a patient allows one to prescribe an A-Fib monitoring and detection scheme
(see Figure 64) and schedule (see Table 31). A high A-Fib risk factor may suggest more
frequent monitoring compared to a low A-Fib risk factor. A-Fib risk factors may be
classified in three categories made up of risk ranges such as low risk with k < 0.05,

medium risk with 0.05 <k < 0.15, and high risk with k> 0.15. A low risk A-Fib factor or
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" A-Fibis predicted present if probability
p (A-Fib is Present [ Age, Age?, Gender, BMI,
—  (QRSduration, PRinterval, Heartrate) = 0.5

Otherwisse, A-Fib is absent.

Age:>70 — l=Tp=ziz1

Age: 25 to 60 years Age: 60 to 70 years
Detection Detection Detection -
triggered at Incidence Rate | triggered at Incidence Iriggered at Incidence
i=0.13 to 0.36 per 1,000 Rate Rate Energy Aware Model:
pErsOn-years i =5.7 per 1,000 i=9.7 per 1,000
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Detection Results to Patient
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Figure 64: Efficient wearable monitoring and detection scheme based on A-Fib Risk
Factor k, Incidence Rate r,, and circadian prevalence window D

category 1, may require an energy-aware detection model that would best fit a user who
is healthy and athletic where monitoring is triggered occasionally during exercises. A
medium risk A-Fib factor or category 2 may require an energy-aware model that would
best fit a user who needs monitoring during AM and PM prevalence windows. A high-
risk A-Fib factor may require a telemetry model that is fit for a user who needs to

monitor A-Fib continuously because he may have a chronic case of A-Fib.

Select Energy Model based on Risk Use C.?.gg;ﬁ? to
Risk Factor Factor Energy Model y
Energy
Risk factor category 1 is for a user | K <0.05 | Based on incidence 33.9%
who is healthy; similar to wearing a and prevalence
sports watch. window
Risk factor category 2 is for a user | 0.05< K < | Based on incidence 39.1%
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who wants to monitor A-Fib daily 0.15
during AM/PM windows.
Risk factor category 3 is for the | K=>0.15 Use Telemetry 100.0%
chronic case. The user monitors
continuously. Results are transmitted
to a care center.

Table 31: Energy-aware detection model selection based on risk factor category
The A-Fib detection algorithm outputs a positive result when the probability of A-Fib
being present is greater than 0.5. We utilize an asymmetric prevalence window D = 1/6
within a 24 hour period and an incidence rate i=0.02 in the energy model (see Figure 65).
The EKG signals are sensed and transmitted to an Apple MacBook laptop during
windows of time where A-Fib is assumed prevalent.
A-Fib is predicted present if probability p (A-Fib is Present | Age, Age”, Gender, BMI,
QRSduration, PRiyerval, Heartrate) > 0.5

Otherwise, A-Fib is absent.

Where:

logit(p) = - 41.175 + 0.820 Age — 0.006 Age® + 4.737 Gender — 0.047 BMI +
0.098 QRSduration - 0.178 PRipterval T 0.066 Heartrate

And ,
p=1/(1+¢e"e®)

Prevalence window D is defined as the fraction of the period the device is ON monitoring
(Ton) during a 24-hour period. The energy model E,uive runs during two hours in the
morning t,, and two hours in the evening t,,, with the anticipation that A-Fib occurs

predominantly during these windows of time; otherwise it is on standby Egndby-

T tl,, +t2 1
Window =D = on =21 SLpE -
Ton + Tosr 24 6
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Figure 65: Episodes of A-Fib inside a prevalence window
o Case one: Using an incidence rate of 1 to represent a worst-case scenario, (i.e.
monitoring continuously and transmitting continuously inside a four-hour
window)
In case one, while in active mode, we monitor and transmit inside two 2-hour prevalent
windows between 8 AM - 10 AM and 10 PM - 12 AM with incidence rate = 1, and stay
in standby mode the remainder of the 24-hour period. An incidence rate equal to 1 means
that we are continuously monitoring and continuously transmitting inside the two
windows. The 2-hour circadian windows require 187.81 joules per hour while the standby
requires 51.54 joules per hour. Table 32 and Figure 66 display the percentage of battery
capacity remaining versus the elapsed time. When applying our energy-aware model,

with monitoring and transmitting inside two 2-hour prevalent windows between 8 AM -

10 AM and 10 PM - 12 AM and an A-Fib incidence rate = 1, the estimated battery
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lifetime, for the two-lead Heart Monitoring device A102D7 from Alive Technologies is
approximately 128 hours. The estimated cumulative consumed energy is 8658 Joules;

that is, an average of 68 joules per hour.

Continuous monitoring and transmission with two 2-hour circadian
windows with incidence rate = 1
Percent
. Elapsed Battery Current Cumulative
Detection Mode
Time Capacity Joules Joules
(hours) | Remaining | Consumed Consumed
Standby 0 100 0.0 0.0
Standby 8 95 412.3 412.3
2 hour window 10 91 375.6 787.9
Standby 22 84 618.4 1406.3
2 hour window 24 79 375.6 1782.0
Standby 32 75 412.3 2194.2
2 hour window 34 70 375.6 2569.9
Standby 46 63 618.4 3188.3
2 hour window 48 59 375.6 3563.9
Standby 56 54 412.3 3976.2
2 hour window 58 50 375.6 4351.8
Standby 70 43 618.4 4970.2
2 hour window 72 38 375.6 5345.9
Standby 80 33 412.3 5758.1
2 hour window 82 29 375.6 6133.8
Standby 94 22 618.4 6752.2
2 hour window 96 18 375.6 7127.8
Standby 104 13 412.3 7540.1
2 hour window 106 9 375.6 7915.7
Standby 128 0 618.4 8534.1

Table 32: Percent of battery capacity discharge versus time inside two 2-hour windows
with incidence rate = 1 and in standby otherwise
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Battery Lifetime For A-Fib Monitoring and Transmission via
Bluetooth from Alive Technologies Heart Monitoring Device
AL102D7 to a MacBook inside a 2 two- hour circadian windows
with incidence rate = 1 otherwise in standby
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Figure 66: Percent of battery capacity discharge versus elapsed time inside two 2-hour
windows with incidence rate = 1 and in standby otherwise

. Case two: Using an incidence rate of 0.02 to represent an optimum case

scenario when the detection algorithm is as accurate as possible, and the
positive rate is equal to the incidence rate

In case two, while in active mode, we monitor and transmit inside two 2-hour prevalent
windows between 8 AM - 10 AM and 10 PM - 12 AM at the incidence rate of 0.02, and
in standby mode the remainder of the 24-hour period. The 2-hour circadian windows
require 0.98*51.54 + 0.02*187.81= 54.25 Joules per hour. Table 33 and Figure 67
display the percentage of battery capacity remaining versus elapsed time during two 2-
hour prevalent windows with incidence rate = 0.02, and during a standby the remainder

of the 24-hour period. When applying our energy-aware model, with monitoring and
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transmitting inside two 2-hour prevalent windows between 8§ AM - 10 AM and 10 PM -
12 AM and an A-Fib incidence rate = 0.02, the estimated battery lifetime, for the two-
lead Heart Monitoring device A102D7 from Alive Technologies is approximately 166
hours. The estimated cumulative consumed energy is 8658 Joules; that is, an average of

52 joules per hour.

Continuous monitoring and transmission, two 2-hour windows
with incidence rate = 0.02
Percent .
Detection Mode Ela'psed Batte'ry Current Joules Cu:;:llzzlve
Time Capacity Consumed
L Consumed
(hours) Remaining
Standby 0 100 0 0.0
Standby 8 95 412.3 412.3
2 hour window 10 94 108.5 520.8
Standby 22 87 618.4 1139.2
2 hour window 24 86 108.5 1247.8
Standby 32 81 412.3 1660.0
2 hour window 34 80 108.5 1768.6
Standby 46 72 618.4 2387.0
2 hour window 48 71 108.5 2495.5
Standby 56 66 412.3 2907.8
2 hour window 58 65 108.5 3016.3
Standby 70 58 618.4 3634.8
2 hour window 72 57 108.5 3743.3
Standby 80 52 412.3 4155.6
2 hour window 82 51 108.5 4264.1
Standby 94 43 618.4 4882.5
2 hour window 96 42 108.5 4991.0
Standby 104 37 412.3 5403.3
2 hour window 106 36 108.5 5511.8
Standby 118 29 618.4 6130.3
2 hour window 120 28 108.5 6238.8
Standby 128 23 412.3 6651.1
2 hour window 130 22 108.5 6759.6
Standby 142 15 618.4 7378.0
2 hour window 144 13 108.5 7486.6
Standby 152 8 412.3 7898.8
2 hour window 154 7 108.5 8007.4
Standby 166 0 618.4 8625.8

Table 33: Percent of battery capacity discharge versus time inside two 2-hour windows
with incidence rate = 0.02 and in standby otherwise
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Battery Lifetime For Continuous A-Fib Monitoring and
Iransmission via Bluetooth from Alive Technologies Heart
Monitoring Device A102D7 to a MacBook inside 2 two-
hour circadian windows using incidence rate =0.02
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Figure 67: Percent of battery capacity discharge versus elapsed time inside two 2-hour
windows with incidence rate = 0.02 and otherwise in standby

10.2.2.1.4 Summarizing the validation results

e In standby mode, the estimated battery lifetime, for the two-lead Heart
Monitoring device A102D7 from Alive Technologies, is 168 hours. The estimated
cumulative consumed energy is 8658 Joules; that is, 51.54 joules per hour.

e In telemetry mode, the estimated battery lifetime, for the two-lead Heart
Monitoring device A102D7 from Alive Technologies, is 46 Hours, 4 Minutes and
35 Seconds (46.08 hours). The estimated cumulative consumed energy is 8658
Joules; that is, 187.81 joules per hour.

e Energy-aware detection model with i=1, D=0.167. When applying our energy-

aware model, with monitoring and transmitting inside two 2-hour prevalent
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windows between 8 AM - 10 AM and 10 PM - 12 AM and an A-Fib incidence
rate = 1, the estimated battery lifetime, for the two-lead Heart Monitoring device
A102D7 from Alive Technologies is approximately 128 hours. The estimated
cumulative consumed energy is 8658 Joules; that is, an average of 68 joules per
hour.

Energy-aware detection model with i=0.02, D=0.167. When applying our energy-
aware model, with monitoring and transmitting inside two 2-hour prevalent
windows between 8§ AM - 10 AM and 10 PM - 12 AM and an A-Fib incidence
rate = 0.02, the estimated battery lifetime, for the two-lead Heart Monitoring
device A102D7 from Alive Technologies is approximately 166 hours. The
estimated cumulative consumed energy is 8658 Joules; that is, an average of 52

joules per hour.

Figure 68 summarizes the energy consumption ranging from when the device is in

telemetry to when the device is in standby mode. Depending on the values assigned to

the incidence rate and circadian A-Fib prevalence windows parameters our energy

models consume as much as telemetry at the lower bound and as little as a standby in the

upper bound.

Telemetry Energy < Proposed Models Energy < Standby Energy

46.1 hours < Proposed Models Battery lifetime < 168 hours

Joules

1 Joules

51.54 our

hour < ETotalarip < 187.8
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Summary of Battery Lifetime For A-Fib Monitoring and
Transmission via Bluetooth from Alive Technologies Heart
Monitoring Device A102D7 to an Apple MacBook
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Figure 68: Validation results from the energy-aware models and telemetry
Table 34 compares validation results percentages between our energy-aware models and
telemetry for the two-lead Heart Monitoring device A102D7 from Alive Technologies.

28 % of telemetry < Etgtaiarip < 100% telemetry

Mode Type Validation
Telemetry (continuous monitoring and transmission) 100%
detection + incidence rate + prevalence window 28%

incidence rate = 0.02, prevalence window = 4 hours

detection + incidence rate + prevalence window 36%
incidence rate = 1, prevalence window = 4 hours

Table 34: Validation results summary
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10.3 Comparing validation results to study results

As anticipated, our goal is to confirm that our validation results are comparable to our
study findings. Table 35 displays both validation results and study results. Our validation
confirms our study results; that our proposed energy-aware detection models perform
better than telemetry energy model.

From our study results, we claim:

34% of telemetry energy < Proposed Models energy < 100% of telemetry energy
From our validation, we verify that depending on the values assigned to the incidence
rate and circadian A-Fib prevalence windows parameters our energy models consume as
much as 28% of telemetry at the lower bound and as much as 100% of telemetry energy.

28 % telemetry energy < Proposed Models energy < 100% telemetry energy

For example, Table 35 and Figure 69 show that the energy-aware model that uses an
incidence rate i=1 and a prevalence window D=0.167 consumes 39% of the energy
consumed by telemetry according to our study as compared to 36% in validation. The
differences in the results may be explained by the fact that our study and our validation
use different monitoring and transmission devices. Both devices use different chip
technology and different firmware. We expect power efficiency in both hardware and

software technologies to contribute to the difference between the results.

Mode Type Validation | Study
Telemetry (continuous monitoring and transmission) 100% 100%

Detection + incidence rate + prevalence window

incidence rate = 0.02, prevalence window = 4 hours 28% 34%

Incidence rate = 1, prevalence window = 4 hours 36% 39%

Table 35: Comparing validation results and study results
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Figure 69: Comparing validation results and study results
10.4 Validating detection algorithm
In the next sub-sections, we will summarize the detection algorithm results from our
study and validate the detection algorithm accuracy
10.4.1 Study detection algorithm results summarized
Our study concludes that A-Fib is predicted present if probability p (A-Fib is Present |
Age, Agez, gender, BMI, QRSduration, PRjyerva, Heartrate) > 0.5

Otherwise, A-Fib is absent.

Where:
logit(p) =-41.175 + 0.820 Age — 0.006 Age2+ 4.737 Gender — 0.047 BMI +
0.098 QRSduration - 0.178 PRijterval + 0.066 Heartrate

And .
p=1/(1+e™®)

The derived logistic regression algorithm identifies the instances with the A-Fib disease
with 98.8% sensitivity, and identifies those without the disease with 96.9% specificity. A

specificity of 96.9% leads to a false positive result of 3.1%. A sensitivity of 98.8% means
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that the classifier does not recognize all actual positives. A sensitivity of 100% implies
that the test extracted all actual positives whereas in a high specificity test, negative
results are used to rule out the disease. Our algorithm exhibits better sensitivity and
specificity when compared to clinical measurements diagnosing A-Fib are performed by
internists and general practitioners instead of cardiologists. Studies [59] suggest
sensitivity (True Positive rate) of 80% and specificity (True Negative rate) of 92%. Our
detection algorithm has an overall detection accuracy of 97.37%.

10.4.2 Validating detection algorithm accuracy

We validate the accuracy of our detection algorithm using a test data in logistic
regression model.

In our validation, we use a Hold Out method and a cross-validation method. In the Hold
Out, we randomly partition the data into two disjoint set, one with 2/3 of dataset for
training and 1/3 of the dataset for testing. In the k-Fold Cross-Validation method, we
randomly partition data into 10 disjoint sets, equal in size, then sequentially choose one
set for testing and nine for training. The testing/training process is conducted ten times.
We compare the outcome of our detection algorithm with the actual clinical values.

Table 36 displays the actual versus predicted values of A-Fib logistic regression
algorithm results from a Hold Out method inputting a randomly generated test dataset

made up of 1/3 of the original dataset. The overall detection accuracy is:
100
Overall Accuracy = o3 100% = 97.09%

Table 37 displays the actual versus predicted values of A-Fib logistic regression
algorithm results from a 10-Fold Cross-Validation method. The overall detection

accuracy is:
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Overall Accuracy = % * 100% = 97.36%

Both methods offer similar accuracies of 97.09% and 97.36% respectively, and validate
the accuracy from our study at 97.37%.

Actual versus prediction values of A-Fib using logistic regression model:

P is the probability of predicting correctly the presence or absence of A-Fib given an actual value

No. actual predicted error | p No. actual predicted error p
1 2:NOAF 2:NOAF 1 53 1:AF 1:AF 0.95
2 1:AF 1:AF 0.835 54 2:NOAF 2:NOAF 1
3 2:NOAF 2:NOAF 1 55 2:NOAF 2:NOAF 1
4 2:NOAF 2:NOAF 1 56 1:AF 1:AF 0.966
5 2:NOAF 2:NOAF 1 57 2:NOAF 2:NOAF 1
6 2:NOAF 2:NOAF 1 58 1:AF 1:AF 0.97
7 2:NOAF 2:NOAF 1 59 1:AF 1:AF 0.916
8 2:NOAF 2:NOAF 0.988 60 2:NOAF 2:NOAF 1
9 2:NOAF 2:NOAF 1 61 2:NOAF 2:NOAF 1
10 1:AF 1:AF 0.867 62 2:NOAF 2:NOAF 1
11 2:NOAF 2:NOAF 1 63 2:NOAF 1:AF + 0.902
12 2:NOAF 2:NOAF 1 64 2:NOAF 2:NOAF 1
13 2:NOAF 2:NOAF 1 65 2:NOAF 2:NOAF 1
14 2:NOAF 2:NOAF 1 66 1:AF 1:AF 0.789
15 1:AF 1:AF 0.869 67 2:NOAF 2:NOAF 1
16 2:NOAF 2:NOAF 1 68 2:NOAF 2:NOAF 1
17 2:NOAF 2:NOAF 1 69 1:AF 1:AF 0.87
18 2:NOAF 2:NOAF 1 70 1:AF 1:AF 0.991
19 2:NOAF 2:NOAF 1 71 1:AF 1:AF 0.916
20 2:NOAF 2:NOAF 1 72 2:NOAF 2:NOAF 1
21 2:NOAF 1:AF + 0.895 73 2:NOAF 2:NOAF 1
22 1:AF 1:AF 0.985 74 2:NOAF 2:NOAF 1
23 2:NOAF 2:NOAF 1 75 1:AF 1:AF 0.876
24 1:AF 1:AF 0.96 76 1:AF 1:AF 0.957
25 2:NOAF 2:NOAF 1 77 2:NOAF 2:NOAF 1
26 2:NOAF 2:NOAF 1 78 2:NOAF 2:NOAF 1
27 2:NOAF 2:NOAF 1 79 2:NOAF 2:NOAF 1
28 2:NOAF 2:NOAF 1 80 2:NOAF 2:NOAF 1
29 2:NOAF 2:NOAF 1 81 2:NOAF 2:NOAF 1
30 2:NOAF 2:NOAF 1 82 2:NOAF 2:NOAF 1
31 2:NOAF 2:NOAF 1 83 1:AF 1:AF 0.955
32 2:NOAF 2:NOAF 1 84 2:NOAF 2:NOAF 1
33 2:NOAF 2:NOAF 1 85 1:AF 1:AF 0.959
34 2:NOAF 2:NOAF 1 86 1:AF 1:AF 0.976
35 2:NOAF 2:NOAF 1 87 2:NOAF 2:NOAF 1
36 2:NOAF 2:NOAF 1 88 2:NOAF 2:NOAF 1
37 2:NOAF 2:NOAF 1 89 2:NOAF 2:NOAF 1
38 1:AF 1:AF 0.946 90 2:NOAF 2:NOAF 1
39 1:AF 1:AF 0.887 91 2:NOAF 2:NOAF 1
40 2:NOAF 2:NOAF 1 92 2:NOAF 2:NOAF 1
41 2:NOAF 1:AF + 0.926 93 1:AF 1:AF 0.587
42 2:NOAF 2:NOAF 1 94 2:NOAF 2:NOAF 1
43 2:NOAF 2:NOAF 0.736 95 2:NOAF 2:NOAF 1
44 2:NOAF 2:NOAF 1 96 2:NOAF 2:NOAF 1
45 2:NOAF 2:NOAF 1 97 2:NOAF 2:NOAF 1
46 2:NOAF 2:NOAF 1 98 1:AF 1:AF 0.93
47 2:NOAF 2:NOAF 1 99 1:AF 1:AF 0.936
48 2:NOAF 2:NOAF 1 100 2:NOAF 2:NOAF 1
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49 2:NOAF 2:NOAF 1 101 | 2:NOAF 2:NOAF 1
50 2:NOAF 2:NOAF 1 102 | 2:NOAF 2:NOAF 1
51 1:AF 1:AF 0.959 103 2:NOAF 2:NOAF 1
52 2:NOAF 2:NOAF 1

Table 36: Actual versus prediction values of A-Fib using logistic regression model using
1/3-2/3 Hold Out method

Actual versus prediction values of A-Fib using logistic regression model:

P is the probability of predicting correctly the presence or absence of A-Fib given an actual value
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No. actual predicted | err p No. actual predicted | err p
1 1:AF 1:AF 0.991 29 | 2:NOAF 2:NOAF 1
2 1:AF 1:AF 0.955 30 2:NOAF 2:NOAF 1
3 1:AF 1:AF 0.998 1 1:AF 1:AF 0.955
4 1:AF 1:AF 0.915 2 1:AF 1:AF 0.906
5 1:AF 1:AF 0.953 3 1:AF 1:AF 0.985
6 1:AF 1:AF 0.995 4 1:AF 1:AF 0.977
7 1:AF 1:AF 0.992 5 1:AF 1:AF 0.993
8 1:AF 1:AF 0.991 6 1:AF 1:AF 0.995
9 2:NOAF 2:NOAF 1 7 1:AF 1:AF 0.967
10 2:NOAF 2:NOAF 1 8 1:AF 1:AF 0.903
11 2:NOAF 2:NOAF 1 9 2:NOAF 2:NOAF 1
12 2:NOAF 1:AF + 0.897 10 2:NOAF 2:NOAF 1
13 | 2:NOAF 2:NOAF 1 11 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1 12 | 2:NOAF 2:NOAF 1
15 2:NOAF 2:NOAF 1 13 2:NOAF 2:NOAF 1
16 2:NOAF 2:NOAF 1 14 2:NOAF 2:NOAF 1
17 2:NOAF 2:NOAF 1 15 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1 16 | 2:NOAF 2:NOAF 1
19 2:NOAF 1:AF + 0.959 17 2:NOAF 2:NOAF 1
20 2:NOAF 2:NOAF 1 18 2:NOAF 2:NOAF 1
21 2:NOAF 2:NOAF 1 19 2:NOAF 2:NOAF 1
22 | 2:NOAF 2:NOAF 1 20 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 2:NOAF 1 21 | 2:NOAF 2:NOAF 1
24 2:NOAF 2:NOAF 1 22 2:NOAF 2:NOAF 1
25 2:NOAF 2:NOAF 1 23 2:NOAF 2:NOAF 1
26 2:NOAF 2:NOAF 1 24 2:NOAF 2:NOAF 1
27 | 2:NOAF 2:NOAF 1 25 | 2:NOAF 2:NOAF 1
28 2:NOAF 2:NOAF 1 26 2:NOAF 2:NOAF 1
29 2:NOAF 2:NOAF 1 27 2:NOAF 2:NOAF 1
30 2:NOAF 2:NOAF 1 28 2:NOAF 2:NOAF 1
31 | 2:NOAF 2:NOAF 1 29 | 2:NOAF 2:NOAF 1
1 1:AF 1:AF 0.952 30 2:NOAF 2:NOAF 1
2 1:AF 1:AF 0.926 1 1:AF 1:AF 0.976
3 1:AF 1:AF 0.96 2 1:AF 1:AF 0.875
4 1:AF 1:AF 0.908 3 1:AF 1:AF 0.825
5 1:AF 1:AF 0.889 4 1:AF 1:AF 0.933
6 1:AF 1:AF 0.98 5 1:AF 1:AF 0.832
7 1:AF 1:AF 0.908 6 1:AF 1:AF 0.789
8 1:AF 1:AF 0.965 7 1:AF 1:AF 0.975
9 2:NOAF 2:NOAF 1 8 1:AF 1:AF 0.935
10 2:NOAF 2:NOAF 1 9 2:NOAF 2:NOAF 1
11 2:NOAF 2:NOAF 1 10 2:NOAF 2:NOAF 1
12 2:NOAF 2:NOAF 1 11 2:NOAF 2:NOAF 1
13 | 2:NOAF 2:NOAF 1 12 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1 13 | 2:NOAF 2:NOAF 1
15 2:NOAF 2:NOAF 1 14 2:NOAF 2:NOAF 1




16 | 2:NOAF 2:NOAF 1
17 | 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1
19 | 2:NOAF 2:NOAF 1
20 | 2:NOAF 2:NOAF 1
21 | 2:NOAF 2:NOAF 1
22 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 1:AF 0.918
24 | 2:NOAF 2:NOAF 1
25 | 2:NOAF 1:AF 0.752
26 | 2:NOAF 2:NOAF 1
27 | 2:NOAF 2:NOAF 1
28 | 2:NOAF 2:NOAF 1
29 | 2:NOAF 2:NOAF 1
30 | 2:NOAF 2:NOAF 1
31 | 2:NOAF 2:NOAF 1
1 1:AF 1:AF 0.745
2 1:AF 1:AF 0.995
3 1:AF 1:AF 0.824
4 1:AF 1:AF 0.997
5 1:AF 1:AF 0.985
6 1:AF 1:AF 0.721
7 1:AF 1:AF 0.909
8 1:AF 1:AF 0.742
9 2:NOAF 2:NOAF 1
10 | 2:NOAF 2:NOAF 1
11 | 2:NOAF 2:NOAF 1
12 | 2:NOAF 2:NOAF 1
13 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1
15 | 2:NOAF 2:NOAF 1
16 | 2:NOAF 2:NOAF 1
17 | 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1
19 | 2:NOAF 2:NOAF 1
20 | 2:NOAF 2:NOAF 1
21 | 2:NOAF 1:AF 1
22 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 2:NOAF 1
24 | 2:NOAF 2:NOAF 1
25 | 2:NOAF 2:NOAF 1
26 | 2:NOAF 2:NOAF 1
27 | 2:NOAF 2:NOAF 1
28 | 2:NOAF 2:NOAF 1
29 | 2:NOAF 2:NOAF 1
30 | 2:NOAF 2:NOAF 1
31 | 2:NOAF 2:NOAF 1
1 1:AF 1:AF 0.811
2 1:AF 1:AF 0.783
3 1:AF 1:AF 0.991
4 1:AF 1:AF 0.997
5 1:AF 1:AF 0.985
6 1:AF 1:AF 0.714
7 1:AF 1:AF 0.992
8 1:AF 1:AF 0.923
9 2:NOAF 2:NOAF 0.713
10 | 2:NOAF 2:NOAF 1
11 | 2:NOAF 2:NOAF 1
12 | 2:NOAF 2:NOAF 1
13 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1
15 | 2:NOAF 2:NOAF 1
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15 | 2:NOAF 2:NOAF 1
16 | 2:NOAF 2:NOAF 1
17 | 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1
19 | 2:NOAF 2:NOAF 1
20 | 2:NOAF 2:NOAF 1
21 | 2:NOAF 2:NOAF 1
22 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 2:NOAF 1
24 | 2:NOAF 2:NOAF 1
25 | 2:NOAF 2:NOAF 1
26 | 2:NOAF 2:NOAF 1
27 | 2:NOAF 2:NOAF 1
28 | 2:NOAF 2:NOAF 1
29 | 2:NOAF 2:NOAF 1
30 | 2:NOAF 2:NOAF 1
1 1:AF 1:AF 0.803
2 1:AF 1:AF 0.842
3 1:AF 1:AF 0.994
4 1:AF 1:AF 0.887
5 1:AF 1:AF 0.767
6 1:AF 1:AF 0.878
7 1:AF 1:AF 0.901
8 1:AF 2:NOAF 0.571
9 2:NOAF 2:NOAF 1
10 | 2:NOAF 2:NOAF 1
11 | 2:NOAF 2:NOAF 1
12 | 2:NOAF 2:NOAF 0.967
13 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1
15 | 2:NOAF 2:NOAF 1
16 | 2:NOAF 2:NOAF 1
17 | 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1
19 | 2:NOAF 2:NOAF 1
20 | 2:NOAF 2:NOAF 1
21 | 2:NOAF 2:NOAF 1
22 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 2:NOAF 1
24 | 2:NOAF 2:NOAF 1
25 | 2:NOAF 2:NOAF 1
26 | 2:NOAF 2:NOAF 1
27 | 2:NOAF 2:NOAF 1
28 | 2:NOAF 2:NOAF 1
29 | 2:NOAF 2:NOAF 1
30 | 2:NOAF 2:NOAF 1
1 1:AF 1:AF 0.957
2 1:AF 1:AF 0.995
3 1:AF 1:AF 0.988
4 1:AF 1:AF 0.865
5 1:AF 1:AF 0.996
6 1:AF 1:AF 0.777
7 1:AF 1:AF 0.715
8 1:AF 1:AF 0.975
9 2:NOAF 2:NOAF 1
10 | 2:NOAF 2:NOAF 1
11 | 2:NOAF 2:NOAF 1
12 | 2:NOAF 2:NOAF 1
13 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1
15 | 2:NOAF 2:NOAF 1
16 | 2:NOAF 2:NOAF 1




16 | 2:NOAF 1:AF + 0.987 17 | 2:NOAF 2:NOAF 1
17 | 2:NOAF 2:NOAF 1 18 | 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1 19 | 2:NOAF 2:NOAF 1
19 | 2:NOAF 2:NOAF 1 20 | 2:NOAF 2:NOAF 1
20 | 2:NOAF 2:NOAF 1 21 | 2:NOAF 2:NOAF 0.896
21 | 2:NOAF 2:NOAF 1 22 | 2:NOAF 2:NOAF 1
22 | 2:NOAF 2:NOAF 1 23 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 2:NOAF 1 24 | 2:NOAF 2:NOAF 1
24 | 2:NOAF 2:NOAF 1 25 | 2:NOAF 2:NOAF 1
25 | 2:NOAF 2:NOAF 0.666 26 | 2:NOAF 2:NOAF 1
26 | 2:NOAF 2:NOAF 1 27 | 2:NOAF 2:NOAF 1
27 | 2:NOAF 1:AF + 0.602 28 | 2:NOAF 2:NOAF 1
28 | 2:NOAF 2:NOAF 1 29 | 2:NOAF 2:NOAF 1
29 | 2:NOAF 2:NOAF 1 30 | 2:NOAF 2:NOAF 1
30 | 2:NOAF 2:NOAF 1 1 1:AF 1:AF 0.897
31 | 2:NOAF 2:NOAF 1 2 1:AF 1:AF 0.968
1 1:AF 1:AF 0.965 3 1:AF 1:AF 0.973
2 1:AF 1:AF 0.98 4 1:AF 1:AF 0.921
3 1:AF 1:AF 0.883 5 1:AF 1:AF 0.971
4 1:AF 1:AF 0.865 6 1:AF 1:AF 0.991
5 1:AF 1:AF 0.982 7 1:AF 1:AF 0.948
6 1:AF 1:AF 0.988 8 1:AF 1:AF 0.919
7 1:AF 1:AF 0.895 9 2:NOAF 2:NOAF 1
8 1:AF 1:AF 0.869 10 | 2:NOAF 2:NOAF 1
9 2:NOAF 2:NOAF 1 11 | 2:NOAF 2:NOAF 1
10 | 2:NOAF 2:NOAF 1 12 | 2:NOAF 2:NOAF 1
11 | 2:NOAF 2:NOAF 1 13 | 2:NOAF 2:NOAF 1
12 | 2:NOAF 2:NOAF 1 14 | 2:NOAF 2:NOAF 1
13 | 2:NOAF 2:NOAF 1 15 | 2:NOAF 2:NOAF 1
14 | 2:NOAF 2:NOAF 1 16 | 2:NOAF 2:NOAF 0.899
15 | 2:NOAF 2:NOAF 1 17 | 2:NOAF 2:NOAF 1
16 | 2:NOAF 2:NOAF 1 18 | 2:NOAF 2:NOAF 1
17 | 2:NOAF 2:NOAF 1 19 | 2:NOAF 2:NOAF 1
18 | 2:NOAF 2:NOAF 1 20 | 2:NOAF 2:NOAF 1
19 | 2:NOAF 2:NOAF 1 21 | 2:NOAF 2:NOAF 1
20 | 2:NOAF 2:NOAF 1 22 | 2:NOAF 2:NOAF 1
21 | 2:NOAF 2:NOAF 1 23 | 2:NOAF 2:NOAF 1
22 | 2:NOAF 2:NOAF 1 24 | 2:NOAF 2:NOAF 1
23 | 2:NOAF 2:NOAF 1 25 | 2:NOAF 2:NOAF 1
24 | 2:NOAF 2:NOAF 1 26 | 2:NOAF 2:NOAF 1
25 | 2:NOAF 2:NOAF 1 27 | 2:NOAF 2:NOAF 1
26 | 2:NOAF 2:NOAF 1 28 | 2:NOAF 2:NOAF 1
27 | 2:NOAF 2:NOAF 1 29 | 2:NOAF 2:NOAF 1
28 | 2:NOAF 2:NOAF 1 30 | 2:NOAF 2:NOAF 1

Table 37: Actual versus prediction values of A-Fib using logistic regression model using
a 10-Fold Cross-Validation method
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CHAPTER 11

11  CONCLUSION AND FUTURE WORK

11.1  Conclusion

A-Fib is a condition proven potentially dangerous and is prevalent in 2.2 million
Americans. The likelihood of developing the condition increases with age. Serious
arrhythmia is responsible for 500,000 deaths annually [13]. The cost to treat A-Fib in the
United States exceeds $6.4 billion per year [12]. Early recognition of A-Fib is difficult
because most people are not aware of this silent rhythm disturbance [50]. A-Fib is
typically diagnosed or misdiagnosed during a routine screening visit or during a yearly
scheduled check-up by a general practitioner or a referred cardiologist; it is possible that
some patients have paroxysmal A-Fib that is not detected until it is too late. Current
A-Fib telemetry devices do not deliver continuous real-time detection, require a long
battery life, and necessitate patient interaction and device activation. They may become
impractical when the patient is incapacitated during symptomatic periods. The focus of
this dissertation is the design of a class of adaptive and efficient energy-aware models for
real-time monitoring, early detection and reporting of progressive development of cardiac
A-Fib. The design realizes the personalized energy-aware models by using a baseline
energy model and incorporating a real-time detection algorithm for the onset of A-Fib,

individual A-Fib risk factors, A-Fib incidence rates, and A-Fib prevalence circadian
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windows. We recommend an A-Fib Risk factor assessment beforehand to determine a
risk category and implement a monitoring and a detection schedule. Different
combinations of values of incidence rate and prevalence window contribute to different
energy reductions in the detection energy model. Our energy models may consume as
much as telemetry when the model is continuously monitoring and transmitting EKG
data, and almost as little as standby when the model operates inside two 2-hour circadian
prevalence windows with an incidence rate equal to 0.02, resulting in an energy reduction
by as much as 66% when compared to telemetry. We further extend the detection of A-
Fib to the paroxysmal phase, and derive the total energy-aware model for the detection
and reporting of A-Fib from its onset to its final stage. Studies [50] suggest if the
detection algorithm is as accurate as the cardiologist’s accuracy of interpreting EKG
readings then having a detection positive rate equal to the incidence rate gives our
energy-aware model the best energy performance. The detection positive rate plays an
important role in the validity of the energy reduction scheme. The design promises to
provide a greater positive public health impact from predicting A-Fib and a viable
approach to meeting the energy needs of current and future real-time monitoring,
detecting and reporting required in wearable computing healthcare applications that are
constrained by scarce energy resources. Efficiently applying these energy models in
wearable computing and monitoring devices will keep people out of overburdened
hospitals and emergency rooms by continuously providing feedback of patients’

physiological and vital signals to the local, on-body network, or remote server.
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11.2  Future Work

This work has bridged the gap between health science and engineering by introducing
energy-aware monitoring schemes and few atrial fibrillation detection algorithms.
Although, this body of work concentrates on atrial fibrillation, our results suggest that
future work may use machine learning and mathematical methods such as support vector
machines, neural networks, and Fast Fourier to diagnose other maladies. It is hoped that
further algorithm discoveries will aid the creation of open source repositories. Future
work may embed a variety of healthcare monitoring and detection applications in current
ubiquitous wearable devices such as smartphones, and use them as surrogate tools to
provide patients and doctors with less expensive monitoring and detection alternatives.
The constant progress in mobile hardware technology, wireless personal area networking,
wireless security and bio-sensing technology makes the smartphone platform an ideal
candidate for the areas of on-body healthcare monitoring and detection. However, further
improvements to the smartphone platform are needed to balance innovative interfaces,
energy management, network resources, and privacy concerns. The smartphone platform
must be cost-effective to economically monitor a patient’s health on a continuous basis
and rival the more traditional, cumbersome and significantly more expensive, stationary
monitoring system presently located in emergency rooms and hospitals. It must be able to
monitor and collect biomedical data continuously over a long period and detect the health
problem before the patient’s condition deteriorates.

In our future work, we wish to develop accurate detection algorithms for other types of
arrhythmias and extend our energy-aware models to optimize the energy consumption

required to monitor and detect all arrhythmias. Early real time detection of dangerous
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arrhythmias allows for earlier and less expensive medical intervention than what is

provided with today’s conventional clinical means.
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APPENDIX

A-Fib is predicted present if probability p (A-Fib is Present | Age, Age2, Gender, BMI,
QRSduration, PRinterval, Heartrate) > 0.5

Otherwise, A-Fib is absent.
Where:
logit (p) =-41.175 + 0.820 Age — 0.006 Age2 + 4.737 Gender — 0.047 BMI +

0.098QRSduration - 0.178 PRinterval + 0.066 Heartrate

p=1/(1+ ¢t ®) for predicting the presence of A-Fib (AF)
and

1-p = ™8 ®)/ (1 + ™ ®) for predicting the absence of A-Fib (NOAF)

Dataset used in our study:

QRS PR Heart Actual predicted Logit(p) prediction
No. age agh2 sex BMI Dur. Int. Rate Class
(M=0, (kg (b/ (1:AF, (1:AF, (AF: p,
(yrs) (yrs?) F=1) /m2) (ms) (ms) min) 2:NOAF) 2:NOAF) NOAF:1-p)

1 25 625 1 19 97 133 93 2:NOAF 2:NOAF -28.611 1

2 25 625 1 30 77 141 73 2:NOAF 2:NOAF -33.832 1

3 26 676 1 25 71 150 70 2:NOAF 2:NOAF -35.471 1

4 26 676 0 15 92 0 73 2:NOAF 2:NOAF -10.782 1

5 27 729 1 20 82 168 70 2:NOAF 2:NOAF -36.86 1

6 29 841 1 22 83 164 71 2:NOAF 2:NOAF -35.11 1

7 29 841 0 23 81 143 78 2:NOAF 2:NOAF -35.89 1

8 30 900 0 25 91 180 56 2:NOAF 2:NOAF -42.576 1

9 30 900 0 28 87 164 68 2:NOAF 2:NOAF -39.469 1
10 31 961 1 21 95 161 67 2:NOAF 2:NOAF -32.697 1
11 31 961 1 28 82 195 76 2:NOAF 2:NOAF -39.758 1
12 32 1024 0 25 111 171 74 2:NOAF 2:NOAF -36.93 1
13 32 1024 1 24 100 145 72 2:NOAF 2:NOAF -28.728 1
14 32 1024 1 24 78 174 68 2:NOAF 2:NOAF -36.31 1
15 33 1089 1 31 80 149 87 2:NOAF 2:NOAF -30.309 1
16 33 1089 1 21 76 130 92 2:NOAF 2:NOAF -26.519 1
17 34 1156 0 25 94 186 83 2:NOAF 2:NOAF -39.824 1
18 34 1156 1 20 90 135 73 2:NOAF 2:NOAF -26.826 1
19 35 1225 1 35 82 133 55 2:NOAF 2:NOAF -28.741 1
20 35 1225 1 21 55 163 81 2:NOAF 2:NOAF -34.353 1

174



21 35 1225 1 26 87 142 62 2:NOAF 2:NOAF -28.968 1
22 36 1296 0 26 90 156 72 2:NOAF 2:NOAF -34.849 1
23 36 1296 0 28 96 159 85 2:NOAF 2:NOAF -34.031 1
24 37 1369 0 23 88 153 55 2:NOAF 2:NOAF -35.11 1
26 37 1369 0 24 100 137 73 2:NOAF 2:NOAF -29.945 1
27 38 1444 1 25 79 0 70 2:NOAF 2:NOAF -2.755 0.953
28 39 1521 0 26 103 147 73 2:NOAF 2:NOAF -30.797 1
29 39 1521 1 29 90 156 72 2:NOAF 2:NOAF -29.143 1
30 39 1521 1 27 87 160 80 2:NOAF 2:NOAF -29.527 1
31 39 1521 1 23 79 155 81 2:NOAF 2:NOAF -29.167 1
32 40 1600 1 20 77 129 70 2:NOAF 2:NOAF -24.974 1
33 40 1600 1 23 82 140 68 2:NOAF 2:NOAF -26.715 1
34 40 1600 0 24 93 151 68 2:NOAF 2:NOAF -32.379 1
35 41 1681 1 22 78 228 53 2:NOAF 2:NOAF -43.38 1
36 41 1681 1 32 88 157 62 2:NOAF 2:NOAF -29.638 1
37 42 1764 0 24 87 136 75 2:NOAF 2:NOAF -29.179 1
38 42 1764 1 20 82 157 66 2:NOAF 2:NOAF -29.076 1
39 42 1764 0 26 113 213 78 2:NOAF 2:NOAF -40.233 1
40 43 1849 1 29 80 162 70 2:NOAF 2:NOAF -30.011 1
41 43 1849 0 32 90 169 68 2:NOAF 2:NOAF -35.287 1
42 43 1849 0 29 100 188 80 2:NOAF 2:NOAF -36.756 1
43 44 1936 0 20 84 118 64 2:NOAF 2:NOAF -26.199 1
44 44 1936 1 24 88 146 71 2:NOAF 2:NOAF -25.78 1
45 44 1936 0 29 188 125 77 2:NOAF 2:NOAF -16.818 1
46 45 2025 1 32 77 143 72 2:NOAF 2:NOAF -26.348 1
47 45 2025 1 26 82 122 87 2:NOAF 2:NOAF -20.848 1
48 46 2116 1 38 90 155 60 2:NOAF 2:NOAF -28.01 1
49 46 2116 0 27 91 156 72 2:NOAF 2:NOAF -31.518 1
50 46 2116 1 28 84 173 69 2:NOAF 2:NOAF -30.738 1
51 47 2209 1 21 75 132 76 2:NOAF 2:NOAF -23.269 1
52 47 2209 1 21 92 187 77 2:NOAF 2:NOAF -31.327 1
53 47 2209 0 31 108 173 86 2:NOAF 2:NOAF -31.88 1
54 47 2209 0 20 79 145 49 2:NOAF 2:NOAF -31.663 1
55 47 2209 1 33 78 0 117 1:AF 1:AF 2.663 0.905
56 48 2304 1 23 81 0 67 2:NOAF 2:NOAF 0.377 0.507
57 48 2304 1 26 83 146 61 2:NOAF 2:NOAF -25.952 1
58 48 2304 1 25 85 176 74 2:NOAF 2:NOAF -30.191 1
59 48 2304 0 39 85 177 72 2:NOAF 2:NOAF -35.896 1
60 48 2304 0 25 91 224 102 2:NOAF 2:NOAF -41.036 1
61 48 2304 0 23 77 196 89 2:NOAF 2:NOAF -38.188 1
62 48 2304 1 34 81 0 81 1:AF 1:AF 0.784 0.592
63 49 2401 1 21 78 0 67 2:NOAF 2:NOAF 0.415 0.502
64 49 2401 0 26 95 157 60 2:NOAF 2:NOAF -31.299 1
65 49 2401 1 22 73 132 71 2:NOAF 2:NOAF -23.354 1
66 49 2401 1 23 94 170 72 2:NOAF 2:NOAF -28.041 1
67 49 2401 1 32 78 0 115 1:AF 1:AF 3.066 0.933
68 49 2401 1 32 77 0 116 1:AF 1:AF 3.034 0.931
69 50 2500 1 24 89 130 63 2:NOAF 2:NOAF -21.826 1
70 50 2500 1 29 75 125 93 2:NOAF 2:NOAF -20.563 1
71 50 2500 0 27 103 142 70 2:NOAF 2:NOAF -27.006 1
72 50 2500 0 28 94 160 68 2:NOAF 2:NOAF -31.271 1
73 50 2500 1 30 81 105 87 2:NOAF 2:NOAF -16.858 1
74 50 2500 1 41 85 151 73 2:NOAF 2:NOAF -26.095 1
75 50 2500 1 22 84 145 76 2:NOAF 2:NOAF -24.034 1
76 50 2500 1 24 75 151 68 2:NOAF 2:NOAF -26.606 1
77 50 2500 1 32 80 0 119 1:AF 1:AF 3.752 0.964
78 51 2601 1 32 96 147 71 2:NOAF 2:NOAF -23.8 1
79 51 2601 0 28 100 145 81 2:NOAF 2:NOAF -26.941 1
80 51 2601 0 27 94 203 71 2:NOAF 2:NOAF -38.466 1
81 51 2601 1 30 79 0 118 1:AF 1:AF 3.896 0.968
82 51 2601 1 32 81 0 81 1:AF 1:AF 1.556 0.749
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83 52 2704 1 29 78 137 69 2:NOAF 2:NOAF -23.573 1
84 52 2704 0 29 88 202 59 2:NOAF 2:NOAF -39.56 1
85 52 2704 1 43 84 217 68 2:NOAF 2:NOAF -37.949 1
86 52 2704 1 43 84 188 66 2:NOAF 2:NOAF -32.919 1
87 52 2704 1 23 67 153 98 2:NOAF 2:NOAF -25.303 1
88 52 2704 0 27 92 152 74 2:NOAF 2:NOAF -29.184 1
89 52 2704 1 32 78 0 120 1:AF 1:AF 4.038 0.972
90 52 2704 1 32 82 0 82 1:AF 1:AF 1.922 0.809
91 53 2809 0 28 85 157 51 2:NOAF 2:NOAF -32.135 1
92 53 2809 1 29 86 141 117 2:NOAF 2:NOAF -20.143 1
93 53 2809 1 23 86 133 80 2:NOAF 2:NOAF -20.879 1
94 53 2809 1 27 80 199 63 2:NOAF 2:NOAF -34.525 1
95 53 2809 1 31 89 0 117 1:AF 1:AF 5.155 0.99
96 53 2809 1 31 81 0 124 1:AF 1:AF 4.833 0.987
97 53 2809 1 31 81 0 81 1:AF 1:AF 1.995 0.817
98 53 2809 1 31 82 0 82 1:AF 1:AF 2.159 0.84
99 54 2916 0 32 138 163 75 2:NOAF 2:NOAF -26.435 1
100 54 2916 1 20 78 155 73 2:NOAF 2:NOAF -25.722 1
101 54 2916 1 25 82 158 54 2:NOAF 2:NOAF -27.353 1
102 54 2916 0 27 113 216 61 2:NOAF 2:NOAF -39.008 1
103 54 2916 1 26 70 182 78 2:NOAF 2:NOAF -31.264 1
104 54 2916 1 32 87 0 70 1:AF 1:AF 1.988 0.814
105 54 2916 1 28 88 0 73 1:AF 1:AF 2.472 0.876
106 55 3025 0 31 100 202 71 2:NOAF 2:NOAF -37.152 1
107 55 3025 0 31 87 292 64 2:NOAF 2:NOAF -54.908 1
108 55 3025 1 32 88 0 71 2:NOAF 1:AF 2.318 0.856
109 55 3025 0 25 132 184 53 2:NOAF 2:NOAF -31.718 1
110 55 3025 0 25 85 198 79 2:NOAF 2:NOAF -37.1 1
111 55 3025 1 27 93 155 67 2:NOAF 2:NOAF -24.811 1
112 55 3025 1 32 88 0 71 1:AF 1:AF 2.318 0.856
113 55 3025 1 31 82 0 82 1:AF 1:AF 2.503 0.877
114 56 3136 1 24 81 174 53 2:NOAF 2:NOAF -29.998 1
115 56 3136 1 24 90 164 79 2:NOAF 2:NOAF -25.62 1
116 56 3136 1 27 90 147 65 2:NOAF 2:NOAF -23.659 1
117 56 3136 0 28 81 162 79 2:NOAF 2:NOAF -31.071 1
118 56 3136 0 28 83 183 72 2:NOAF 2:NOAF -35.075 1
119 56 3136 1 32 87 0 70 1:AF 1:AF 2.308 0.853
120 56 3136 1 32 90 0 72 1:AF 1:AF 2.734 0.899
121 56 3136 1 33 92 0 92 1:AF 1:AF 4.203 0.975
122 56 3136 1 30 91 0 91 1:AF 1:AF 4.18 0.974
123 56 3136 1 31 80 0 80 1:AF 1:AF 2.329 0.855
124 57 3249 1 26 82 181 66 2:NOAF 2:NOAF -30.24 1
125 57 3249 1 22 75 157 69 2:NOAF 2:NOAF -26.268 1
126 57 3249 0 27 82 205 107 2:NOAF 2:NOAF -36.59 1
127 57 3249 0 25 93 157 77 2:NOAF 2:NOAF -28.854 1
128 57 3249 1 32 90 0 73 1:AF 1:AF 2.942 0.914
129 57 3249 1 32 90 0 90 1:AF 1:AF 4.064 0.97
130 58 3364 1 26 71 136 81 2:NOAF 2:NOAF -22.188 1
131 58 3364 1 26 90 157 70 2:NOAF 2:NOAF -24.79 1
132 58 3364 0 5 87 166 70 2:NOAF 2:NOAF -30.436 1
133 58 3364 1 25 97 128 74 2:NOAF 2:NOAF -18.631 1
134 58 3364 0 25 95 145 76 2:NOAF 2:NOAF -26.458 1
135 58 3364 1 24 98 158 72 2:NOAF 2:NOAF -23.958 1
136 58 3364 1 30 85 140 71 2:NOAF 2:NOAF -22.376 1
137 58 3364 1 35 82 0 104 2:NOAF 1:AF 4.193 0.973
138 58 3364 0 25 133 148 70 2:NOAF 2:NOAF -23.664 1
139 58 3364 1 35 82 0 104 1:AF 1:AF 4.193 0.973
140 58 3364 1 32 88 0 74 1:AF 1:AF 2.942 0.913
141 58 3364 1 28 90 0 76 1:AF 1:AF 3.458 0.946
142 58 3364 1 33 91 0 91 1:AF 1:AF 4.311 0.976
143 58 3364 1 27 91 0 91 1:AF 1:AF 4.593 0.982
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144 58 3364 1 33 92 0 92 1:AF 1:AF 4.475 0.98
145 59 3481 0 27 83 194 69 2:NOAF 2:NOAF -36.794 1
146 59 3481 0 27 108 180 60 2:NOAF 2:NOAF -32.446 1
147 59 3481 1 28 97 149 72 2:NOAF 2:NOAF -22.524 1
148 59 3481 0 24 121 0 75 2:NOAF 1:AF 1.999 0.801
149 59 3481 1 36 84 152 66 2:NOAF 2:NOAF -25.104 1
150 59 3481 1 30 83 209 75 2:NOAF 2:NOAF -34.472 1
151 59 3481 0 27 92 158 65 2:NOAF 2:NOAF -29.768 1
152 59 3481 0 20 92 128 75 2:NOAF 2:NOAF -23.439 1
153 59 3481 0 24 83 164 63 2:NOAF 2:NOAF -31.709 1
154 59 3481 0 24 121 0 75 1:AF 1:AF 1.999 0.801
155 59 3481 1 35 83 0 105 1:AF 1:AF 4.475 0.979
156 59 3481 1 33 83 0 107 1:AF 1:AF 4.701 0.983
157 59 3481 1 36 86 0 86 1:AF 1:AF 3.468 0.945
158 59 3481 1 31 91 0 91 1:AF 1:AF 4.523 0.98
159 60 3600 1 32 93 121 80 2:NOAF 2:NOAF -17.486 1
160 60 3600 1 24 81 191 84 2:NOAF 2:NOAF -30.482 1
161 60 3600 1 27 80 144 98 2:NOAF 2:NOAF -21.431 1
162 60 3600 1 30 91 137 76 2:NOAF 2:NOAF -20.7 1
163 60 3600 0 24 120 0 74 1:AF 1:AF 1.941 0.788
164 60 3600 1 36 84 0 105 1:AF 1:AF 4.632 0.982
165 60 3600 1 32 90 0 90 1:AF 1:AF 4.418 0.978
166 61 3721 0 28 95 197 80 2:NOAF 2:NOAF -35.273 1
167 61 3721 0 27 84 178 84 2:NOAF 2:NOAF -32.658 1
168 61 3721 0 24 90 174 53 2:NOAF 2:NOAF -33.263 1
169 61 3721 1 27 83 158 73 2:NOAF 2:NOAF -25.185 1
170 61 3721 1 32 147 147 56 2:NOAF 2:NOAF -18.312 1
171 61 3721 0 25 122 0 77 1:AF 1:AF 2.382 0.849
172 61 3721 0 23 121 0 76 1:AF 1:AF 2.312 0.84
173 61 3721 0 25 124 0 124 1:AF 1:AF 5.68 0.993
174 61 3721 1 36 87 0 87 1:AF 1:AF 3.832 0.96
175 62 3844 0 25 102 135 70 2:NOAF 2:NOAF -23.988 1
176 62 3844 1 23 80 185 75 2:NOAF 2:NOAF -29.883 1
177 62 3844 1 26 72 169 103 2:NOAF 2:NOAF -26.112 1
178 62 3844 0 29 110 157 66 2:NOAF 2:NOAF -27.572 1
179 62 3844 0 24 146 138 64 2:NOAF 2:NOAF -20.559 1
180 62 3844 1 32 90 172 89 2:NOAF 2:NOAF -26.088 1
181 62 3844 1 38 97 0 100 2:NOAF 1:AF 5.658 0.993
182 62 3844 0 28 95 181 70 2:NOAF 2:NOAF -33.003 1
183 62 3844 1 26 81 174 87 2:NOAF 2:NOAF -27.176 1
184 62 3844 1 26 73 177 77 2:NOAF 2:NOAF -29.154 1
185 62 3844 0 24 121 0 78 1:AF 1:AF 2.479 0.859
186 62 3844 1 34 83 0 106 1:AF 1:AF 4.87 0.985
187 62 3844 0 24 121 0 76 1:AF 1:AF 2.347 0.842
188 62 3844 1 35 87 0 107 1:AF 1:AF 5.281 0.99
189 62 3844 1 27 91 0 91 1:AF 1:AF 4.993 0.987
190 63 3969 0 31 83 180 50 2:NOAF 2:NOAF -35.392 1
191 63 3969 1 23 79 160 75 2:NOAF 2:NOAF -25.461 1
192 63 3969 0 26 97 147 89 2:NOAF 2:NOAF -25.337 1
193 63 3969 1 29 85 165 64 2:NOAF 2:NOAF -26.771 1
194 63 3969 0 26 91 151 59 2:NOAF 2:NOAF -28.617 1
195 63 3969 1 25 79 141 63 2:NOAF 2:NOAF -22.965 1
196 63 3969 1 20 78 140 65 2:NOAF 2:NOAF -22.518 1
197 63 3969 1 24 94 175 59 2:NOAF 2:NOAF -27.764 1
198 63 3969 1 34 85 0 109 1:AF 1:AF 5.334 0.99
199 63 3969 0 25 125 0 81 1:AF 1:AF 3.092 0.917
200 63 3969 0 24 125 0 125 1:AF 1:AF 6.043 0.995
201 63 3969 0 25 125 0 125 1:AF 1:AF 5.996 0.995
202 63 3969 1 36 87 0 87 1:AF 1:AF 3.984 0.964
203 63 3969 1 33 86 0 86 1:AF 1:AF 3.961 0.963
204 63 3969 1 35 85 0 85 1:AF 1:AF 3.703 0.952
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205 63 3969 0 25 123 0 123 1:AF 1:AF 5.668 0.993
206 64 4096 1 34 87 171 65 2:NOAF 2:NOAF -27.754 1
207 64 4096 1 37 82 194 85 2:NOAF 2:NOAF -31.159 1
208 64 4096 1 26 78 162 78 2:NOAF 2:NOAF -25.8 1
209 64 4096 1 31 62 160 68 2:NOAF 2:NOAF -27.907 1
210 64 4096 1 30 84 163 78 2:NOAF 2:NOAF -25.578 1
211 64 4096 0 26 85 154 70 2:NOAF 2:NOAF -28.955 1
212 64 4096 1 31 80 157 62 2:NOAF 2:NOAF -26.005 1
213 64 4096 0 21 74 0 63 2:NOAF 2:NOAF -2.848 0.973
214 64 4096 0 24 94 162 81 2:NOAF 2:NOAF -28.677 1
215 64 4096 0 23 87 131 61 2:NOAF 2:NOAF -25.118 1
216 64 4096 0 25 83 0 65 2:NOAF 2:NOAF -2.022 0.94
217 64 4096 1 23 74 0 80 1:AF 1:AF 2.917 0.899
218 64 4096 0 23 124 0 124 1:AF 1:AF 5.984 0.995
219 65 4225 1 28 68 200 82 2:NOAF 2:NOAF -33.328 1
220 65 4225 0 24 87 137 63 2:NOAF 2:NOAF -26.055 1
221 65 4225 0 21 85 161 78 2:NOAF 2:NOAF -29.392 1
222 65 4225 0 29 100 139 63 2:NOAF 2:NOAF -25.372 1
223 65 4225 0 22 98 199 102 2:NOAF 2:NOAF -33.345 1
224 65 4225 1 20 85 143 68 2:NOAF 2:NOAF -22.064 1
225 65 4225 1 23 74 0 82 1:AF 1:AF 3.095 0.912
226 65 4225 0 26 122 0 78 1:AF 1:AF 2.657 0.872
227 65 4225 1 34 87 0 87 1:AF 1:AF 4.182 0.969
228 65 4225 0 25 126 0 126 1:AF 1:AF 6.264 0.996
229 65 4225 1 34 88 0 88 1:AF 1:AF 4.346 0.973
230 66 4356 0 25 87 157 57 2:NOAF 2:NOAF -30.024 1
231 66 4356 1 33 153 156 64 2:NOAF 2:NOAF -18.555 1
232 66 4356 1 23 73 0 81 2:NOAF 1:AF 2.965 0.899
233 66 4356 1 48 99 154 94 2:NOAF 2:NOAF -22.216 1
234 66 4356 0 29 86 164 88 2:NOAF 2:NOAF -29.51 1
235 66 4356 1 21 72 164 71 2:NOAF 2:NOAF -26.891 1
236 66 4356 1 26 80 188 59 2:NOAF 2:NOAF -31.406 1
237 66 4356 1 27 76 160 66 2:NOAF 2:NOAF -26.399 1
238 66 4356 1 23 73 0 81 1:AF 1:AF 2.965 0.899
239 66 4356 1 23 77 0 77 1:AF 1:AF 3.093 0.911
240 66 4356 0 24 123 0 123 1:AF 1:AF 5.853 0.994
241 67 4489 0 23 90 184 81 2:NOAF 2:NOAF -32.836 1
242 67 4489 0 26 97 144 93 2:NOAF 2:NOAF -24.379 1
243 67 4489 0 23 109 175 63 2:NOAF 2:NOAF -30.56 1
244 67 4489 0 29 106 173 69 2:NOAF 2:NOAF -30.384 1
245 67 4489 1 27 87 158 61 2:NOAF 2:NOAF -25.273 1
246 67 4489 1 19 78 180 81 2:NOAF 2:NOAF -28.375 1
247 67 4489 1 24 72 0 80 1:AF 1:AF 2.776 0.879
248 67 4489 1 26 90 0 84 1:AF 1:AF 4.71 0.98
249 67 4489 1 33 88 0 111 1:AF 1:AF 5.967 0.994
250 67 4489 1 24 77 0 77 1:AF 1:AF 3.068 0.907
251 68 4624 0 27 170 192 63 2:NOAF 2:NOAF -27.786 1
252 68 4624 1 21 78 159 86 2:NOAF 2:NOAF -24.391 1
253 68 4624 0 20 79 170 69 2:NOAF 2:NOAF -32.063 1
254 68 4624 1 29 146 200 61 2:NOAF 2:NOAF -27.051 1
255 68 4624 1 25 76 0 84 1:AF 1:AF 3.395 0.929
256 68 4624 1 23 77 0 77 1:AF 1:AF 3.125 0.909
257 68 4624 0 25 123 0 123 1:AF 1:AF 5.838 0.993
258 69 4761 0 24 82 145 80 2:NOAF 2:NOAF -26.783 1
259 69 4761 1 28 75 156 98 2:NOAF 2:NOAF -23.69 1
260 69 4761 1 25 74 159 81 2:NOAF 2:NOAF -25.303 1
261 69 4761 0 23 123 193 50 2:NOAF 2:NOAF -33.242 1
262 69 4761 1 25 77 0 84 1:AF 1:AF 3.491 0.934
263 69 4761 1 25 77 0 77 1:AF 1:AF 3.029 0.899
264 70 4900 1 35 76 187 89 2:NOAF 2:NOAF -30.047 1
265 70 4900 0 26 105 178 93 2:NOAF 2:NOAF -29.653 1
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266 70 4900 1 33 76 165 88 2:NOAF 2:NOAF -26.103 1
267 70 4900 0 25 93 118 92 2:NOAF 2:NOAF -20.168 1
268 70 4900 0 22 80 149 120 2:NOAF 2:NOAF -24.971 1
269 70 4900 1 26 74 0 82 1:AF 1:AF 3.004 0.894
270 70 4900 1 24 76 0 76 1:AF 1:AF 2.898 0.884
271 71 5041 1 23 78 195 98 2:NOAF 2:NOAF -30.143 1
272 71 5041 1 27 82 294 68 2:NOAF 2:NOAF -49.541 1
273 71 5041 0 18 71 158 92 2:NOAF 2:NOAF -29.141 1
274 71 5041 1 30 82 182 83 2:NOAF 2:NOAF -28.756 1
275 71 5041 1 25 79 0 79 1:AF 1:AF 3.317 0.919
276 71 5041 1 25 91 0 91 1:AF 1:AF 5.285 0.988
277 71 5041 1 32 89 0 89 1:AF 1:AF 4.628 0.977
278 72 5184 1 27 77 142 57 2:NOAF 2:NOAF -23.739 1
279 72 5184 0 26 90 180 71 2:NOAF 2:NOAF -32.995 1
280 72 5184 0 25 77 172 84 2:NOAF 2:NOAF -31.94 1
281 72 5184 1 25 93 177 61 2:NOAF 2:NOAF -28.043 1
282 72 5184 1 27 79 152 68 2:NOAF 2:NOAF -24.597 1
283 72 5184 0 24 85 168 58 2:NOAF 2:NOAF -32.113 1
284 72 5184 1 23 82 140 63 2:NOAF 2:NOAF -22.309 1
285 73 5329 0 23 91 154 66 2:NOAF 2:NOAF -28.508 1
286 73 5329 1 29 137 164 80 2:NOAF 2:NOAF -20.401 1
287 73 5329 1 31 82 136 103 2:NOAF 2:NOAF -19.383 1
288 73 5329 0 21 104 0 64 2:NOAF 2:NOAF 0.14 0.689
289 73 5329 1 25 76 0 76 1:AF 1:AF 2.737 0.857
290 74 5476 0 25 106 165 61 2:NOAF 2:NOAF -29.482 1
291 74 5476 0 23 84 175 44 2:NOAF 2:NOAF -34.446 1
292 75 5625 1 23 73 159 89 2:NOAF 2:NOAF -25.043 1
293 75 5625 1 22 81 180 65 2:NOAF 2:NOAF -29.534 1
294 75 5625 1 23 163 147 72 2:NOAF 2:NOAF -15.209 1
295 75 5625 1 28 82 176 77 2:NOAF 2:NOAF -28.214 1
296 76 5776 1 24 71 186 63 2:NOAF 2:NOAF -31.894 1
297 77 5929 0 28 98 0 59 2:NOAF 2:NOAF -1.427 0.922
298 78 6084 0 20 97 121 75 2:NOAF 2:NOAF -21.741 1
299 78 6084 1 27 79 127 75 2:NOAF 2:NOAF -20.165 1
300 79 6241 1 27 93 178 74 2:NOAF 2:NOAF -28.059 1
301 80 6400 0 28 93 183 80 2:NOAF 2:NOAF -33.471 1
302 80 6400 0 27 90 201 67 2:NOAF 2:NOAF -37.78 1
303 81 6561 1 22 86 191 76 2:NOAF 2:NOAF -30.972 1
304 83 6889 1 21 84 186 84 2:NOAF 2:NOAF -30.031 1

Table 38: Dataset containing 80 A-Fib episodes and 204 Non A-Fib cases

Raw results from WEKA tool:

Scheme:

Relation:  arrhythmia

Instances: 304

Attributes: 8

age
ageage
sex

BMI
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QRSduration
PRinterval
heartrate
class

Test mode: 10-fold cross-validation

=== (Classifier model (full training set) ===

Logistic Regression with ridge parameter of 1.0E-8

Coefficients...

Class
Variable AF
age 0.8203
ageage -0.0062
sex 4.7368
BMI -0.0471

QRSduration  0.0982
PRinterval -0.1776

heartrate 0.0657
Intercept -41.1751
Odds Ratios...

Class
Variable AF
age 2.2712
ageage 0.9938
sex 114.0704
BMI 0.954

QRSduration 1.1032
PRinterval ~ 0.8372
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heartrate 1.0679

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 296 97.3684 %
Incorrectly Classified Instances 8 2.6316 %
Kappa statistic 0.9337

Mean absolute error 0.046

Root mean squared error 0.1521

Relative absolute error 11.8332 %

Root relative squared error 34.543 %

Total Number of Instances 304

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.988 0.031 0.919 0.988 0.952 0.986 AF
0.969 0.013 0.995 0.969 0.982 0.986 NOAF
0974  0.017 0975 0.974 0.974 0.986 Weight. Ave.

=== Confusion Matrix ===

a b <--classified as

79 1| a=AF

7217| b=NOAF
BMI calculations:

Since the Body Mass Index (BMI) depends on weight and height, we use only BMI in the

model in order to avoid collinearity.
Weight (k
gup = Wewght (kg)
Height?(m?)
181



No. Height | Weight BMI No. Height | Weight BMI No. Height | Weight BMI
(m) (kg) | Kg/m2 (m) (kg) | Kg/m2 (m) (kg) | Kg/m2
1 1.7 55 19 102 | 1.7 78 27 203 | 1.68 93 33
2 1.61 78 30 103 | 1.61 67 26 204 | 1.61 91 35
3 1.61 65 25 104 | 1.55 77 32 205 | 1.67 70 25
4 1.69 43 15 105 | 1.68 79 28 206 | 1.55 82 34
5 1.63 53 20 106 | 1.74 94 31 207 | 1.54 88 37
6 1.61 57 22 107 | 1.84 105 31 208 | 1.61 67 26
7 1.66 63 23 108 | 1.56 78 32 209 | 1.61 80 31
] 1.71 73 25 109 | 1.73 75 25 210 | 1.56 73 30
9 1.66 77 28 110 | 1.7 72 25 211 | 1.66 72 26
10 1.6 54 21 111 | 1.61 70 27 212 | 1.57 76 31
11 1.51 64 28 112 | 1.56 78 32 213 | 1.73 63 21
12 1.73 75 25 113 | 1.71 91 31 214 | 1.71 70 24
13 1.65 65 24 114 | 1.63 64 24 215 | 1.62 60 23
14 1.55 58 24 115 | 1.65 65 24 216 | 1.59 63 25
15 1.66 85 31 116 | 1.64 73 27 217 | 1.63 61 23
16 1.66 58 21 117 | 1.69 80 28 218 | 1.71 67 23
17 1.71 73 25 118 | 1.71 82 28 219 | 1.56 68 28
18 1.5 45 20 119 | 1.57 79 32 220 | 1.81 79 24
19 1.65 95 35 120 | 1.56 78 32 221 | 1.76 65 21
20 1.59 53 21 121 | 1.58 82 33 222 | 1.71 85 29
21 1.56 63 26 122 | 1.71 88 30 223 | 1.73 66 22
22 1.71 76 26 123 | 1.72 92 31 224 | 1.58 50 20
23 1.84 95 28 124 | 1.66 72 26 225 | 1.62 60 23
24 1.77 72 23 125 | 1.64 59 22 226 | 1.69 74 26
25 1.58 50 20 126 | 1.66 74 27 227 | 1.64 92 34
26 1.88 85 24 127 | 1.72 74 25 228 | 1.66 69 25
27 1.59 63 25 128 | 1.58 80 32 229 | 1.61 88 34
28 1.71 76 26 129 | 1.58 80 32 230 | 1.67 70 25
29 1.6 74 29 130 | 1.62 68 26 231 | 1.56 80 33
30 1.61 70 27 131 | 1.7 75 26 232 | 1.62 60 23
31 1.64 62 23 132 | 1.9 18 5 233 | 161 124 48
32 1.61 52 20 133 | 1.55 60 25 234 | 1.68 82 29
33 | 155 55 23 | 134 [ 177 |78 25 235 | 159 | 53 21
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34 | 168 68 oa | 135161 |62 24 236 [ 154 | 62 26
35 | 158 55 07 | 136 [ 1.47 |65 30 237161 |70 27
36 | 153 75 3 | 137 ] 16 90 35 238 [ 162 |60 23
37 | 177 75 oa | 138161 |65 25 239 [ 166 | 63 23
3 | 164 54 50 | 13916 90 35 240 | 1.7 69 24
39 | 187 91 56 | 140 [ 1.58 | 80 32 241171 |67 23
20 | 156 71 59 | 141 [ 17 81 28 242175 |80 26
41 | 163 85 3, | 142] 159 |83 33 243 168 |65 23
4 | 166 80 2 | 143[174 |82 27 244 [ 164 |78 29
43 | 167 56 50 | 144|158 |82 33 245 [ 159 |68 27
4 | 158 60 o | 145161 |70 27 246 [ 167 |53 19
45 | 17 84 59 | 146 [ 1.59 | 68 27 247 [ 159 |61 24
26 | 164 86 3, | 147 | 16 72 28 248162 |68 26
47 | 158 65 26 | 148165 |65 24 249 [ 165 |90 33
48 | 162 | 100 33 | 149 [ 162 |94 36 250 [ 1.63 |64 24
49 | 178 86 57 | 150 [ 155 |72 30 251161 |70 27
5o | 166 77 5g | 151 ] 1.66 | 74 27 252 168 |59 21
5 | 151 48 51 | 152|161 |52 20 253 [ 1.63 |53 20
5 | 162 55 51 | 153176 | 74 24 254 [ 146 | 62 29
s3 | 174 94 31 | 154 | 165 |65 24 255 [ 162 |66 25
| 167 56 50 | 155|161 |91 35 256 | 167 |64 23
s | 163 88 33 | 156 | 1.65 | 90 33 257 [ 173 |75 25
s | 155 55 53 | 157 [ 1.62 | 94 36 258 [ 177 |75 24
5 | 164 70 26 | 158 | 1.6 79 31 259 [ 159 |71 28
sg | 157 62 55 | 159 [ 1.61 |83 32 260 | 154 |59 25
59 | 156 95 39 | 160 | 159 |61 24 261 162 |60 23
e | 179 80 55 | 161 [ 155 |65 27 262 [ 161 |65 25
61 | 183 77 53 | 162158 |75 30 263 [ 164 |67 25
6 | 164 91 34 | 163 ] 166 |66 24 264 | 1.6 90 35
63 | 16 54 51 | 164 [ 1.57 | 89 36 265 | 164 |70 26
1 | 168 73 26 | 165 | 1.6 82 32 266 | 1.6 84 33
e | 1.68 62 57 | 166 [ 1.84 |95 28 267 [ 179 |80 25
s | 169 66 ,3 | 167 | 1.7 78 27 268 [ 1.65 | 60 22
6 | 165 87 3, | 168 ] 171 |70 24 269 [ 161 |67 26
s | 166 88 3, | 169 [ 153 |63 27 270 [ 165 | 65 24
o | 1.67 67 oa | 170 [ 155 |77 32 271 156 | 56 23
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20 | 159 73 59 | 171] 162 |66 25 272 [ 163 [ 72 27
5 | 172 80 57 | 172 167 |64 23 273 [ 17 |52 18
5 | 185 9% 5 | 173 167 |70 25 274 [ 165 | 82 30
53 | 173 90 30 | 174|162 |95 36 275 [ 1.64 | 67 25
4 | 161 | 106 a | 17517 |72 25 276 | 1.66 | 69 25
55 | 162 58 09 | 176 [ 1.62 | 60 23 277 [ 169 |91 32
26 | 165 65 oa | 177 164 |70 26 278 [ 161 | 70 27
27 | 164 | 86 3, | 178|171 |85 29 279 [ 1.69 | 74 26
8 | 161 83 3 | 179|174 |73 24 280 [ 1.72 | 74 25
9 | 165 76 5 | 180 [ 156 |78 32 281 [ 1.65 | 68 25
g0 | 188 | o5 57 | 18117 110 38 282 [ 161 |70 27
g1 | 17 87 30 | 182 ] 178 |89 28 283 163 |64 24
g | 165 87 3, | 183158 |65 26 284 [ 155 | 55 23
g3 | 155 70 59 | 184 [ 164 |70 26 285 [ 1.66 | 63 23
gq | 166 | 80 59 | 185 ] 167 |67 24 286 | 1.58 | 72 29
gs | 156 | 104 43 | 186 | 162 |89 34 287 [ 1.61 | 80 31
s | 156 | 104 43 | 187|168 |68 24 288 [ 1.66 | 58 21
g7 | 155 55 53 | 188 ] 158 |87 35 289 [ 1.66 | 69 25
g | 174 | 82 7 | 189 [ 174 |82 27 290 [ 172 |74 25
g9 | 168 | 90 32 | 190] 161 |80 31 201171 |67 23
o0 | 169 | o1 3, | 191164 |62 23 292 [ 155 |55 23
o | 174 | 85 ,g | 192] 175 |80 26 293 [ 1.55 | 53 22
9y | 155 70 59 | 193] 155 |70 29 204 [ 1.6 |59 23
93 | 162 60 53 | 194174 |79 26 295 [ 1.63 | 74 28
94 | 161 70 57 | 195 [ 159 |63 25 296 | 1.5 54 24
o5 | 167 | 86 31 | 196 | 1.64 | 54 20 297 [ 166 |77 28
96 | 17 90 37 | 197 [ 168 |68 24 2098 [ 152 |46 20
97 | 172 92 31 | 198163 |90 34 299 [ 1.61 | 70 27
og | 17 90 31 | 199|165 |68 25 300 [ 149 | 60 27
99 | 172 95 32 | 20017 |69 24 301 [ 1.74 | 85 28
100 | 17 58 50 | 201] 166 |69 25 302 [ 1.61 |70 27
101 | 159 63 55 | 202]16 |92 36 303 [ 1.65 | 60 22

304 | 162 |55 21

Table 39: BMI calculations
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