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Though several clinical monitoring ways exist and have been applied to detect cardiac 

atrial fibrillation (A-Fib) and other arrhythmia, these medical interventions and the 

ensuing clinical treatments are after the fact and costly. Current portable healthcare 

monitoring systems come in the form of Ambulatory Event Monitors. They are small, 

battery-operated electrocardiograph devices used to record the heart’s rhythm and 

activity. However, they are not energy-aware; they are not personalized; they require long 

battery life, and ultimately fall short on delivering real-time continuous detection of 

arrhythmia and specifically progressive development of cardiac A-Fib. The focus of this 

dissertation is the design of a class of adaptive and efficient energy-aware real-time 

detection models for monitoring, early real-time detection and reporting of progressive 

development of cardiac A-Fib. The design realizes the personalized energy-aware models 

by using a baseline energy model and incorporating a real-time detection algorithm for
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the onset of A-Fib using individual A-Fib risk factors, A-Fib incidence rates, and A-Fib 

prevalence circadian windows. We combine ubiquitous smartphone platforms, Bluetooth 

wireless personal area networking, and bio-sensing technology to derive personalized 

energy models that rival today’s A-Fib monitoring devices. We compare the energy 

contributed from each energy-aware model to the energy from the baseline model known 

as the telemetry model. Given a low A-Fib risk factor, for an A-Fib incidence rate of 

0.02, and a prevalence window of 4 hours, our energy-aware model reduces energy 

consumption by as much as 66%. We further extend the detection of A-Fib to the 

paroxysmal phase, and derive the total energy-aware model for the detection and 

reporting of A-Fib from its onset to its final stage. The design promises to have a greater 

positive public health impact from predicting A-Fib and providing a viable approach to 

meeting the energy needs of current and future real-time monitoring, detecting and 

reporting required in wearable computing healthcare applications that are constrained by 

scarce energy resources. 
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CHAPTER 1 

1. INTRODUCTION 

A plethora of mobile applications ranging from games to network services to healthcare 

are growing in popularity and becoming an integral part of personal daily life. The 

quality and the performance of these mobile applications are constantly improving. The 

significant progress in mobile hardware technology, wireless personal area networking, 

wireless security and bio-sensing technology using Bluetooth has helped propel the 

smartphone platform into new areas of on-body healthcare monitoring and detection. 

Future wearable computing devices will have the ability to continuously sense, analyze 

and report medical ailments such as cardiac arrhythmia. They will also need to balance 

innovative interfaces, energy management, network resources, and privacy concerns. In 

addition, they must be ready, unrestrictive, not monopolizing of user attention, attentive 

to the environment, useful as a communication tool, personal, observable and easily 

controllable by the user. The devices have to be hands-free or espouse hands-limited 

portability; they can be event-triggered or can run continuously. They must be cost-

effective to economically monitor a patient’s health on a continuous basis and rival the 

more traditional, cumbersome and significantly more expensive, stationary monitoring 

system located in an emergency room or a hospital. They must be able to collect 

biomedical data continuously over a long period in advance of the start of a serious health 

problem. Today, the traditional healthcare monitoring system takes only a small snapshot
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of data collected when a patient who is already sick, is admitted to the hospital or 

emergency room. The focus of this dissertation is the design of a class of adaptive and 

efficient energy-aware models for real-time monitoring, early detection and reporting of 

progressive development of cardiac A-Fib. Wearable devices face high performance 

requirements in the middle of energy constraint challenges. Studies and research suggest 

various methods to minimize power consumption in mobile devices. Study [1] suggests a 

trade-off between power-saving and detection accuracy or performance; they show how 

power can be saved at the loss of a small amount of accuracy by applying different 

techniques using a low power real-time epilepsy seizure detection algorithm. The authors 

of [2] describe a framework that is used to reduce the energy consumption of sensors by 

temporarily turning them off. In study [3], the battery life is extended by as much as 30% 

through a collaborative relationship between the operating system and applications. In 

[4], the authors propose ways to enable systems to trade computational accuracy for 

resources by scaling down the data or feature set for use on a remote healthcare system. 

The study reports significant resource savings for small amounts of utility degradation, 

e.g., 33% of bandwidth saving for only a 1% of accuracy degradation. In project [5], the 

battery life of a wireless healthcare system is optimized using a dynamic scheduling 

technique by efficiently assigning tasks to the available resources. The dissertation 

includes the implementation of a risk assessment algorithm and the design of an 

incidence based A-Fib detection scheme for wearable healthcare computing devices. 

Related work in biomedicine and information technology introduced various algorithms 

for diagnosing and detecting different types of arrhythmia, and developed cardiovascular 

disease prediction algorithms. The Framingham Heart study [6] developed a risk score to 
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calculate individual risk of developing atrial fibrillation and a development framework 

for researcher. The work by [7] developed a prediction model to detect tachycardia and 

send alerts to a designated care center for appropriate medical action. The research 

funded by the Health Technology Assessment Program addresses the accuracy of 

electrocardiogram (EKG a.k.a. ECG) for the diagnosis of A-Fib and the potential risk of 

A-Fib misinterpretation errors [8]. A mobile medical device, dubbed HeartSaver [9] was 

developed to monitor the onset of atrial fibrillation and other cardiac pathologies. Other 

related work deals with the classification of arrhythmia and the performance of machine 

learning algorithms such as OneR, J48 and Naïve Bayes [10] but does not address logistic 

regression, a machine learning algorithm adopted in this dissertation.  

1.1 Motivation of the problem 

Given the imminent healthcare crisis threatening the aging world population, especially 

in developed countries, current healthcare systems and services are inadequate and mal-

structured. They are not fit to handle the necessary continuous healthcare monitoring for 

the aging millions. They cannot proactively diagnose or predict ailments because patients 

do not visit physicians frequently, and as a result, when they visit their doctor, problems 

have already begun.  

Today, most hospitals and medical institutions offer excellent inpatient care for major 

chronic disease; however, they lack daily preventive care and interaction with their 

outpatients, especially before and after surgery or hospital discharge, when diagnosing 

some ailments such as cardiac A-Fib. The American College of Cardiology and the 

American Heart Association define A-Fib as a supraventricular tachyarrhythmia 

characterized by uncoordinated atrial activation accompanied by the deterioration of 
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atrial mechanical function. A-Fib is the most prevalent arrhythmia in the United States 

and accounts for more than 750,000 strokes per year [11]. The cost to treat A-Fib in the 

United States exceeds $6.4 billion per year [12]. Approximately four million Americans 

suffer from recurrent arrhythmias. Serious arrhythmia is responsible for 500,000 deaths 

annually [13]. Hospitals treat about 850,000 people annually for arrhythmia. The only 

outpatient interaction occurs when seeing doctors, but people visit doctors rarely or 

infrequently and typically visit them after problems have already started. The average 

patient’s condition progressively deteriorates for five days before seeking emergency 

treatment [14].  Only a small snapshot of data is collected when a patient who is already 

sick, is admitted to the hospital or emergency room. Furthermore, current healthcare 

monitoring and detection systems are expensive, cumbersome and generally restricted to 

more populated areas.  

Current portable healthcare monitoring systems come in the form of Ambulatory Event 

Monitors. They are small, battery-operated electrocardiograph devices used to record the 

heart’s rhythm. These on-body healthcare devices fall short on delivering real-time 

continuous monitoring and detection, and are plagued by technological challenges, which 

are exacerbated by energy constraints, process optimization problems, data security risks 

and interference, among others. Developing and deploying new proactive healthcare 

technologies will alleviate the looming crisis by extending services from hospitals into 

homes all over the world. Typical wearable computing devices shown in Figure 1, will 

keep people out of overburdened hospitals and emergency rooms by continuously 

monitoring and providing feedback of a patient’s physiological and vital signals. They 
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cardiac arrhythmias, i.e., palpitations, dizziness, or syncope, a brief loss of consciousness 

caused by a temporary decrease in blood flow to the brain. Existing devices include 

Ambulatory Event Monitors (AEMs) and outpatient cardiac telemetry. In-progress 

development promises to deliver wearable healthcare computing devices that 

continuously monitor physiological patient information, analyze and report abnormal 

medical conditions. However, these niceties quickly drain the small device batteries. In 

order for these devices to be ubiquitously adapted, biomedical researchers and computer 

engineers need to solve central technological problems that deal with short battery life, 

energy management and energy optimization.  

1.2.1 Current AEMs and outpatient cardiac telemetry face challenges 

Today, cardiac arrhythmia is diagnosed under the supervision of a physician using 

various diagnostic methods and tools. Healthcare monitoring solutions are designed on a 

fixed hardware and software platform. They are not modular and are instead implemented 

as ‘one size fits all’. Current healthcare monitoring solutions do not adjust or adapt to 

different users profiles or medical needs and analyses. Patients have to physically visit 

health centers to receive devices and be hooked up, which is a transportation hardship for 

many individuals who live in poor, remote areas. Current healthcare monitoring solutions 

are designed to work over a scheduled or pre-programmed period of time, but monitoring 

is ineffective for patients who experience infrequent symptoms outside the scheduled 

period. Moreover, arrhythmia of very short duration would be difficult to record. Existing 

event monitoring stores a limited number of events.  The analysis feedback and results 

are delayed because EKG data and logged patient’s daily activities are first downloaded 

to a computer. Certified technicians and doctors in remote medical centers review and 
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analyze the data before a full report is generated and communicated to the patient. These 

solutions are not seamless; they require patient interaction and device activation. The 

devices are carried by the patient and activated when symptoms are present in order to 

record the heart electrical impulses. The symptoms might last only a short period. The 

procedure becomes impractical when the patient is incapacitated during symptomatic 

periods.  

1.2.1.1 Current solutions lack energy optimization 

Energy optimization is not addressed in current solutions, and battery consumption is 

not efficiently budgeted. Mobile computing introduces healthcare application 

opportunities but provides new challenges. The major challenges stem from energy 

shortage, limited CPU speed, constrained resources such as cache and on-board 

memory, wireless data security and privacy risks, wireless network unpredictability, 

latency and interference. Mobile computing healthcare applications are steadily on the 

rise because mobile computing devices are getting less expensive, smaller and more 

wearable. Today healthcare wearable computing requires flexible user 

interface/interactivity, ‘plug and play’ functionality, and high performance computing. 

These requirements impose severe hardship on energy-constrained mobile computing 

environments. 

1.3 Contributions 

 The design of a class of adaptive and efficient energy-aware models for real-time 

early detection of cardiac A-Fib that incorporate a real-time detection algorithm, 

individual A-Fib risk factor, A-Fib incidence rate, and A-Fib prevalence circadian 

window. For example, given an A-Fib risk factor, an A-Fib incidence rate of 0.02, 
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and a prevalence window of 4 hours, the proposed energy-aware model reduces 

the energy consumption by as much as 66%. 

 Bridging the gap between health science and engineering by introducing machine-

learning techniques in deriving atrial fibrillation algorithms.  

 The design of A-Fib classification/detection algorithms using J48, Naïve Bayes, 

and logistic regression. Future work may use other techniques such as support 

vector machines, neural networks, and Fast Fourier.  

 The selection of best fit A-Fib detection algorithm using performance 

measurements and accuracy comparison. The logistic regression algorithm is 

slightly more accurate and is selected for its ease of portability and embedding in 

wearable devices.  

 The recognition of the A-Fib incidence rate as it relates to the positive rate of the 

logistic regression detection algorithm. If the detection algorithm is as accurate as 

the cardiologist’s interpretation of EKG readings, then having a detection positive 

rate equal to the clinical incidence rate gives our energy-aware model the best 

energy performance. 

 The discovery that the duration and distribution of A-Fib episodes during a 

circadian cycle play important roles in scheduling the monitoring and detection of 

A-Fib.  

 The assessment of individual A-Fib risk factors as they contribute to scheduling 

the monitoring and detection of A-Fib. 
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 The validation of the proposed energy-aware models using a commercial heart 

monitor device and demonstration of the efficiency of the proposed energy-aware 

models. 

1.4 Organization 

The dissertation goal is to design adaptive, energy-aware schemes for the detection and 

reporting of progressive development of cardiac A-Fib. It bridges both biomedical 

research and computer engineering. The dissertation is divided into two main parts: The 

first part includes chapters 2, 3 and 4, which contain medical and data mining literature 

surveys. The second part includes chapters 5, 6, 7, 8, 9 and 10, which contain the design 

of adaptive energy-aware models.  

 Chapters 2, 3 and 4 contain technical and medical literature to provide an 

understanding of the heart’s electrical system, EKG Interpretation, types of 

arrhythmia, current arrhythmia monitoring and detection methods, shortcomings 

of Holter Monitors, event monitors, and mobile outpatient cardiac telemetry. They 

survey machine-learning classification methods in healthcare, particularly the 

logistic regression model and its classification detection accuracy measurements. 

Studying the heart’s electrical system and the intrinsic electrical activity of the 

heart under normal and abnormal heart rhythms is necessary for the interpretation 

of EKG information related to A-Fib and for determining predictors for A-Fib 

detection. Chapters 2, 3 and 4 are the subject of a book chapter titled “Cardiac 

Arrhythmia Monitoring and Detection Techniques in Wearable Healthcare 

Computing Device” [98]. 
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 Chapters 5, 6, 7, 8, 9, and 10 present the design of adaptive energy-aware models 

for the real-time early detection and reporting of progressive development of 

cardiac A-Fib [92][93]. The design realizes the primary and hybrid energy models 

by incorporating features that include an A-Fib risk factor, an A-Fib incidence 

rate, a prevalence window, and an A-Fib detection algorithm.  As a prerequisite to 

designing such energy models, the energy requirements for the current healthcare 

monitoring devices and the energy requirements for wearable healthcare 

computing devices are determined. Next, a telemetry energy model, which is used 

as a reference, and the wearable computing energy models are developed. Using 

the telemetry energy as reference, each energy model is compared to the telemetry 

energy model. The results are validated using a two-lead EKG Heart Monitor 

A102D7 device from Alive Technologies wirelessly connected to an Apple 

MacBook computer via Bluetooth.  
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CHAPTER 2 

2. EKG INTERPRETATION AND ARRHYTHMIA MONITORING 

Technical and medical literature surveyed provides an understanding of the heart’s 

electrical system, EKG interpretation, types of arrhythmia, current arrhythmia monitoring 

and detection methods, and the shortcomings of Holter Monitors, event monitors, and 

mobile outpatient cardiac telemetry. Understanding how to detect cardiac arrhythmias 

and more specifically A-Fib, which is the focus of this dissertation, is a prerequisite to 

interpreting A-Fib detection results. Studying the heart’s electrical system and the 

intrinsic electrical activity of the heart under normal and abnormal heart rhythms is 

necessary for the interpretation of EKG information related to A-Fib and for determining 

predictors for A-Fib. Current portable battery-operated arrhythmia monitoring devices 

such as Holter monitors, event monitors, and Mobile Cardiac Outpatient Telemetry 

monitors are analyzed in order to pinpoint their shortcomings concerning energy 

awareness and detection of arrhythmia. Just as important, applying data mining and 

machine-learning classification methods to healthcare monitoring and detection help 

predict A-Fib. 

2.1 Understanding the electrical system of the heart and arrhythmia 

The following sections survey literature explaining the internal electrical system of the 

heart and the different types of cardiac arrhythmias. First, we look at a normal cardiac 
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and other cells grow into heart valves. Muscle cells give the heart its ability to beat and 

pump blood throughout the body. A single cell beats when a complex series of gates – 

called ion channels - open and close in an organized manner. If the myocyte cells do not 

beat in unison, heart arrhythmias can occur. Three ions, sodium ion (Na+), calcium ion 

(Ca++) and potassium ion (K+), maintain the cardiac electrical system. The controlled 

movement of Na+ ions, Ca++ions, and K+ ions provides the cardiac functions and 

physiology. The sodium ions are responsible for initiating the myocyte depolarization as 

well as the electrical conduction through the myocardium. The calcium ions are 

responsible for the heart contractions. The potassium ions are responsible for the re-

polarization as well as the maintenance of the reference potential. The conduction system 

keeps the heart beating in a normal rhythm and allows the continuous exchange of 

oxygen-rich blood with oxygen-poor blood. Each electrical signal begins in a group of 

cells called the sinus node, or sino-atrial (SA) node, located in the right atrium (the upper 

right chamber of the heart). A normal, healthy adult heart at rest beats 60 to 100 times a 

minute. The electrical signal (see Figures 2, 3 and 4), generated in the SA node, travels 

through special pathways in the right and left atria and causes the atria to contract and 

pump blood into the heart’s two lower chambers, the ventricles. When the electrical 

signal reaches the atrio-ventricular (AV) node, located between the atria and the 

ventricles, it is delayed to wait for the ventricles to fill with blood. Next, the electrical 

signal leaves the AV node and travels along a pathway known as the Bundle of His. The 

Bundle of His divides into a right bundle branch and a left bundle branch. The signal 

goes down the right bundle branch and left bundle branch to the ventricles, causing them 

to contract and pump blood out to the lungs and the rest of the body. The ventricles then 
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Figure 4: Intrinsic electrical activity of the heart [104] 

2.1.2 Normal heart rhythm 

A normal heartbeat begins when an electrical signal is sent by a tiny cluster of cells called 

the sinus node. The signal then traverses the atria and passes through the atrio-ventricular 

node. Next, the signal travels through the ventricles, causing them to contract and pump 

out blood. The process recovers and repeats. Figure 5 explains a normal heart rhythm 

process.  
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 PR interval: The PR interval is the period from the onset of the P wave to the 

beginning of the QRS complex, which normally ranges from 0.12 to 0.20 seconds. 

This interval represents the time between the onset of atrial depolarization and the 

onset of ventricular depolarization.   

 QRS complex: The QRS complex represents ventricular depolarization consisting 

of the Q, R, and S waves. Normally, the QRS interval is 0.06 to 0.10 sec.  

 QT interval: The QT interval is the time between onset of ventricular 

depolarization and end of ventricular repolarization. The QT interval (< 0.44 sec) 

must be corrected for heart rate using the  where QTc is the 

corrected QT interval; R-R interval is the time between 2 QRS complexes.  

 ST segment: The ST segment represents completed ventricular myocardial 

depolarization. Normally, it is horizontal along the baseline of the PR (or TP) 

intervals or slightly off baseline. 

 T wave: The T wave reflects ventricular repolarization. It usually takes the same 

direction as the QRS complex (concordance); opposite polarity (discordance) may 

indicate past or current infarction.  

 The U wave’s origin is not clearly understood but the consensus is it 

probably represents “after depolarization” in the ventricles. 

 The PP interval is the duration of the atrial cycle; it is an indicator of the 

atrial rate. 
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R intervals) [18]. Similarly, ventricular rate is determined by measuring the time intervals 

between the QRS complexes, or by measuring the R-R intervals (see Figure 8).  

 

 

Figure 8: Example of standard limb EKG leads and EKG record strip [101] 

Ventricular rate measurements: Assuming the recording EKG strip speed of 25 mm/sec, 

the following rates: 1500-300 - 150 - 100 - 75 - 60 may be used to calculate a heart rate: 

Method 1: divide 1500 by the number of small squares between two R waves. The rate 

between beats R1 and R2 in the above tracing is 68 beats per minute, i.e. 1500/22.  

R RR R
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Method 2: divide 300 by the number of large squares (red boxes in this diagram) between 

two R waves. The rate between beats R1 and R2 in the above tracing is 68 beats per 

minute, i.e. 300/4.4.  

Method 3: count the number of large squares between two R waves with the following 

rates: 300 - 150 - 100 - 75 - 60. For example, if there are four large squares between two 

R waves, then the rate is 75 beats per minute. Extrapolation is sometimes needed between 

squares.  

Atrial rate measurement: Atrial rate measurements are calculated similarly to the 

ventricular rate however, the P waves are used.  

 If the heart is in sinus rhythm and if there is a P wave for every QRS complete then the 

atrial rate is equal to the ventricular rate. 

If the rhythm is not consistent, that is the distances between the R waves are different, a 

time-averaged rate over a 10 second interval or longer is calculated. Using the EKG 

recording strip above where the recording time scale is 25 mm per second, the rate is 75 

beats per minute if there are 12.5 beats in 10 seconds [17] [101]. 

2.1.4 Understanding cardiac arrhythmia and A-Fib 

Cardiac arrhythmia, a common and mostly harmless condition, is defined by the presence 

of irregular heartbeats. For many people, the experience usually goes unnoticed. They 

feel as if the heart has skipped a beat, or has given an unexpected flutter. However, some 

arrhythmia can be extremely dangerous and require medical treatment.  Today, cardiac 

arrhythmia is diagnosed under the supervision of a physician using various diagnostic 

methods and tools. Arrhythmia could be due to strong emotions, excessive exercise, 
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Coronary Artery Disease (CAD), electrolyte (i.e., Sodium or Potassium) imbalances in 

the blood, changes in the heart muscle, injury from heart attack and the post-heart surgery 

healing process. Sudden cardiac death (SCD) is a major cause of mortality in 

industrialized nations [100]. People, especially the young, usually die from SCD 

asymptomatically. Fatal arrhythmias are due to either genetic defects and/or mechanical 

dysfunction and ischemic events (reduced blood supply to the heart). Patients who 

survive life threatening ventricular arrhythmias remain at high risk of fatal arrhythmia. 

The bad news: treatment for SCD has not progressed. 

2.1.5 Types of Arrhythmia  

Arrhythmia [19] varies in severity, point of origin, and the speed at which it causes the 

heart to beat. Arrhythmia can be generally classified into three types, based on the heart 

rate: Tachycardia, Bradycardia, and premature heartbeats. Tachycardia occurs when a 

heartbeat is regular (i.e., sinus rhythm) but the rate is more than 100 beats per minute. 

Bradycardia takes place when a heartbeat is regular but the rate is less than 60 beats per 

minute. Premature heartbeats are revealed as an extra beat between two normal 

heartbeats; they are generally not unsafe and do not damage the heart.  

These arrhythmias are not necessarily dangerous unless they occur unexpectedly. During 

an aerobic exercise or while having an anxiety attack, the normal heart rate is expected to 

be greater than 100 beats per minute.  

2.1.5.1 Atrial Arrhythmia:  

These types of arrhythmia originate in the atria such as the A-Fib, the Atrial Flutter, and 

the Supra-Ventricular Tachycardia (SVT). 
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The atria pump the blood at an unusually fast and irregular rate without the heart fully 

contracting. The heart’s two small upper chambers or atria quiver instead of beating 

effectively. The heart may beat at about 300-400 beats per minute and contract between 

five to seven times faster than normal. Blood may pool and clot because it is not pumped 

completely out of the atria. A blood clot in the atria may end up lodged in an artery in the 

brain, resulting in a stroke. A-Fib, a potentially dangerous condition, may lead to chronic 

fatigue, heart rhythm problems, congestive heart failure and in extreme cases, a stroke.  

A-Fib Type Defining Characteristics 

First A-Fib 
detected 

Only one diagnosed episode that lasts longer than 30 seconds 
when the heart is in and out of normal sinus rhythm. 

Paroxysmal or 
intermittent A-
Fib 

– The heart is in and out of normal sinus rhythm.  
– Episodes of A-Fib come and go on their own.  
– Episodes typically last less than 24 hours but can last up to 

seven days before they terminate spontaneously.  

Persistent A-Fib – Episodes last longer than seven days. 
– Episodes do not go away on their own. 
– Medical treatment is necessary to restore normal sinus 

rhythm. 
Longstanding 
persistent A-Fib 

– Episodes of A-Fib are continuous. 
– Episodes last longer than one year. 

Permanent A-Fib A person’s irregular heartbeat does not return to normal sinus 
rhythm, even with medical treatment.  

 
Table 2: Progressive development of A-Fib 

A-Fib is responsible for about 15 percent of the strokes occurring in people with A-Fib. 

A-Fib is a condition found in 2.2 million Americans [21] but a study conducted by the 

Mayo Clinic in Minnesota estimates that A-Fib would affect 15.9 million by 2050 [22]. 

The likelihood of developing A-Fib increases with age. Three to five percent of people 

over age 65 have A-Fib [21][22]. After the first A-Fib is detected, there are four 



 

27 

predominant types of A-Fib: Paroxysmal, persistent, longstanding persistent and 

permanent (see Table 2). 

2.1.5.1.2 Atrial Flutter: 

Atrial Flutter is similar to A-Fib, except there is only a single electrical wave that 

circulates very rapidly in the atria. The heart beats irregularly and rapidly, between 230–

380 beats per minute [19] [20].  

2.1.5.1.3 Supra-Ventricular Tachycardia (SVT): 

Usually not harmful, Supra-Ventricular (or Supraventricular) Tachycardia is a type of 

tachycardia that originates either in the atria or in the middle region. It makes the heart 

beat very fast in a regular rhythm for periods of time [19] [20].  

2.1.5.1.4 Premature Atrial Contraction (PAC): 

Premature Atrial Contraction (PAC) is a type of tachycardia that is common in children 

and teenagers.  PAC starts in the atria causing premature beats or extra beats that result in 

irregular heart rhythms [19] [20]. 

2.1.5.1.5 Sick Sinus syndrome: 

Sick Sinus syndrome occurs when the heart rhythm may switch between having 

bradycardia (a slow heartbeat rate) and tachycardia (a fast heartbeat rate) because the 

sino-atrial node does not fire the signals properly [19] [20]. 

2.1.5.1.6 Sinus Arrhythmia:  

Sinus Arrhythmia is a condition in which the heart rate varies with breathing.  

2.1.5.1.7 Sinus Tachycardia: 

Sinus Tachycardia occurs when the heart experiences transient rapid heartbeat such as in 

response to fever, excitement, anxiety, stress, or exercise.  
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2.1.5.1.8 Wolff-Parkinson-White (WPW) syndrome:  

Wolff-Parkinson-White (WPW) syndrome is the name given to episodes when there are 

abnormal pathways for the electrical signals to travel between the atria and ventricles.  

The electrical impulses go down one pathway from the atria to the ventricles and then 

return to the atria through the other pathway, often accompanied with a fast heart rate 

[19] [20]. 

2.1.5.2 Ventricular Arrhythmias: 

Ventricular Arrhythmias originate in the ventricles. They are typically fatal and therefore 

require immediate medical attention [19] [20]. 

2.1.5.2.1 Ventricular Tachycardia (VT): 

Ventricular Tachycardia (VT) is a rapid heartbeat that originates in the ventricles. The 

heart beats at a rate of more than 100 beats per minute, with at least three irregular 

heartbeats in a row [19] [20].   

2.1.5.2.2 Premature Ventricular Contraction (PVC): 

Premature Ventricular Contraction is a type of arrhythmia that originates in one of the 

ventricles. It is caused by extra, abnormal heartbeats that disrupt the regular heart rhythm, 

sometimes causing a feeling of a skipped beat. PVCs are very common in normal 

children and teenagers [19] [20]. 

2.1.5.2.3 Ventricular Fibrillation: 

Ventricular Fibrillation is a type of arrhythmia triggered by chaotic electrical activity, 

which leads to rapid, unsynchronized ventricular contractions. The heart pumps little or 

no blood during this episode of Ventricular Fibrillation, resulting in the patient’s collapse 

or even sudden death [19] [20]. 
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2.1.6 Arrhythmia treatments 
 
Drugs that treat arrhythmia are called anti-arrhythmic drugs. They affect ion channels 

involved in the movement, suppressing arrhythmia by altering the movement of sodium, 

calcium and potassium ions going in and out of the cell. As a result, they affect the 

electrical activity of pacemaker and non-pacemaker cells.  
The following sections survey literature on current arrhythmia testing methodology and 

current portable healthcare monitoring systems. The different types of portable 

arrhythmia testing devices and shortcomings are described. 

2.1.7 Current arrhythmia monitoring and detection methods 

Today, cardiac arrhythmia may be diagnosed under the supervision of a physician using 

various methods and tools. Passive and active tests may be scripted to detect cardiac 

arrhythmia ranging from blood tests, to electrocardiogram tests, to Holter monitoring, etc. 

Passive tests are intended to check for cardiac arrhythmia during periods of normal 

activity. Active tests are designed to induce arrhythmia in a closely monitored situation 

so that it can be observed by a physician. Current portable healthcare monitoring systems 

come in the form of Ambulatory Event Monitors (AEMs). They are small, portable 

electrocardiograph (EKG) devices that are used to record the heart’s rhythm (Figure 10).   

2.1.7.1 Holter monitor 

A Holter monitor is a portable EKG recorder that is worn during normal daily activities 

(including sleeping) over a period lasting typically 24 to 48 hours, in order to determine 

whether there is a problem with the heart. The Holter monitor test offers a more 

comprehensive picture of the heart’s health than the regular EKG, which monitors the 

heart’s electrical activity during a short session in a doctor’s office. Its electrodes are 
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placed on the skin of patient’s chest. Leads from the electrodes are connected to an 

electronic box that is worn on a belt or carried with a shoulder strap. The electrical heart 

impulses are continuously recorded and stored. A patient wearing a Holter monitor keeps 

a diary of the daily activities and occurring symptoms, such as chest palpitations, rapid 

heartbeats, feeling of dizziness or faintness. The logged activities and symptoms are 

communicated to a physician. The data is downloaded to a computer and checked for any 

heart rhythm abnormalities. A full report, including a printout of abnormal heart rhythms, 

is generated.  

2.1.7.2 Event monitor 

Event monitoring is a diagnostic alternative to Holter monitoring in patients who 

experience infrequent symptoms (less frequently than every 48 hours) suggestive of 

cardiac arrhythmias (i.e., palpitations, dizziness, pre-syncope, or syncope). Electrodes are 

placed on the skin of patient’s chest. Leads from the electrodes are connected to an 

electronic box, which is worn on a belt or shoulder strap. When a patient feels symptoms, 

he depresses a button to activate the recorder. The monitor records the heart electrical 

impulses for 60 seconds prior to the button being pushed and up to 40 seconds 

afterwards. The event monitor can store up to three events. The recorded data is 

ultimately transmitted either to a physician’s office or to a central recording station. If the 

reading indicates arrhythmia, the patient will be instructed to go to the emergency room. 

2.1.7.3 Mobile Outpatient Cardiac Telemetry 

Mobile Cardiac Outpatient Telemetry (MCOT) allows continuous heartbeat monitoring 

lasting a few days. This device consists of a small sensor attached to three electrode pads, 

worn either as a pendant on a chain around the neck or on a belt clip. The sensor sends 
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each heartbeat to a handheld monitor. When the monitor detects a heart rhythm problem, 

it automatically transmits EKG information to the CardioNet [23] monitoring center. At 

the CardioNet center, certified cardiac technicians analyze each transmission, respond 

appropriately to each event and transmit diagnostic reports to the authorized physician. 

The patient may use the touch screen on the CardioNet monitor to transmit the EKG from 

any felt symptom to the CardioNet monitoring center. Integrated symptom and EKG data 

can help doctors rule in, or rule out, cardiac causes for symptoms such as dizziness and 

fainting. 

 

Figure 10: Holter monitor (left and middle), Event monitor (right) 

2.1.7.4 Shortcomings of monitoring 

Holter and Event monitors have shortcomings. They are ineffective for patients who 

experience infrequent symptoms outside the typical monitoring period of 24 to 48 hours. 

These types of monitors require a patient’s activation and interaction, which is 

impractical when the patient is incapacitated during symptomatic periods.  
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2.1.7.6 Electrophysiological study (EPS) 

An electrophysiological study is a more invasive procedure; it is used to assess serious 

arrhythmia. During an electrophysiological test, a thin flexible wire or catheter is passed 

to the heart by going through peripheral veins or peripheral arteries. The cardiac electrical 

signals are recorded at various points to detect the point of origin of tachycardia. The 

wire can be used to trigger an arrhythmia by electrically stimulating the heart. This 

process helps the doctor to determine whether medication can stop the arrhythmia. 

2.1.7.7 Esophageal electrophysiological procedure 

The esophageal electrophysiological procedure records cardiac electrical signals by 

inserting a thin, supple, and flexible plastic tube through a nostril and positioning it in the 

esophagus. An electric stimulator is used to make the heart beat faster and trigger an 

arrhythmia. 

2.1.7.8 Treadmill testing 

Treadmill testing requires the patient to walk or jog on an exercise treadmill. It is 

prescribed for patients who are suspected of experiencing arrhythmia. The heart rate and 

rhythm are monitored while the patient is exercising on a treadmill. 

2.1.7.9 Blood tests 

Blood tests measure the sodium, potassium and thyroid hormone levels. 

2.1.7.10 Electrocardiogram (EKG)  

The Electrocardiogram (EKG) records the cardiac electrical activity and other 

information about the heart’s structure and health status, such as rhythm and rate, by 

connecting electrodes to the surface of the skin.  Sensors or electrodes from the EKG 

machine are placed on the skin to detect the heart’s electrical activities. The different 
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signals emanating from the heart are recorded on scrolling paper and/or memory devices 

for further analysis. 

2.2 Wireless privacy and interference concerns 

Advances in wireless sensor and networking technologies have been extended to 

wearable computing systems. They provide a multitude of opportunities in the 

development and integration of pervasive wireless communication for new and existing 

specialized technologies in monitoring, data collection, and real-time analysis and 

reporting. Today, healthcare applications can utilize wireless technologies such as 

Bluetooth, Zigbee, RFID, UWB, Wireless Local Area Networks (WLAN), Wireless 

Metropolitan Area Networks (WMAN), and Wireless Wide Area Networks (WWAN).  

Although some of these wireless network solutions are acceptably secure, the nature of 

the wireless ad hoc and the device addressing schemes still make them vulnerable to 

possible attacks and privacy risks [24].  

2.2.1 Bluetooth technology 

In a Personal Area Network (PAN), Bluetooth frees mobile workers and allows them to 

work unhindered while managing multiple devices. 

Bluetooth operates in the unlicensed 2.4 gigahertz (GHz) to 2.4835 GHz ISM (Industrial, 

Scientific, and Medical) frequency band. This bandwidth is commonly used by other 

technologies such as the IEEE 802.11b/g WLAN standard, making it prone to 

interference. The Bluetooth standard aims at guaranteeing reliability and robustness in the 

presence of such interference through the utilization of Frequency-Hopping Spread 

Spectrum (FHSS) and Error Correction techniques. Such a claim generated increasing 

demand from the industrial, military and healthcare worlds and motivated research 
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groups to perform specific environmental field tests on wireless communication 

involving Bluetooth units. Several tests have concluded that Bluetooth is reliable enough 

in industrial applications for monitoring conditions. Bluetooth robustness stems from 

FHSS technique, which makes the protocol particularly robust in an environment where 

interference from other radiating sources exists. Today, compared to other personal 

electronics devices currently allowed in use on passenger airplanes during flight, 

Bluetooth is classed as an intentional radiator. The test results show that the levels of 

intentional emissions as well as spurious emissions from Bluetooth devices did not 

interfere with the aircraft systems while in flight [25]. 

Bluetooth technology protocol supports voice and data communication. It provides built-

in security, serial and TCP/IP networking integration in both one-to-one and one-to-many 

networking topologies. The protocol is regulated by governments worldwide. A plethora 

of modern mobile devices incorporates Bluetooth technology to track and monitor 

individual social interaction and location [26]. Bluetooth technology positions itself well 

in the Wireless Personal Area Network (WPAN) and in the Body Area Network (BAN).  

2.2.2 Bluetooth in wearable computing applications 

Bluetooth architecture offers built-in security features that accommodate the simplest of 

applications. It also provides adequate support for the most demanding security 

requirements imposed on various Bluetooth healthcare applications. Bluetooth is a low-

cost, low-power technology, primarily used in short-range radio frequency (RF) 

communication. It is used to establish wireless ad hoc or peer-to-peer (P2P) 

communication between a wide variety of devices for the transfer of voice and data in a 

personal area network. Bluetooth technology is pervasive in many consumer devices, 
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Bluetooth device. Each piconet can include one master and up to seven slaves. Multiple 

piconets can cover the same area.  

A Bluetooth device can be a member of multiple overlapping piconets. When 

connections exist between a group of piconets, a scatternet is formed. A Bluetooth device 

can be master in only one piconet but a slave in many different piconets. Master and 

slave roles can be switched between Bluetooth devices in a piconet. 

2.2.3 Bluetooth security methodology 

Bluetooth provides security in three ways:  

 It uses pseudo-random frequency hopping to solve the problem of interference 

from other signals after transmitting or receiving a packet. 

 It utilizes authentication to restrict connectivity to devices. Authentication is 

initiated when the device is in security mode 2 or in security mode 3. 

 It employs encryption to use secret keys where only authorized users can make 

data intelligible again. 

A. Frequency-hopping scheme 

Bluetooth uses frequency-hopping spread spectrum (FHSS) when transmitting signals 

(see Figure 13). It hops (i.e., changes) between Bluetooth devices using 79 different radio 

channels using frequencies of approximately 1600 times per second for data/voice links 

and 3200 times per second during page and inquiry scanning [24].  

A channel is used for a very short period (e.g. 625 microseconds for data/voice links), 

followed by a hop marked by a pre-determined pseudo-random sequence to another 

channel as shown in Figure 13.  The frequency-hopping scheme enables the Bluetooth 

device to avoid interference with other devices. Bluetooth also allows for radio link 
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power control, a low power consumption adaptation output scheme, where devices can 

negotiate and adjust their radio power consumption relative to the transmitted signal 

intensity. The Bluetooth power control feature blocks any potential adversary to pose a 

threat to a Bluetooth piconet. The combination of a frequency-hopping scheme and radio 

link power control provide Bluetooth with some additional protection from 

eavesdropping and malicious access. 

 
Figure 13: Bluetooth Frequency Hopping Spread Spectrum [27] 

Because Bluetooth devices use the ISM band in its entirety, and transmit from a fixed 

frequency in very short periods, they guarantee that any interference will be short-lived. 

This makes it very difficult for an eavesdropping device to predict which frequency will 

be used next by the Bluetooth devices. The Bluetooth specification ensures that 

connected devices agree on the next frequency to use by first defining a master-slave 

relationship between Bluetooth devices, and second by specifying an algorithm, that uses 

device-specific information to calculate random frequency-hop sequences. Spread 
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spectrum transmissions are less affected by outside signal interference since any noise 

interference is likely to influence only a small portion of the signal and not impact the 

entire signal. Bluetooth security is implemented in the generic access profile through two 

methods, an authentication process and a choice of security modes. Bluetooth technology 

arrived with security key types namely, the authentication generation keys, and the 

ciphering keys. 

B. Authentication and Ciphering 

Security in Bluetooth uses symmetric key cryptographic mechanisms for authentication, 

link encryption, and key generation. In Bluetooth, an authentication mechanism called 

link key is used to determine that a link is established. The result of a successful pairing 

between two Bluetooth devices will generate a link key that the two devices will use for 

authentication and a link encryption. Bluetooth uses two types of link keys: temporary 

keys and semi-permanent keys. The latter is composed of unit keys and combination 

keys.  A unit key is a link key that is generated by a specific Bluetooth device and used as 

a link key with another Bluetooth device. It is used when there is full trust among the 

devices that are paired with the same unit key. Since Bluetooth version 1.2, unit keys 

have been deprecated.  On the other hand, a combination key is a link key that a device 

generates in combination with another Bluetooth device. Besides the combination and the 

unit keys, there are two other key types called temporary keys: the initialization key and 

the master key. The initialization key exists temporarily during the pairing of two 

devices. The master key is a link key generated by a master prior to the setup of an 

encrypted broadcast communication. There are three other link keys of interest, called 

ciphering keys: the encryption key KC, the constrained encryption key K’C and the 
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payload key KP. The encryption key KC is the main key that controls the ciphering. This 

key may have too many bits that exceed an allowed key length, at which point KC is 

replaced by the constrained encryption key K’C [28].  

C. Security Modes 

All Bluetooth-enabled devices implement the Generic Access Profile. This profile defines 

a security model that includes three security modes:  

1) Security Mode 1:   

 Mode 1 is an insecure mode of operation. It provides no security. 

 When a Bluetooth device is in security mode 1, no security procedure is initiated. 

 Devices operating in this mode are able to pair with devices operating in the same 

mode because neither device implements security controls. 

2) Security Mode 2: 

 Mode 2, known as service-level enforced security, provides security at the service 

level, after the channel has been established. This mode enables applications to 

run in parallel and have different access policies. 

 When a Bluetooth device is in security mode 2, no security procedure is initiated 

before a channel establishment request has been received or a channel 

establishment procedure has been initiated by itself.  

 Devices operating in this mode enforce service level security at the L2CAP layer 

and above by invoking a combination of authorization and authentication 

schemes. 

3) Security Mode 3: 
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 Mode 3, known as link-level enforced security, provides security at the link level 

before the channel is established. 

 Link encryption is enforced by devices operating in mode 3 at the LMP layer. 

4) Security Mode 4:  

Security Mode 4 calls for Bluetooth services to use an authenticated link key, an 

unauthenticated link key, or no security at all. In this mode, Secure Simple Pairing (SSP) 

is used to simplify the pairing process, and protect against passive eavesdropping and 

man-in-the-middle attacks by utilizing a public key cryptography. Secure Simple Pairing 

offers four association models: Numeric Comparison, Passkey Entry, Just Works, and 

Out of Band. 

In the Numeric Comparison model, both pairing devices display a six digit number and 

allow the user to enter a “yes’ response if the numbers match. A “no” response makes the 

pairing fail. A Passkey Entry association model is offered for Secure Simple Pairing of 

two Bluetooth devices where one device has input capability such as Bluetooth enabled 

keyboard and the second device has no input capability. A six-digit number is entered 

into the device with the keyboard capability and shown to the other device with the 

display-only capability. Both Numeric Comparison and Passkey Entry association models 

do not incorporate the six-digit number into the link key generation, therefore an attacker 

finds no value to the six-digit number. The Just Works association model is applicable 

where either one or both pairing devices lack a display for viewing the six-digit number 

or a keyboard for inputting it. In this case, the user is forced to accept the pairing 

connection without being able to verify the six-digit number allowing for man-in-the-

middle protection to fail. Finally, the Out of Band association model supports a wireless 



 

42 

technology alternative to Bluetooth such as Near Field. This model performs device 

pairing by having the user accept the pairing by pushing a button on the device following 

tapping one device against the other. Except for the Just Works association model, all of 

the association models described above provide authenticated link keys. 

D. Trust Levels and Service Levels 

Bluetooth provides two levels of trust and three levels of service security. The two levels 

of trust are trusted and un-trusted. A trusted Bluetooth device has full access to all 

services, whereas an un-trusted device does not have an established relationship with 

another Bluetooth device, and as a result receives restricted access to services.  

The three levels of Bluetooth service security deal with authorization, authentication, and 

encryption. Service Level 1 requires both authorization and authentication. Automatic 

access is granted only to trusted units; as for un-trusted devices, manual authorization is 

required. Service Level 2 requires authentication only; authorization is not necessary. 

Service Level 3 requires no authentication, access is granted automatically to all devices.  

E. Bluetooth potential security risks 

Bluetooth protocol is a Personal Area Network (PAN) protocol used in devices that 

communicate wirelessly with one another when within 300 feet. Bluetooth is designed to 

run in a peer-to-peer short-range wireless network. If the security of Bluetooth is 

compromised, and if one or more devices in the network are used as gateways to other 

connected networks, it could expose the devices or their attached networks. Bluetooth 

supports third party extensions. The security of a device or local network connected to 

these extensions could be compromised if these extensions do not use proper security and 

authentication procedures.  
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CHAPTER 3 

3 APPLYING MACHINE LEARNING METHODS TO PREDICT A-FIB 

Classification is learning a function that maps (classifies) a data item into one of several 

predefined classes [29]. 

”A computer program is said to learn from experience E with respect to some task T and 

some performance measure P, if its performance on T, as measured by P, improves with 

experience E” [30]. Data mining is a task used to discover unknown rules, patterns and 

relationships hidden in vast amount of raw data that is available as datasets stored in 

databases [31]. Machine learning is the study of methods and algorithms that learn and 

improve their performance with experience. Few machine learning algorithms and 

statistical approaches have been applied in medical applications; for example, algorithmic 

and statistical approaches for finding biomarkers that could be potential factors causing 

prostate cancer among African American men [32], classification of electrocardiogram 

arrhythmias using neural networks [33], EKG arrhythmia classification based on logistic 

model tree [34], and analysis of EKG signals using self-organizing maps (SOM). Much 

of the related work dealing with classification of cardiac arrhythmia has been based on 

neural networks, Markov chain models and support vector machines (SVMs). 

Although several clinical ways exist and have been applied to treat arrhythmia, these 

medical interventions and clinical treatments come after the fact and are expensive. 

Moreover they do not come without risks to the patients [35]; there would be a greater 
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positive public health impact from predicting arrhythmia and preventing heart attacks. 

This detection can be regarded as a general classification/prediction problem.  

3.1 Data mining overview 

Data became ubiquitous, and new technologies have made retrieval of large amounts of 

data easy and fast. Uncovering meaningful information and hidden patterns from the data 

remain keys to the success of research. The goal of data mining is to extract knowledge 

and hidden patterns from the data.  “Data mining is the process of extracting valid, 

previously unknown, comprehensible, and actionable information from large databases 

and using it to make crucial business decisions.” [36]. Data mining relies on technologies 

such as statistics, machine learning, and databases, to facilitate the uncovering of 

information from the data. Statistics is concerned with parameters and characteristics of 

the data whereas machine learning derives models and patterns from the data. Database 

technology stores and manages data for selective data retrieval. Data mining is not an 

exact science. Human interaction is sometimes required to decipher ambiguities during 

the four phases of data mining process: data collection, data pre-processing, data mining 

and information evaluation and interpretation. Classical data mining tasks such as 

classification, clustering, and association are used repeatedly in bioinformatics. The 

following overview will review each task (Figure 14 illustrates a graphical representation 

and visualization of the data mining process). 

3.2 Data cleaning and data pre-processing 

Biomedical data is highly distributed and sometimes uncontrollably generated. Data may 

contain information that simply does not make sense and must be cleaned. Data cleaning 

defined as a pre-processing step is an essential procedure in data mining to ensure 
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cross-validation is the holdout method where the two datasets, referred to as the training 

set and the test set are used in a single evaluation but this method allows for high 

variance and dependency in the dataset. A solution to this problem is the k-fold cross-

validation where k is the number of subsets and where the model is built repeatedly each 

time for k-1 subsets. The remaining subset is used as a test dataset. The cross validation 

errors are computed for each of the k test subsets and then averaged to give the k-fold 

estimate of the cross-validation errors. Cross-validation is preferred over percentage split-

sample for small data sets [38] [39].  

3.5 Classification  

Classification is a data-mining task that defines the class or group where each data 

instance belongs. A classification model requires at least two pre-defined classes. The 

attributes of a training data set constitute the input to the classification model. The pre-

defined class defines the output where the different instances belong. A classification 

model requires supervised learning. In supervised classification, data is labeled i.e., 

belonging to a specific class [66]. 

3.6 Clustering 

Clustering, also referred to as segmentations, is a technique that divides the data into 

natural groups, i.e., similar data is put into the same clusters or categories [66]. Unlike 

classification and association learning covered in the next section, clustering is 

unsupervised learning. The number of clusters is not known in advance. Iterative 

distance-based clustering technique such as the k-means, which employs the Euclidean 

distance, can be used to form clusters. An example of clustering is illustrated by 

examining how Amazon.com groups customers in clusters, based on the books they buy. 
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Customers in the same clusters are recommended the most commonly purchased book in 

the cluster because these customers appear to share the same taste in reading. A problem 

with clustering is deciding on an appropriate arbitrary number of clusters. This is a trial 

and error process. The user inputs the number of clusters. If the results are not 

satisfactory, another cluster number is chosen. Different clustering methodologies such as 

probabilistic clustering, top-down and bottom-top hierarchical clustering are available. 

The top-down hierarchical approach separates the data into different clusters based on the 

similarity measurement criteria. It starts with one single cluster housing all the data and 

ends up with each data sample being a single cluster. The bottom-top approach starts with 

the data being grouped into separate clusters containing a single data sample and end up 

with all data grouped into one cluster. 

3.7 Association 

Association rules, sometimes referred to as affinity analysis, search for dependencies 

between a data subset and the rest of the data set. They can predict any attribute or a 

combination of attributes. The association rule A => B means that when A exists B also 

exists with high probability. The Market Basket Analysis is an example of an association 

rule. Beer => chips implies that people who bought beer on Saturday night also bought 

chips. The association rule A => B exists when both the support and confidence of the 

rule is larger than the respective threshold. Support (a.k.a. coverage) of an association 

rule is defined as the number of instances for which it predicts correctly; while 

confidence (a.k.a. accuracy) of an association rule is the number of instances that it 

predicts correctly, expressed as a proportion of all instances to which it applies. 
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3.8 Other data mining 

In text mining, the mined data is text. Keywords or phrases are used to find related 

documents in the database. Advanced text mining utilizes classification, association and 

clustering techniques. Similarity measures identify relationships between documents and 

terms. Text mining is useful when searching and retrieving large amounts of biomedical 

information.  

Similarly, graphics mining technology is helpful in retrieving protein structures in 

bioinformatics. It retrieves graphics from databases.  

3.9 Detection performance measurement 

In this section, we focus on the binary classification of arrhythmia, in which a classifier 

yields two discrete results: positive, or presence of arrhythmia and negative, or absence 

of arrhythmia. Given an EKG record, a binary classification has four possible outcomes: 

number of True Negatives (TN), number of False Positives (FP), number of True 

Positives (TP), and number of False Negatives (FN), and correspondingly four possible 

rates: True Negative rate (tn), False Positive rate (fp), True Positive rate (tp), and False 

Negative rate (fn).   

3.9.1 Specificity and sensitivity 

Detection rates are measured in terms of specificity and sensitivity. 

Specificity or true negative rate designated as ݊ݐ measures the proportion of negatives 

that are correctly identified (i.e. the percentage of arrhythmia-free people who are 

correctly identified as not having arrhythmia). It is the ability of a test to identify 

correctly those patients without the disease (TN rate) [40]. 
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Specificity	or	݊ݐ ൌ
TN

TN	 ൅ 	FP
100%	 

A specificity equal to 100% means no negatives are incorrectly classified as positive. A 

positive result in a high specificity test is used to confirm the presence of arrhythmia. The 

specificity test alone does not necessarily express how well the test recognizes the 

presence of arrhythmia. The sensitivity is also needed.  

Sensitivity or true positive rate designated as ݌ݐ (a.k.a. the recall rate in data mining) 

measures the proportion of actual positives (people having arrhythmia) which are 

correctly identified. It is the ability of a test to identify correctly those patients with the 

disease (݌ݐ) [40]. 

Sensitivity	or	݌ݐ ൌ
TP

TP	 ൅ 	FN
100%					 

Sensitivity equal to 100% signifies that the test identifies all actual positives. All 

instances suggestive of arrhythmia are recognized as having arrhythmia present. 

Compared to a high specificity test, negative results in a high sensitivity test are used to 

rule out the presence of arrhythmia.  

If 1,000 patients diagnosed to have arrhythmia present are tested, and 640 test positive, 

then the test would suggest 64% sensitivity. On the other hand, if 1,000 patients that are 

known not to have arrhythmia are tested and 950 come back with a negative result, then 

the test suggests 95% specificity. A very highly specific test is not likely to give a false 

positive result. A positive finding should therefore indicate the presence of arrhythmia. 

Likewise a highly sensitive test rarely misses, thus a negative result should signify the 

absence of arrhythmia.  
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A test with a high specificity has a low Type I error rate. A test with a high sensitivity has 

a low Type II error rate. There is an inverse relationship between False Positives versus 

False Negatives as depicted in Figure 15. As Type I error rate goes up, Type II error rate 

goes down.  

For the overall error rate, the false positive rate, and the false negative rate, the best 

performance measure values are the lowest. For the F-measure, the best values are the 

highest values. 

Type II or False Negative rate designated as ݂݊ (i.e. when a positive instance is wrongly 

classified as negative),  

݂݊ ൌ
FN

FN	 ൅ 	TP
100% 

and Type I error or False Positive rate (i.e. when a negative instance is wrongly classified 

as positive). 

݌݂ ൌ
FP

FP	 ൅ 	TN
100% 

are significant issues in medical diagnostics. False negative test results may provide 

patients and doctors a falsely reassuring message that arrhythmia is absent, when it is 

actually present. This may lead to inappropriate or inadequate treatment of the disease 

and sometimes unforgiving consequences to the patient. In statistical hypothesis testing, 

the False Negative rate is known as β. On the other hand, False Positive arrhythmia 

results may produce unnecessary worries and lead to needless financial expenses. The 

false positive rate is represented as α, significance level in statistics.  
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3.9.3 ROC for the evaluation of arrhythmia classification performance 
 
Receiver Operating Characteristics curves (or ROC curves) have been used in biomedical 

informatics [41]. They are useful in expressing the sensitivity versus specificity of 

classifiers (see Figure 16). The ROC curve plot displays the FP rate on the X-axis (1- 

Specificity) and the TP rate (Sensitivity) on the Y-axis. Each point on the ROC curve 

represents a sensitivity/specificity pair corresponding to a particular decision threshold. 

The area under the ROC curve measures how well a particular parameter can distinguish 

between two diagnostic groups (such as presence of a disease/ absence of a disease). It 

plays an important role in the evaluation and analysis of class imbalance. It provides an 

effective approach to characterize the performance of classifiers [42] [43] [44].  

To judge how well a classifier performs, the area under the curve (a.k.a. AUC) is a good 

indicator. The closer an ROC curve is to the upper left hand corner [45] [46] the better 

the performance of the classifier. When comparing the performance of two classifiers, the 

classifier with the corresponding ROC curve that is located closer to the upper left hand 

corner and above the ROC curve of another classifier produces better global 

performance. For example, classifier ‘a’ outperforms classifier ‘b’ as shown in the Figure 

16. The perfect classifier has an area under the ROC curve equal to 1. Its ROC curve runs 

from point (0, 0) to point (1, 1) bending towards (0, 1). An ROC curve with an area of 0.5 

follows a diagonal path from (0, 0) to (1, 1). A typical ROC curve lies in the upper left of 

the plot, and the corresponding AUC is between 0.5 and 1.0. The bigger the area is and 

the closest to 1, the better the classifier performance. 
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Figure 18: Sensitivity-Specificity trade-off 

When opting for a high cut-off value, the false positive measure will decrease with 

increased specificity (݂݌	 ൌ 	1 െ  and the true positive measure or (ݕݐ݂݅ܿ݅݅ܿ݁݌ݏ	

sensitivity will decrease. On the other hand, when selecting a lower criterion value, the 

true positive measure or sensitivity will increase and the false positive measure will also 

increase, and therefore the true negative measure and specificity will decrease. 

3.9.4 Outcomes of a test 

The confusion matrix (see Table 3) for our binary classification model (present, absent) is 

a 2x2 matrix that displays the counts of the four types of detections that will help us 

measure the classifier performance. 

Confusion 
Matrix 

Actual 

Positive  
Arrhythmia 

is present 

Negative  
Arrhythmia 

is absent 
 

P
re

d
ic

te
d

 

Arrhythmia is 
present. 

(Positive) 
TP FP 

(Type I Error) 

Positive	Predictive	Value 

ൌ
TP

TP ൅ FP
 

Arrhythmia is 
absent. 

(Negative) 

FN  
(Type II Error) TN 

Negative	Predictive Value 

ൌ
TN

TN ൅ FN
 

Positive	Likelihood 
	Ratio 

 

Sensitivity 

ൌ
TP

TP ൅ FN
 

Specificity 

ൌ
TN

TN ൅ FP
 

Negative	Likelihood  
Ratio 
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ൌ
Sensitivity

1 െ Specificity
 ൌ

1 െ Sensitivity
Specificity

 

Table 3: Confusion matrix 

 Sensitivity is the probability that a result is predicted to be positive when the 

disease is present. 

 Specificity is the probability that a result is predicted to be negative when the 

disease is not present. 

 Positive likelihood ratio is the ratio between the probability of a positive test 

result given the presence of the disease and the probability of a positive test result 

given the absence of the disease, Sensitivity / (1-Specificity). 

 Negative likelihood ratio is the ratio between the probability of a negative test 

result given the presence of the disease and the probability of a negative test result 

given the absence of the disease, (1-Sensitivity) / Specificity.  

 Positive predictive value is the probability that the disease is present when the test 

is positive. 

 Negative predictive value is the probability that the disease is not present when 

the test is negative. 

3.9.5 Overall classification accuracy and the overall classification error 

Classification accuracy of a model is measured in terms of Type I and Type II errors. 

Both the overall classification accuracy and the overall classification error defined below 

can be used to evaluate the performance of a classifier, but when the costs of 

misclassifications of the different classes are uneven, this measure may be unacceptable. 
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In order to take into account the unevenness of misclassification costs when evaluating a 

classifier, one may explore the following metrics: error types, ݊ݐ ,݂݊ ,݌݂ ,݌ݐ, 

 .and area under the ROC curve ,݁ݎݑݏܽ݁݉–ܨ

Overall	Accuracy	 ൌ
TP ൅ TN

TP	 ൅ 	TN ൅ 		FP ൅ FN
 

Overall	Error	rate	 ൌ 1 െ Overall	Accuracy ൌ
FP ൅ FN

TP	 ൅ 	TN ൅ 		FP ൅ FN
 

Both the overall accuracy and the overall error rate are poor performance metrics. Both 

metrics favor the majority class and penalize the minority class. Accuracy places more 

emphasis on the common classes than on rare classes. For example, given a two-class 

problem with distribution 90:10, the performance of the classifier on the majority class 

will be counted nine times more than the performance on the minority class. Accuracy 

leads to poor minority-class performance. Minority class has lower precision and recall 

than majority class. Recall and precision are inversely related (see Figure 19). 

Recall (a.k.a. effectiveness)  is a metric which is the same as True Positive Rate metric 

and defined as the proportion of positives that are correctly predicted positives. It is the 

ratio of the number of relevant records retrieved, to the total number of relevant records 

in the database, and is usually expressed as a percentage. In binary classification, recall is 

called sensitivity. It is trivial to achieve recall of 100% by returning all documents in 

response to any query. Therefore, recall alone is not enough but one must also measure 

the number of irrelevant document, for example by computing the precision. 

Recall	 ൌ 	
TP

TP	 ൅ 	FN
100% 

Precision (a.k.a. efficiency) refers to the proportion of instances predicted to be of the 

positive class when actually they are from the positive class. It is the ratio of the number 
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Figure 19: Recall and precision are inversely related. 

of relevant records retrieved to the total number of irrelevant and relevant records 

retrieved. It is usually expressed as a percentage.  

Precision	 ൌ 	
TP

TP	 ൅ 	FP
100% 

Because both Precision and Recall are defined with respect to the Positive (rare) class, 

rare cases/classes can be appropriately assessed using these two metrics. Many systems 

have used a variation of both metrics like Geometric Mean (GMean) and F-Measure   

The GMean tends to maximize the accuracies of both classes while keeping them balanced.  

ெ௘௔௡ܩ 	ൌ 	√Recall	 ൈ 	Precision	

The FMeasure is defined with respect to the Recall metric and the Precision metric. It 

indicates the combined relative importance of both metrics. 

ெ௘௔௦௨௥௘ܨ	 ൌ
ሺ1	 ൅	BetaଶሻPrecision	 ൈ 	Recall	
ሺBetaଶ ൈ 	Recall	 ൅ 	Precisionሻ

	

A larger Beta gives more weight to Recall. Two commonly used FMeasure values are the F2 

measure (Beta =1) and F0.5.  F2 measure emphasizes Recall twice as much as Precision, 

and the F0.5 measure weights Precision twice as much as Recall. 
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CHAPTER 4 

4 A-FIB PREDICTORS AND DETECTION CHALLENGES 

A-Fib is the most common cardiac arrhythmia [47] [48].  A-Fib prevalence varies 

between 1.1 per 1,000 patients at age 40, and 105 at age 90 [49]. A-Fib symptoms start 

with the fast and irregular heart rate, palpitations, racing or heart-skipping sensations. 

The patient may have shortness of breath, lightheadedness, chest discomfort or fatigue. 

The important risk of A-Fib is blood clots and stroke due to uncoordinated upper 

chambers contractions. It can be diagnosed by reading and interpreting an 

electrocardiogram record in a primary care setting, whether by a general practitioner, a 

referred cardiologist, interpretative software, or a practice nurse during a routine 

screening visit or scheduled check-up. Traditionally, a 24-hour Holter monitor, or for 

longer periods an “event monitor”, are worn by the patients in order to capture the first 

episode of A-Fib.  A-Fib affects 2.5 million people in the United States or close to 1% of 

the total population [12]. The Manitoba study [50] and the Framingham Heart study [51] 

draw attention to the significance of the higher frequency of A-Fib with advancing age. 

Patients with A-Fib have a 1.5 to 2 fold increase in mortality rate when compared with 

the general population as suggested by Framingham Heart study data [6] [52]. Early 

recognition of A-Fib is difficult because most people are not aware of this silent rhythm 

disturbance [53]. Today, frequent monitoring and screening of patients allow for early 

detection of arrhythmia. 
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At least one-third of the A-Fib episodes go undetected [8] because either people are not 

screened often or a general practitioner or a practice nurse misses the A-Fib diagnosis. 

Few studies have addressed the misdiagnosis of A-Fib from an electrocardiogram (EKG) 

and the potential risk of A-Fib misinterpretation errors. Knight et al. [54] concluded that 

A-Fib is more often misdiagnosed by internists than cardiology fellows and cardiologists. 

Mant et al. [55] discovered that general practitioners correctly detected A-Fib 80% (true 

positive) of the time when interpreting 12-lead EKG data and misinterpreted 8% (false 

positive) of sinus rhythm cases as A-Fib. One of the major misdiagnosis confuses A-Fib 

with atrial flutter [56].  

4.1 Predictors of A-Fib 

A-Fib is the most prevalent arrhythmia in the United States and accounts for more than 

750,000 strokes per year [11]. According to classification guidelines used by 

cardiologists and electro-physiologists, for the management of patients with A-Fib [57], 

after the first A-Fib is detected, there are four types of A-Fib: Paroxysmal, persistent, 

longstanding persistent, and permanent. A-Fib is termed progressive. Once a patient is 

diagnosed with a paroxysmal A-Fib he or she will eventually migrate to persistent A-Fib. 

Similarly, a patient diagnosed with persistent A-Fib will drift to longstanding persistent 

A-Fib and in time to permanent A-Fib [58]. The EKG waves and intervals represented in 

Figure 20 are used to describe the predictors of A-Fib.  

From Section 2.1.3, the QRS interval is the duration of the ventricular muscle 

depolarization. The P wave is a record of the electrical activity or the sequential 

activation (depolarization) through the right and left atria. The PR interval is the time 

interval measured from the beginning of the P wave (atrial depolarization) to the onset of 
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Murmur (SHM), Prevalent Heart Failure (PHF), PR Interval, QRS duration, and 

Heartrate [6] . 

4.2 A-Fib Telemetry Data Analysis 

Telemetry is widely accepted in healthcare for remotely collecting and sending vital data 

to a monitoring station for analysis and interpretation of all types of arrhythmia in 

outpatients. Today, when prescribed by a physician, telemetry may be applied 

continuously for few days in the hope of capturing episodes of A-Fib. Telemetry may 

also be user-triggered by the patient as soon as he or she feels symptoms of A-Fib (such 

as heart palpitations). Using triggered events to start an A-Fib telemetry monitoring 

device runs the risk of missing the first 30 seconds of A-Fib. Moreover, triggering events 

might not be possible if the user is incapacitated. 

The telemetry model continuously senses EKG signals, transmits EKG data, receives 

EKG records, and reports EKG information to a healthcare center for further diagnostics 

and analysis by a doctor or a healthcare specialist. The telemetry report includes all 

positive and negative results. We assume that telemetry EKG interpretations are 

conducted by a cardiologist or a cardio-physiologist who are experts at EKG readings; 

thus all judgments of what constitutes A-Fib are going to be assumed to be as accurate as 

possible. Unfortunately, not every physician is a cardiologist, so general practitioners are 

often the first to interpret EKG readings during a general screening evaluation. General 

practitioners introduce human errors when interpreting EKG readings leading to a false 

positive rate of 8% and a false negative rate of 20% [54].  
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CHAPTER 5 

 

5 DEVELOPING A-FIB RISK FACTOR AND DETECTION ALGORITHMS 
 

Several clinical methods of treating arrhythmia exist. These medical interventions and 

clinical treatments come after the fact and are expensive. Moreover, the average patient’s 

condition progressively deteriorates for five days before seeking emergency treatment. 

The longer the heart remains out of rhythm, the more difficult for the doctor to restore the 

normal sinus rhythm to the heart. Knowing one’s A-Fib risk factor and using an A-Fib 

detection algorithm will alleviate most of the aforementioned problems and one may plan 

an early and appropriate course of action to treat arrhythmia and A-Fib in particular. 

5.1 Developing A-Fib risk factor  

The risk of developing A-Fib may depend on several factors—some associated with 

lifestyle and some from heredity. Many of these factors behave nonlinearly, complicating 

accurate A-Fib risk assessment. Standardizing the prediction of A-Fib from mere clinical 

diagnoses is difficult [59]. Few studies have addressed the misdiagnosis of A-Fib from an 

electrocardiogram (EKG) [8] and the potential risk of A-Fib misinterpretation errors. 

Data mining techniques and statistical methods such as the Cox proportional hazards 

model [60] and the logistic regression model are used in many epidemiological studies.  

The Cox Proportional Hazards Model is a multivariate statistical method used to compare 

survival in two different groups and determines the contribution of different variables on 
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survival. The Framingham Heart study in the United States and the Prospective 

Cardiovascular Münster (PROCAM) study in Europe used the Cox model to develop 

standardized risk factor assessments that may complement clinical practice. The Cox 

proportional-hazards regression is used to analyze the effect of risk factors on survival. 

The probability of the end game (onset of A-Fib) is called the hazard. The covariates and 

their corresponding coefficients (listed in Table 4) responsible for predicting A-Fib risk 

in people aged between 45 and 95 years old are extracted from the Framingham Heart 

study [6][51]: Age, Age2, Gender, Body Mass Index (BMI), Systolic Blood Pressure 

(SBP), Treatment for Hypertension (TH), Significant Heart Murmur (SHM), Prevalent 

Heart Failure (PHF), Gender*Age2, and Age*PHF, PR Interval (PRinterval). We can 

express the hazard or risk of getting A-Fib at time t as: 

ሻݐሺܪ																																				 ൌ ሻݐ଴ሺܪ	 ∗ ݁
∑ ஒ౟ଡ଼౟	
ౡ
౟సభ                                                      

We can linearize this model by dividing both sides of the equation by ܪ଴ሺݐሻ and then 

taking the natural logarithm of both sides: 

																																									ln ቀ ு
ሺ௧ሻ

ுబሺ௧ሻ
ቁ ൌ 	∑ ௜ߚ ௜ܺ	

௞
௜ୀଵ 		                                                 

	∑ ௜ߚ ௜ܺ 	
௞
௜ୀଵ 	ൌ 	ݎ݁݀݊݁ܩଵߚ ൅ 	݁݃ܣଶߚ	 ൅		ߚଷܫܯܤ	 ൅	ߚସܵܲܤ	 ൅	ܾହܶܪ	 ൅ 	ܯܪ଺ܵߚ ൅	ߚ଻ܲܨܪ ൅

ଶ݁݃ܣ	଼ߚ 	൅	ߚଽݎ݁݀݊݁ܩ ∗ ଶ݁݃ܣ 	൅	ߚଵ଴݁݃ܣ ∗ 	ܯܪܵ ൅	ߚଵଵ݁݃ܣ ∗ ܨܪܲ ൅    	ଵଶܴܲ௜௡௧௘௥௩௔௟ߚ

The quantity ܪ଴ሺݐሻ	is the baseline or underlying hazard function. It is practically the 

probability of getting A-Fib when all the other covariates are set equal to zero. The 

baseline hazard function is analogous to the intercept in linear regression. The regression 
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coefficients β1 to β12 provide the model with the proportional change or contribution 

from each covariate. The derived Cox proportional hazards equation is described below:  

ln	ሺܪሺݐሻ/ሺܪ଴ሺݐሻሻ 	ൌ 	∑ 	݅ܺ݅ߚ
݇
݅ൌ1 ൌ 	ݎ݁݀݊݁ܩ	1.994060	 ൅ 	݁݃ܣ0.150520	 ൅ 	ܫܯܤ	0.019300		 ൅

	ܲܤܵ	0.006150	 ൅ 	ܪܶ	0.424100	 ൅ 	ܯܪܵ	3.795860 ൅ ܨܪܲ	9.428330	 െ ଶ݁݃ܣ0.000380 		െ

ݎ݁݀݊݁ܩ	0.000280 ∗ ଶ݁݃ܣ 	െ ݁݃ܣ	0.042380 ∗ ܯܪܵ െ ݁݃ܣ	0.123070 ∗ ܨܪܲ ൅ 0.070650	ܴܲூ௡௧௘௥௩௔௟	                      

Where H0 (10) = 0.96337 is the 10 year baseline survival or cumulative hazard function at 

time t = 10 years extracted from the Framingham Heart study [6] [51]. The values of the 

means for each covariate are tabulated below: 

Covariate Xbar Covariate Xbar 

Gender 0.4464 SHM 0.0281 

Age 60.9022 PHF 0.0087 

BMI 26.2861 Age2 3806.90 

SBP 136.1674 Gender*Age2 1654.66 

TH 0.2413 Age*SHM 1.8961 

PRinterval 16.3901 Age*PHF 0.61 

 
Table 4: A-Fib risk covariates coefficients 

The probability of getting A-Fib or having a risk is: 

ܲሺܾ݅ܨܣሻ ൌ 1 െ ଴ܪ
௘௫௣ሺ∑ ஒ౟ଡ଼౟	

ౡ
౟సభ –∑ ஒ౟ଡ଼ୠୟ୰౟ሻ	

ౡ
౟సభ  

For example, we calculate the risk factor of a male person who is 70 years old, weighing 

70 kg, with a body mass index of 22.96, a systolic blood pressure of 130, with no 

hypertension, a PRinterval measuring 16 mms, with no significant heart murmur, and no 

previous heart failure.  

Comparing to the mean values of the 10-year study from the Framingham Heart study [6] 

[51] we get: 
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∑ β୧X୧	
୩
୧ୀଵ –∑ β୧Xbar୧	

୩
୧ୀଵ ൌ 	11.669 െ 		10.786 ൌ 0.883                  

		݁ሺ∑ ஒ౟ଡ଼౟	
ౡ
౟సభ –∑ ஒ౟ଡ଼ୠୟ୰౟	

ౡ
౟సభ ሻ ൌ ݁଴.଼଼ଷ ൌ 2.418                                               

The predicted risk factor is: 

݇ ൌ 1 െ	ܪ଴
௘ሺ∑ ஒ౟ଡ଼౟	

ౡ
౟సభ –∑ ஒ౟ଡ଼ୠୟ୰౟ሻ	

ౡ
౟సభ ൌ 1 െ 	0.96337ଶ.ସଵ଼ ൌ 	0.0863        

The predicted Risk Factor is 0.0863 compared to a risk for a person of the same age and 

gender with BMI 20 to 24.9, Normal SBP (120 to 129), No Treatment for Hypertension, 

PRinterval 16, No significant murmur or prevalent heart failure.  

 

Risk Factor  Units  0.021  0.083  0.1788  0.1003 

Age years 50  70 70 70 
Gender  M,F M M M F 

Body Mass Index (BMI) 

Weight/height
2

 
kg/m

2

 24 24 35 35 

Systolic Blood  
Pressure (SBP) 

mmHg 120 120 150 150 

Treatment for  
Hypertension (TH) 

yes/no no no yes yes 

Significant Heart  
Murmur (SHM) 

yes/no no no no no 

Prevalent Heart  
Failure (PHF) 

yes/no no no no no 

PRinterval mm 16  16 16 16 
 

Table 5: Examples of risk factors 

In Table 5, we fix values for some covariates while varying other covariates. Varying the 

age value from 50 to 70 while keeping the rest of the covariates fixed increases the A-Fib 

risk factor from 0.021 to approximately four times, 0.083.  Similarly, everything else 

being the same, switching the gender from male to female, drops the A-Fib risk factor 

from 0.1788 to 0.1003. 
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A-Fib risk factors may be classified in three categories made up of risk ranges such as k < 

0.05, 0.05 < k < 0.15, k > 0.15. Knowing the A-Fib risk factor of a patient allows one to 

prescribe an A-Fib monitoring schedule (see Table 6). A high A-Fib risk factor may 

suggest more frequent monitoring compared to a low A-Fib risk factor. 

Risk Factor Category Risk Factor Range
Risk factor category 1 would be for a user who is 
healthy, athletic; this is similar to wearing a sports watch.

k < 0.05 

Risk factor category 2 would be for a user who wants to 
monitor A-Fib daily during an AM/PM windows. 

0.05 ≤ k < 0.15 

Risk factor category 3 is for the chronic case where a 
user monitors continuously with the data and detection 
results transmitted to a care center. 

k ≥ 0.15 

 
 Table 6: Risk factor category 

5.2 Developing A-Fib detection algorithm  

There would be a greater positive public health impact from predicting arrhythmia risk 

and detecting it to prevent heart attacks. Few machine learning algorithms and statistical 

approaches have been applied in medical applications; for example, classification of EKG 

arrhythmias using neural networks [29], EKG arrhythmia classification based on logistic 

model tree [61], and analysis of EKG signals using self-organizing maps (SOM). In this 

section, we concentrate on the design of a real-time early detection algorithm. We 

compare accuracy of machine learning schemes such as J48, Naïve Bayes, and Logistic 

Regression and choose the best algorithm to classify A-Fib from EKG medical data. 

5.2.1 Classification and analysis environment  

The Waikato Environment for Knowledge Analysis (WEKA) software environment for 

Machine Learning [62] is used to analyze the dataset and classify cardiac arrhythmia 

types. WEKA contains tools for data pre-processing, classification, regression, clustering, 
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association rules, and visualization. It is also well suited for developing new machine 

learning schemes. Figure 22 displays a screen shot of the WEKA tool. 

5.2.2 Cardiac A-Fib dataset 

The input dataset used in the analysis is a combination of data retrieved from a repository 

located at the University of California in Irvine, California [63] and MIT-BIH A-Fib 

database [64]. The A-Fib dataset consists of 304 instances, (224 instances free of A-Fib 

and 80 instances with A-Fib, containing seven attributes and two classes described in 

Tables 7 and 8 and Figures 22 and 23).  

 
Figure 22: Screen shot of WEKA tool [62] 

The dataset describes the attributes for diagnosing cardiac A-Fib where each instance or 

patient is classified into two categories: presence of A-Fib and absence of A-Fib. Few 

instances in the dataset were deleted because they contained omitted entries. The names 



 

68 

and ID numbers of the patients that took part in the cardiac arrhythmia study were 

removed from the dataset.   

 Variable Description Value 
1  Age Age in years, linear real 
2  Age2 Age2 in years2 real 
3  Gender Gender (0 = male; 1 = female), nominal {0, 1} 
4  BMI Kg/m2, Linear  real 
5 QRSduration Average of QRS duration in msec., linear real 
6  PRinterval Average duration between onset of P and Q waves in msec., linear real 
7  Heartrate Number of heart beats per min, linear real 
8  Class {A-Fib present, A-Fib absent} binary

 
Table 7: List of selected attributes for the detection of A-Fib 

Class Type Number of Instances 

01 A-Fib Absent 224 

02 A-Fib Present 80 

 
Table 8: Absent and present A-Fib classes in the pre-processed dataset 

 

Figure 23: Typical EKG record 

The objective of the analysis is to predict the absence (indicated by normal EKG) or the 

presence of cardiac A-Fib (see Figure 23). The cardiologist’s classification is used as a 

reference. The aim is to minimize the error, i.e. the difference between the cardiologist’s 

results and those obtained from the dataset analysis. 
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5.2.3 Classification of A-Fib  

Classification is a popular data mining technique that is used to extract the relationships 

that exist among the various attributes and may be hidden in the data. The detection 

results were extracted from running WEKA tool using a dataset containing 304 instances 

using 10-fold cross validation to predict the detection of the presence or absence of 

arrhythmia. 

The training dataset sports two classes, presence of A-Fib and absence of A-Fib. The idea 

behind this A-Fib classification is that when a new patient record is presented, it can be 

automatically determined whether the patient is having A-Fib or not. Classification has 

been used in statistics, data mining, and machine learning [65] [66].  

In this dissertation, logistic regression is applied to the same dataset to classify a cardiac 

arrhythmia. The resulting detection accuracy will be compared to the accuracy obtained 

from the three applied machine learning techniques (i.e. OneR, J48, and Naïve Bayes 

algorithms) in the paper by Soman and Bobbie [10]. The number of attributes is reduced 

with the aim to yield only a marginal decrease in the accuracy. The approach will 

guarantee an energy-aware classification detection algorithm that is adequately accurate 

but consumes as little energy as optimally possible. Therefore, the criterion for the 

chosen classification detection algorithm is a trade-off between the highest level of 

accuracy achieved and the minimum number of possible attributes. The following 

sections explore classification algorithms using J48, Naïve Bayes, and Logistic 

Regression. We choose the best algorithm to classify A-Fib by deriving the accuracy of 

predicting the presence/absence of cardiac A-Fib. The resulting classification detection 

algorithm is portable to a Bluetooth-enabled wearable computing device.  We will derive 
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the overall accuracy as well as Type I and Type II misclassification errors, sensitivity 

rate, and specificity rate in later sections. 

5.2.4 Classification of A-Fib using the J48 decision tree classifier  

Decision trees are tree-like graphs with human-readable and interpretable rules where 

each branch node represents a choice between a number of alternatives, and each leaf 

node represents a classification or decision. Some of decision tree classifiers are C4.5, 

C5.0, J48, NBTree, SimpleCart, REPTree and others [66]. J48 classifier is an 

implementation of the C4.5 decision tree learner in WEKA. The C4.5 implementation 

produces rule-sets and a decision tree model. These models are human readable, easy to 

understand and straightforward. J48 generates decision trees, the nodes of which evaluate 

the significance of individual features, such as age, gender, BMI, QRSduration, PRinterval, 

and heartrate. The decision trees are constructed in a top-down fashion starting from the 

main root and selecting the most significant feature at each branch. Tables 9, 10 and 

Figure 24 show the results of J48 decision tree results. 

=== Run information === 
 
Scheme:      weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     arrhythmia-weka.filters.unsupervised.attribute.Remove-R4 
Instances:    304 
Attributes:   7 
Classes: 2               
Test mode:    10-fold cross-validation 

 
Figure 24 displays the resulting J48 pruned tree 
 
PRinterval <= 0 
|   heartrate <= 68: NOAF (6.0) 
|   heartrate > 68: AF (87.0/7.0) 
PRinterval > 0: NOAF (211.0) 
 
Number of Leaves:  3 
Size of the tree:  5 
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=== Detailed Accuracy by Class === 
 

 
TP  

Rate 
FP  

Rate 
Precision Recall

F- 
Measure

ROC  
Area 

Class 

 0.975 0.036 0.907 0.975 0.940 0.979 AF 
 0.964 0.025 0.991 0.964 0.977 0.979 NOAF

Weight  
Avg.   

0.967 0.028 0.969 0.967 0.967 0.979  

 
Correctly Classified Instances         294               96.7105 % 
Incorrectly Classified Instances       10                  3.2895 % 

 

Table 9: J48 classification classes  

a b Classified as 
78 2 a = Present 
8 216 b = Absent 

 
Table 10: J48 classification confusion matrix 

 

 
Figure 24: J48 A-Fib decision tree 

 

5.2.5 Classification of A-Fib using Naïve Bayes classifier  
 

A Naïve Bayes classifier is based on the Bayes' theorem and all the attributes are assumed 

independent given a class membership. In most real-world applications, this conditional 
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independence assumption fails, however the algorithm tends to perform well in many 

class predictions. Tables 11 and 12 show results Naïve Bayes classifier. 

           === Run information === 

Scheme:      weka.classifiers.bayes.NaiveBayes  
Relation:     arrhythmia-weka.filters.unsupervised.attribute.Remove-R4 
Instances:    304 
Attributes:   7 
Classes: 2 
               
Test mode:    10-fold cross-validation 

 
Naïve Bayes Classifier 
 
                     Class 
Attribute              AF        NOAF 
                    (0.26)     (0.74) 
=================================== 
age 
  mean              60.5893    56.1967 
  std. dev.          6.3297    13.1467 
  weight sum     80         224 
  precision         1.0357     1.0357 
 
ageage 
  mean            3687.0911   3322.257 
  std. dev.        743.3334  1410.1275 
  weight sum            80         224 
  precision        111.8571   111.8571 
 
sex 
  0                    17.0       96.0 
  1                    65.0      130.0 
  [total]              82.0      226.0 
 
BMI 
  mean              29.2111    26.2917 
  std. dev.          4.2079     4.8099 
  weight sum            80         224 
  precision         1.6538     1.6538 
 
QRSduration 
  mean              91.2467    89.6563 
  std. dev.         16.4217    17.3387 
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  weight sum            80         224 
  precision         2.1803     2.1803 
 
PRinterval 
  mean                   0    153.8372 
  std. dev.          0.5698     45.627 
  weight sum            80         224 
  precision         3.4186     3.4186 
 
heartrate 
  mean              91.9031      73.31 
  std. dev.         17.3869    12.4025 
  weight sum            80         224 
  precision         1.2615     1.2615 

 
=== Detailed Accuracy By Class === 

 
TP  

Rate 
FP  

Rate 
Precision Recall

F- 
Measure

ROC  
Area 

Class 

 1 0.049  0.879 1 0.936    0.989  AF 
 0.951  0 1 0.951   0.975    0.989  NOAF

Weight  
Avg.   

0.964  0.013   0.968     0.964   0.965 0.989  

 
                
Correctly Classified Instances         293               96.3816  % 
Incorrectly Classified Instances       11                  3.6184 % 

 
Table 11: Naïve Bayes classification classes 

a b Classified as 
80 0 a = Present 
11 213 b = Absent 

 
Table 12: Naïve Bayes classification confusion matrix 

5.2.6 Classification of A-Fib using logistic regression 
 
Regression analysis is used to find a model that best fits the observation data. The logistic 

function is bounded by 0 and 1. It is a statistical modeling technique, a form of regression 

where the dependent variable or class is categorical and the independent variables are 

continuous, discrete and/or categorical. Generally, the dependent or response variable is 
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dichotomous, such as presence/absence or success/failure. When the dependent variable 

takes more than two ordered categories, a multinomial logistic regression is applied.  

 
Figure 25: Logistic regression compared to linear regression 

The dependent variable or class in logistic regression is said to be dichotomous (a.k.a. 

Bernoulli or binary) when it takes only two values, a value 1 with a probability of success 

p and a value 0 with probability of failure (1-p). When the logistic regression is applied to 

cases where the dependent variable has more than two choices, it is known as 

multinomial [67] [68].  Logistic regression makes no assumption about the distribution of 

the independent variables. Unlike linear regression, logistic regression does not require 

the relationship between the predicting variables and response variable to be normally 

distributed nor linearly related (see Figure 25). Logistic regression determines the relative 

effect of independent variables on the dependent variable or class and their statistical 

significance. This effect is usually explained in terms of odds ratios where the odds of an 

event x that occurs with probability p  is defined as: oddsሺpሻ 	ൌ ୮

ଵି୮
 . The odds function 

maps probabilities p of an event (where p is between 0 and 1) to values between 0 and 

infinity (see Figure 26).  
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Which becomes:  
	

                			pሺ1|xଵ, xଶ, … , x୩ሻ ൌ 	
ଵ

ଵାୣష൫	ౘబశ	ౘభ౮శ	ౘమ౮మశ⋯శ	ౘౡ౮ౡ൯
              

 

Classification: 

In summary, linear regression predicts: 

																													class ൌ 1	if	pሺ1|xଵ, xଶ, … , x୩ሻ ൐ 0.5					                                          

otherwise, class	 ൌ 	0																																																																																																														 

The following section describes the test results pertaining to a logistic regression method 

involving the detection of the presence or absence of A-Fib using a 7-attribute case and a 

10-fold cross-validation (see Tables 13 and 14). We derive the logistic regression 

coefficients, overall accuracy (see Table 15), Type I and Type II misclassification errors, 

sensitivity rate, specificity rate, and confusion matrix (see Tables 16 and 17). 

Table 13 describes the attributes selected and their derived coefficients.  

 Variable Description Value 
1  Age Age in years, linear real 
2  Age2 Age2 in years2 real 
3  Gender Gender (0 = male; 1 = female), nominal {0, 1} 
4  BMI Kg/m2, Linear  real 
5 QRSduration Average of QRS duration in msec., linear real 
6  PRinterval Average duration between onset of P and Q waves in msec., 

linear 
real 

7  Heartrate Number of heart beats per min, linear real 
8  Class {A-Fib present, A-Fib absent} binary 

 
Table 13: A-Fib attributes 

Tables 14, 15, 16 and 17 show the results of A-Fib logistic regression classification. 

=== Run information === 

Scheme:      weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 
Relation:     arrhythmia-weka.filters.unsupervised.attribute.Remove-R4 
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Instances:    304 
Attributes:   7 
Classes: 2 
Test mode:    10-fold cross-validation 
 

Class Type Number of instances 

01 A-FIB present 80 

02 A-FIB absent 224 

 
Table 14: Classification classes of A-Fib 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

TP FP Precision Recall F-Measure ROC Area Class 

0.988 0.031 0.919 0.988 0.952 0.986 A-Fib present

0.969 0.013 0.995 0.969 0.982 0.986 A-Fib absent 

0.974 0.017 0.975 0.974 0.974 0.986 
Weight 

Ave. 

Logistic Regression Coefficients 

Variable Coefficient 
Age 0.8203 
Age2 -0.0062 
Gender 4.7368 
BMI -0.0471 
QRSduration 0.0982 
PRinterval -0.1776 
Heartrate 0.0657 
Intercept -41.1751 

Odds Ratios 
Variable Value 
Age 2.2712 
Age2 0.9938 
Gender 114.0704 
BMI 0.954 
QRSduration 1.1032 
PRinterval 0.8372 
Heartrate 1.0679 

Correctly Classified Instances         296          97.3684 % 
Incorrectly Classified Instances       8                2.6316 % 
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Table 15: A-Fib results summary from WEKA tool 

The confusion matrix for our binary classification model (A-Fib is present, A-Fib is 

absent) is a 2x2 matrix that displays the counts of the four types of detections that will 

help measure the classifier performance. 

   a   b   Classified as 
  79 1 a = A-Fib present 
  7 217 b = A-Fib absent 

Table 16: A-Fib confusion matrix from WEKA tool results 

Confusion  
Matrix 

Actual A-Fib
A-Fib Positive   

(Present) 
A-Fib Negative 

(Absent) 

P
re

d
ic

te
d

 A
-F

ib
 

A-Fib 
Present. 

(Positive) 

TP=79 
Sensitivity  

 
୘୔

୘୔ା୊୒
 

 
98.7% 

FP=7 
(Type I Error) 

FP
TN ൅ FP

 

 
3.1% 

A-Fib 
Absent 

(Negative)

FN=1 
(Type II Error) 

FN
TP ൅ FN

 

 
1.3 % 

TN=217 
Specificity 

ൌ
TN

TN ൅ FP
 

 
96.9% 

Table 17: A-Fib detailed confusion matrix 

Positive	Predictive Value 
TP

TP ൅ FP
ൌ 91.9 % 

Positive Likelihood Ratio 
Sensitivity

1 െ Specificity
ൌ 38/1 

 

Negative	Predictive Value 

ൌ
TN

TN ൅ FN
ൌ 99.5 % 

Negative Likelihood Raio 

ൌ
1 െ Sensitivity
Specificity

ൌ 1/1 

 

Positive rate ൌ
TP ൅ FP

TN ൅ FP ൅ TP ൅ FN
ൌ 28.3 % 
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Negative rate ൌ
TN ൅ FN

TN ൅ FP ൅ TP ൅ FN
ൌ 71.7% 

 
 

Note: more data for the classification of A-Fib may be needed to corroborate the false 

positive rate of 3.1%.  

True positive rate = TP / (TP + FN) = 79 / (79 + 1) = .988 

True negative rate or specificity = TN / (TN+FP) = 217 / (217+7) = .969 

False positive rate (α) = FP / (FP + TN) = 7 / (7 + 217) = 0.031 = 1 – specificity  

False negative rate (β) = FN / (TP + FN) = 1 / (79 + 1) = 0.013= 1 – sensitivity 

Power = sensitivity = 1 – β = 1-.013 = 0.987 

Positive Likelihood ratio = sensitivity / (1 – specificity) = .987/ (1 – .969) = 38 / 1 

Likelihood ratio negative = (1 – sensitivity) / specificity = (1 – .987) / .969= 1 / 1 

Positive rate = (TP + FP) / (TP + FP + TN + FN)  

Negative rate = (TN + FN) / (TP + FP + TN + FN)  

Positive predictive value (PPV): probability that the disease is present when the test is 

positive (expressed as a percentage). 

Negative predictive value (NPV): probability that the disease is not present when the test 

is negative (expressed as a percentage). 

The derived logistic regression algorithm is selected as the A-Fib detection algorithm. It 

identifies the instances with the A-Fib disease with 98.8% sensitivity, and identifies those 

without the disease with 96.9% specificity. A specificity of 96.9% leads to a false 

positive result of 3.1%. A sensitivity of 98.8% means that the classifier does not 
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and specificity of 96.9%. The false positive results, usually interpreted as false alarms, 

contribute to wasted or needless energy spent in transmitting inaccurate information. In 

this analysis the logistic regression algorithm with a False Positive rate of 3.1% (see 

Figure 10, Confusion matrix of A-Fib logistic regression) rivals the clinical measurement 

of False Positive rate of 8% diagnosed by internists and general practitioners.  

Both the overall classification error rate and the overall classification accuracy are: 

											Overall	Error	rate	 ൌ ୊୔ା୊୒

୘୔	ା	୘୒ା		୊୔	ା	୊୒
 = 2.63%                       

														Overall	Accuracy	 ൌ ୘୔ା୘୒

୘୔	ା	୘୒ା		୊୔ା୊୒
	= 97.37%                                   

The area under the ROC curve measures how well a particular parameter can distinguish 

between two diagnostic groups (such as presence of a disease/absence of A-Fib). The 

bigger the area is and the closest to 1, the better the classifier performance.  The area 

under the ROC curve for the derived logistic regression model is 0.986.  

5.2.7 Comparing accuracies in J48, Naïve Bayes and logistic regression  

Three machine learning techniques, J48, Naïve Bayes algorithms, and logistic regression 

analysis are explored to test for the detection of the presence or absence of A-Fib: A 7-

attribute case and a 10-fold cross-validation are used. The differences in accuracies from 

all three machine-learning algorithms are not significant (see Table 18). Though there are 

other methods to classify A-Fib, we select logistic regression for its simpler 

programmable implementation into mobile devices. The results of the experiment in 

terms of accuracy or number of correctly classified instances on the dataset between J48, 

Naïve Bayes and logistic regression are illustrated in Table 18: 
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Test Criteria Algorithms Detecting A-Fib 

J48 Naïve Bayes logistic regression 

Accuracy 96.71% 96.38% 97.37 % 

 
Table 18: Comparing accuracy of J48, Naïve Bayes and logistic regression 

5.2.8 The impact of Type I error and Type II error on A-Fib classification 

False positive outcomes, known as Type I error, are classification results that predict the 

patient as having A-Fib when actually the patient does not have the disease, usually 

interpreted as a false alarm. They contribute to wasted or needless energy spent in 

transmitting inaccurate information. Clinical results suggest the A-Fib specificity is 92%.  

											False	positive	rate	 ൌ 	1 െ 	specificity	 ൌ 	1 െ 	0.92	 ൌ 	0.08	                     	

In an ideal classification, the positive rate would be the same as the incidence rate. If the 

positive rate is less than the incidence rate then the number of positive results reported by 

the classification algorithm is underestimated. Likewise, if the positive rate is greater than 

the incidence rate, the classification algorithm is exaggerating the number of positive 

results. The false positive results embedded in the positive results may prove to be costly 

and may erode the algorithm accuracy and confidence. A false positive rate in a 

classification should be as small as possible, preferably zero. Our proposed classifier is 

97.37% accurate, and its False Positive error rate is 3.1% compared to the clinical False 

Positive rate of 8%. 

On the other hand, failing to detect A-Fib and predicting the patient as not having A-Fib 

when the patient actually has the disease is serious and costly; this is known as Type II or 
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false negative error. The goal of any classification is to minimize the false negative. 

Clinical measurement results have an A-Fib sensitivity of 80%, 

				False	negative	rate	 ൌ 	1 െ 	sensitivity	 ൌ 	1 െ 	0.80	 ൌ 	0.20                         	

Our proposed model has a false negative rate of 1.3%. 

Ideally a classification system would consist of sensing EKG signals, transmitting EKG 

signals to the master device, receiving EKG by the device, classifying received data, and 

reporting the results that are guaranteed to be 100% True Positive (TP). In other words, 

there would be no False Positive (FP) results in the monitored data. In real life, the 

classification scheme would correctly classify the presence or absence of A-Fib with 

some accuracy and would transmit the positive results of the classifier when arrhythmia 

is present at the positive rate r୮. The classification positive rate plays an important role in 

the validity of the energy reduction scheme. If the positive rate is equal to the incidence 

rate then if the classification detection algorithm correctly classifies 100 % of the 

episodes of A-Fib then one concludes that the classification positive rate is made up of all 

True Positive results and no False Positives. Because classification rarely classifies 100% 

of the instances correctly, the goal in classification remains to minimize both the False 

Negative and the False Positive results. Minimizing the latter reduces the unnecessary 

transmission of information.  

Further studies involving larger A-Fib datasets are needed to corroborate the results. As 

shown in later sections, the classification schemes using an incidence rate and prevalence 

window delivers better results in energy consumption than the telemetry model but has a 

risk of introducing False Positive results. Moreover, the classification model accuracy, 

the False Positive and the False Negative rates are also better than those obtained in a 
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clinical setting where practitioners and nurses interpret EKG data during patient 

screenings and/or during medical physical exam visits (see Table 19). 

 

 

 

 

 

 

 

Table 19: Error types summary  
 

 

 Error Type 
FP = Type I error           and         FN = Type II error FP FN 

 
Telemetry Device: 

 Telemetry by Cardiologist reference reference 

Manual EKG readings during Screening and doctor visits:
 General practitioner EKG interpretation 0.08 0.20 

  
Wearable Computing Device:  

 Detecting A-Fib 0.031 0.013 
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CHAPTER 6 

6 ENERGY MODELS FOR MONITORING AND DETECTING THE FIRST 
EPISODE OF A-FIB 

 

Today telemetry is widely accepted in healthcare for remotely collecting and sending 

vital data to a monitoring station for analysis and interpretation of all types of arrhythmia 

in outpatients. Mobile outpatient cardiac telemetry devices typically are not energy-

aware; they consume battery energy continuously and necessitate outpatients to replace 

batteries often, sometimes daily. Moreover the device is not practical for patients who 

experience infrequent (less frequently than every 48 hours) symptoms suggestive of 

cardiac arrhythmias (i.e., palpitations, dizziness, pre-syncope, or syncope). As a 

prerequisite to this design, we first identify and calculate the energy requirements for the 

current telemetry and for the wearable healthcare computing devices. Next, we develop a 

reference energy model, then the proposed wearable computing energy models. Using the 

telemetry energy as reference, we compare each proposed energy model to the telemetry 

energy model by calculating the percent of relative energy reduction contributed from 

each proposed energy model. We adapt an evolutionary approach to the design of the 

proposed energy models (see Figure 29): we develop three primary energy models which 

incorporate the following features one at the time: an A-Fib detection algorithm, an A-Fib 

positive rate, an A-Fib incidence rate, and a prevalence window. Then by using the three 
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6.1 Energy requirements of wearable healthcare computing devices 

Excluding the operating system and support, wearable healthcare monitoring devices are 

comprised of three main parts: sensing, detection, and reporting. In an energy-constrained 

environment, one cannot afford to run each component continuously. One must make 

judicious use of the energy that is available and run components in an optimized scheme. 

The operation of continuously sensing, analyzing, detecting, and reporting affects energy 

consumption. Furthermore, the combination of wearable mobility, a high performance 

requirement in ever-increasing healthcare applications, and high quality user-interactivity 

place severe resource demands on an already energy-constrained environment. Current 

healthcare systems must budget energy consumption in order to deliver optimum results, 

keep battery lifetime high and monetary expenditure low.   

The proposed schemes are energy-aware of the timely importance as to when to process 

sensing, versus reporting, versus detection and any combination thereof. Though the 

proposed energy-aware budgeting schemes could be applied to a variety of healthcare 

detection and monitoring applications, their intent here would be for the detection and 

reporting of cardiac arrhythmia and more specifically, A-Fib. The schemes allow the 

wearable devices to be automatic, scalable, adaptive, and user-transparent as the user may 

be engaged in daily activities or even incapacitated.  Wearable computing devices using 

wireless sensor networks and a smartphone offer an alternative to telemetry devices and 

significantly improve the monitoring and detection of arrhythmia and other measurable 

healthcare conditions. The three main components in a wearable computing system are 

monitoring, detection, and transmission. The following sections describe the energy 

requirements (see Figure 30): 
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history, usually a one-time input during initial set-up, are collected to improve the 

detection of arrhythmia.  

Today, mobile devices use Bluetooth network to collect data wirelessly, whereas 

standalone systems (usually AC-wired) might use Wi-Fi or wired network where the 

energy is adequately abundant. Energy consumption might be reduced in a wearable 

healthcare device if one adapts a periodic monitoring sequence and a monitoring 

frequency. 

In this dissertation, a portable, low-power wireless two-lead EKG system integrated with 

the University of California (UC) Berkley’s MICA2 mote promises a potential solution to 

the challenges of monitoring and detection in a wearable healthcare computing device. 

The MICA2 mote is a wireless measurement system developed by UC Berkley and 

manufactured by Crossbow Technology, Inc. [69]. 

The design of our proposed energy-aware model uses measurements and characteristics 

from the aforementioned portable, low-power, wireless two-lead EKG system [70]. The 

device uses a two-lead connection and continuously monitors electrocardiogram activity 

and therefore arrhythmia. The device compares favorably with today‘s 12-lead EKG 

device which records only a snapshot of the heart’s electrical activity, a short sample of 

no more than thirty seconds [71]. Today, each pair of electrodes in the standard EKG 

provides detailed information of the cardiac rhythm in a snapshot from different angles of 

the heart. A cardiologist will interpret the tracings engendered on paper or on a screen to 

diagnose the presence or absence of arrhythmia. However, sporadic or intermittent 

arrhythmia may not be easily identifiable since the cardiac abnormal conditions may have 

been missed because they were present only temporarily. Few healthcare centers 
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overcome these shortcomings by prescribing continuous EKG telemetry either by 

admitting the patient to an intensive care unit or by having the patient wear a portable 

heart monitoring device such as a Holter monitor or event monitor for a period of time. 

The data from these cardiac monitoring devices is transmitted to a healthcare center for 

analysis and detection indicating the presence or absence of arrhythmia. The EKG 

machines that are found in medical offices are AC powered and experience no energy 

constraints; however, the patient has to be coincidently present while he is experiencing 

arrhythmia. On the other hand, battery-operated portable monitoring devices such as 

Holter monitors and Event monitors exhibit many shortcomings including energy 

constraints, short sampling, and no local analysis or detection of arrhythmia.  

6.1.2 Description of the sensing system 
 

The MICA2 Mote is a third generation mote, or tiny wireless smart sensors system, 

developed by UC Berkley and manufactured by Crossbow Technologies Inc. to enable 

low-power, wireless, sensor networks. MICA2 wireless platform is used as a foundation 

for various wireless sensor network applications and research groups. One such 

application is the low power wireless 2-lead EKG circuit developed by the Division of 

Engineering and Applied Sciences at Harvard University, which plugs into the MICA2 

platform through an expansion port. The MICA2 measures a compact 2.25 by 1.25 by 2.2 

inches. It includes an embedded microcontroller, a multi-channel radio transceiver 

operating in the ISM band at 433MHz or 916MHz with an extended range between 20-30 

meters and a data rate of 76,800 bps. It runs on a specialized event-driven TinyOS (TOS) 

[72] and supports a wide range of sensor boards and data acquisition add-on boards. 

TinyOS 1.0 is a small, open source, energy efficient, software operating system 
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developed by UC Berkeley which supports large scale, self-configuring sensor networks. 

The processor is based on the Atmel low power microcontroller ATmega 128L, which 

runs TOS from its internal flash memory. The MICA2 sports a 51-pin expansion 

connector and supports a wide variety of external peripherals through its Analog Inputs, 

Digital I/O, I2C, SPI, and UART interfaces. The MICA2 and the piggybacked low power 

wireless 2-lead EKG circuit make the monitoring and transmission of continuous 

electrocardiographic data possible. Performance evaluation of the device was assessed by 

medical expertise and pronounced indeed comparable to that of a commercial EKG [73]. 

The circuit reads from two electrodes and delivers the resulting trace to the MICA2 built-

in ADC converter via the 51-pin expansion connector. The transmitted data is ultimately 

received by smartphones and computers equipped with receiver cards.  

The device consumes 60mW of power when monitoring continuously in active mode and 

30 microwatts in standby mode where monitoring is disabled. The EKG information is 

read at 120Hz sampling rate with four transmissions per second of 30 samples each.   

6.1.3 Energy requirements of transmitting and receiving data using Bluetooth 

We consider using Bluetooth wireless technology when transmitting data from an EKG 

data acquisition module (i.e. a portable, low power, wireless two-lead EKG system) to a 

smartphone and receiving the EKG information into the smartphone. Bluetooth transmits 

and receives data at rates up to 2Mbps in the 2.45GHz band.  Radio communications 

expend 10-7 J/bit for transmission using Bluetooth [74] [105]. The Bluetooth Core 

Specification and Health Device Profile offer further low power features to help maintain 

and extend minimum battery life. Though this dissertation uses Bluetooth only for 

transferring data between devices, it is worthwhile to mention the power-saving modes 



 

93 

that are inherent in Bluetooth such as Sniff mode and Sniff Subtrate mode. The Sniff 

mode prolongs battery life by allowing two devices to only exchange data periodically 

and still stay connected between data transfers and frees the transmission bandwidth. 

Sniff Subrating mode reduces power consumption by allowing devices to increase the 

time between listening for data packets therefore reducing the number of packets 

exchanged. The normal mode in Bluetooth stays active at all times even when there is no 

data for transfer. 

6.1.4 Energy requirements of reporting and transmitting using GSM/EDGE 

The reporting task transmits data that may be compressed and encrypted, as well as 

detection results. We consider transmitting data using GSM/EDGE network to report 

arrhythmia results and telemetry information to a remote server. GSM (Global System for 

Mobile communication) is a digital mobile telephony system that operates in the 900 

MHz band in Europe and Asia and in the 1.9 GHz band in the United States. EDGE is an 

enhanced GSM. It provides data at rates up to 384 Kbps. Radio communications expend 

4*10
-5

J/bit using GSM smartphone [74] [105].  

6.1.5 Energy requirements to detect A-Fib 

Data mining, a process of extracting patterns from a dataset, is increasingly used in 

bioinformatics for medical discovery. Classification in data mining is used to build 

models that can correctly predict the class of instances in a dataset. Classification 

algorithms shall be selected using machine learning algorithms [62] and adapted to detect 

the presence or absence of cardiac arrhythmia. The classifier is adaptive to different 

health profiles and different needs, which may require changing parameters. Patient’s 

condition (data containing mostly outliers) sometimes varies, necessitating different 
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algorithm and analysis. The scheme may seamlessly adopt newly derived learning 

algorithms sent from remote application servers [75]. A-Fib detection typically executes 

in few mathematical operations (such as exponentiation, multiplication and 

addition/subtraction). The energy required to detect A-Fib is typical negligible compared 

to the energy to receive or transmit EKG signals. 

6.1.6 Energy concerns 

Holter monitoring, a battery operated portable continuous EKG monitoring and recording 

device, is used for 24/48 hours to capture any episodes of A-Fib and arrhythmias. Holter 

monitoring data is collected and saved together with patient’s activities for later analysis 

and correlation by a physician. If the episodes are too infrequent to detect by Holter 

monitoring then Event monitoring is prescribed for a longer period such as a month. The 

recorder is activated by the patient when symptoms of arrhythmia occur. A memory loop 

enables EKG information to be stored for seconds before and after activation. The patient 

transmits the collected data to a physician via telephone.  The continuous monitoring and 

reporting by these devices drains batteries very quickly. Batteries are the Achilles‘ heel of 

these portable devices. Batteries have to be changed periodically, sometimes as often as 

once a day such as in the Cardionet sensor [24].   

6.1.7 Energy in a battery used in a wearable computing device 

An electrical battery is a combination of one or more electrochemical cells that convert 

stored chemical energy into electrical energy. Batteries are simple devices used as a 

source of direct current in portable electric and electronic equipment.  There are two 

types of batteries:  disposable batteries, and rechargeable batteries. Disposable batteries 

are designed to be used once and discarded, while rechargeable batteries are designed to 
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be recharged and used multiple times. The capacity in a battery cell is expressed in 

ampere-hours. The energy (E) is expressed in Joules and watt-hours. The Joule is the 

international standard unit of energy defined as one watt-second. 3600 Joules are 

contained in one watt-hour.  

																																																	E ൌ P. T ൌ V. I. T		                                                     

Where E = Energy (watt-hour), P = Power (watts), T= Time (hours), I = DC Current 

(amperes), V = Electromotive force (volts). 

Device battery lifetime varies depending on device power consumption, usage time, 

usage mode, and battery quality. The Duracell Copper Top MN 1500 – AA alkaline [76] 

battery has a nominal voltage of 1.5 volts, and comes with a rated capacity of 2.850 

ampere-hours or (2.85 Ah) (1.5 V) (3600 s/h) =15,390 Joules. The fully rechargeable 3.7 

V, 550 mAh Li-ion battery of type Casio NP20 or PowerSmart delivers an energy of 

7326 Joules, (3.7 V) (550 mAh) (0.001 A/mA) (3600 s/h). In this analysis, we consider 

the BlackBerry Torch 9800 [77] which has a capacity of 1270 mAh or (1.270 Ah) (3.7 V) 

(3600 s/h) = 16,916.4 Joules. The Torch’s battery life lasts 5.5 hours in GSM/EDGE Talk 

Time. 

Figure 31 depicts an example of smartphone battery in various modes: a standby mode, 

an idle mode with Bluetooth connection (to a Bluetooth device), a continuous active 

mode while receiving and transmitting via Bluetooth (i.e. continuously listening to 

music), and a continuous talk mode using EDGE. Figure 32 displays typical battery life 

in a smartphone. 
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The longer the heart remains out of normal sinus rhythm, the more difficult for the doctor 

to restore the normal sinus rhythm to the heart. The incidence of A-Fib is expected to 

more than double by the year 2050 [51] as the elderly population in America is expected 

to increase. The prevalence of A-FIB in persons younger than 55 years accounts for 0.1%  

and 3.8% in persons 60 years or older [48] [82] [83]. Incidence of A-Fib seems to be 

significantly higher in men than in women [78] (see Figure 35). The cost to treat A-Fib in 

the United States exceeds $6.4 billion per year [12]. People affected by A-Fib visit 

emergency rooms more often, and are four times more likely to be admitted into 

hospitals, than people who do not have A-Fib.  

 

Figure 35: Incidence rates of chronic atrial fibrillation by sex [78]. 

6.3.2 The distribution of the onset of A-Fib during a circadian rhythm 

The study by Georg Delle Karth et al. [84] assessed the diurnal distribution of ventricular 

tachycardia (VT) and A-Fib in critically ill patients during a circadian rhythm, the 

cyclical 24-hour period of human biological activity where a person usually sleeps 

approximately 8 hours and is awake 16.  The study concluded that the onset of A-Fib 
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over a 24-hour period is non-uniformly distributed. A-Fib was prominent in the morning 

between 8:00 A.M. and 10:00 A.M. and around midnight (see Figure 36). 

 

Figure 36: Circadian distribution of the onset of A-Fib episodes [84] 

Another study by S. Viskin et al. [85] which used a large patient population (almost 

10,000 episodes of A-Fib) suggests that the onset of paroxysmal A-Fib does not occur 

randomly, and that the circadian rhythm of paroxysmal A-Fib happens in clusters of 

events in the morning and (to a lesser degree) late in the evening. The findings are similar 

to those in the study by Georg Delle Karth et al. [84]. 

Among all arrhythmia, A-Fib is the most frequently diagnosed and affects 2.5 million 

people in the United States or close to 1% of the total population [12]. Its prevalence 

increases with a person’s age, and it affects as many as 9% of the people older than 80 

years [86]. Patients with A-Fib have a 1.5-2 fold increase in mortality rate when 

compared with the general population as suggested by Framingham Heart study data [6] 

[51]. 
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6.3.3 The accuracy of a clinical diagnosis of the onset of A-Fib  

Few studies have addressed the misdiagnosis of A-Fib from an electrocardiogram (EKG) 

and the potential risk of A-Fib misinterpretation errors. Knight et al. [54] concluded that 

A-Fib is more often misdiagnosed by internists than cardiology fellows and cardiologists. 

Mant et al. [55] discovered that general practitioners correctly detected A-Fib 80% (true 

positive) of the time when interpreting 12-lead EKG data and misinterpreted 8% (false 

positive) of sinus rhythm cases as A-Fib. Confusing A-Fib with atrial flutter is one of the 

most common misdiagnoses. Though both A-Fib and atrial flutter are clinically and 

electrocardiographically similar, the distinction between them is important since their 

treatment strategies may be different. Shiyovich et al. [56] concluded the misdiagnosis 

rate of electrocardiograms (EKG) consisting of 268 patients, interpreted as A-Fib by 

medical internists and corroborated by a cardiologist was 16%. The baseline diagnosis 

was correct in 212 of 246 (86%) for A-Fib, p < 0.001. Jonathan Mant et al. [55] 

discovered that general practitioners detected A-Fib on a 12 lead electrocardiogram with 

a sensitivity or True Positive rate of 80% at 95% confidence interval and misinterpreted 

cases of sinus rhythm as A-Fib with a specificity or True Negative rate of 92%. Similarly, 

practice nurses detected performed with a sensitivity of 77% and a specificity of 85%. 
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CHAPTER 7 

7 THE BASELINE ENERGY MODEL 

7.1 Defining the A-Fib telemetry energy components  

Typically, a telemetry device may sense, store, and send the acquired EKG data to a 

remote server for analysis by a care center expert or a cardiologist. These on-body 

healthcare devices lack local detection, and are not energy-aware. The system transmits 

the EKG data wirelessly or through a phone line to a service center. The patient can also 

manually send the EKG data by pressing a button when experiencing a symptom.  The 

results are not immediately known to the patient. The latter has to wait for analysis results 

to be available days later (see Figure 37).  

 

Figure 37: A telemetry monitoring device diagram 
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In our analysis, we adopt the MICA2 mote, a wireless EKG sensor developed by UC 

Berkley and manufactured by Crossbow Technology, Inc., and a smartphone. Figure 38 

and Table 20 describe the energy components of a telemetry energy model capable of 

monitoring and transmitting EKG data. 

 

Figure 38: A-Fib telemetry energy distribution     

The following calculations are estimates of the energy required in order to 
continuously transmit EKG records for a 24 hour period 

Battery capacity of 1270mAh or (1.270 
Ah) x (3.7V) x (3600 s/h) = 16,916.4 

Joules 

The rechargeable smartphone battery such 
as the 3.7-volt Li-Polymer F-S1 battery [77] 

E୲ୣ୪ୣ୫ୣ୲୰୷	 
The total energy required by A-Fib 
telemetry model to continuously sense and 
transmit EKG records for a 24-hour period 

E୘୉୲ୣ୪ୣ୫ୣ୲୰୷	 
The total energy required by event-triggered 
telemetry model to continuously sense and 
transmit EKG records for a 24-hour period 

Tୗୣ୬ୱୣ ൌ 3600
sec

h
∗ 24 h

ൌ 86400 s 

The 24 hour period in seconds of sensing 
EKG signals  

Pୗୣ୬ୱୣ ൌ 60 ∗ 10ିଷ	Watts 
The power consumed by a EKG sensing 
device (MICA2) sensing EKG signals   

E୉୏ୋ౏౛౤౩౛ ൌ 	Pୗୣ୬ୱୣTୗୣ୬ୱୣ  The energy consumed by a EKG sensing 
device (MICA2) when continuously reading  
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ൌ 60 ∗ 10	ିଷW ∗ 86400 sec
ൌ 5184 Joules

EKG signals for a 24 hour period  

Sampling rate	 ൌ 120	Hz

ൌ 	120
samples
sec

 

One	sample	size	in	bits	

ൌ 120
samples
sec 	

∗ 8
bits

sample
ൌ 960

bits
sec

 

MICA2 EKG Sampling rate where 1 sample 
= 1 byte = 8 bits 

n୘୶ୗୣ୬ୱୣ ൌ 	960 ୠ୧୲ୱ

ୱୣୡ
	∗ 3600 ୱୣୡ

୦୰
∗

24	hr	 ൌ 	82,944,000	bits = 10.368 
Mbytes 

The number of sensed EKG bits transmitted 
by the MICA2 EKG sensing device to the 
GSM/EDGE smartphone for a 24-hour 
period 

w୘୶	 ൌ 	10ି଻
Joules
bit

 

Bluetooth transmits and receives data at 
rates up to 2Mbps in the 2.45GHz band.  
Radio communications expend 10-7 J/bit for 
transmission using Bluetooth. [74] 

E୉୏ୋ౐౮ ൌ 	n୘୶ୗୣ୬ୱୣw୘୶  

ൌ 82,944,000	bits ∗ 	10ି଻
Joules
bit

ൌ 8.3	Joules

The energy consumed by an EKG sensing 
device (Mica2) when continuously 
transmitting sensed EKG information via 
Bluetooth for a 24-hour period 

nୖ୶ୗୣ୬ୱୣ ൌ 	n୘୶ୗୣ୬ୱୣ 
The number of EKG bits received by 
smartphone for a 24-hour period 

wୖ୶		 ൌ 		 10ି଻
Joules
bit

 

Bluetooth transmits and receives data at 
rates up to 2Mbps in the 2.45GHz band.  
Radio communications expend 10-7 J/bit for 
transmission using Bluetooth. [74] 

E୉୏ୋ౎౮ ൌ 	nୖ୶ୗୣ୬ୱୣwୖ୶  

ൌ 82,944,000	bits ∗ 	10ି଻
Joules
bit

ൌ 8.3	Joules

The energy consumed by a smartphone 
when continuously reading EKG 
information via Bluetooth for a 24-hour 
period 

nୖୣ୮ ൌ 	nୖ୶ୗୣ୬ୱୣ + positive results in 
bits 

Slightly above 82,944,000 bits 

The number of sensed EKG and positive 
results in bits transmitted via GSM/EDGE 
for a 24-hour period 

wୖୣ୮ ൌ 	4 ∗ 10				ିହ	Joules/bit 
GSM (Global System for Mobile) 

communication expends 4*10
-5

J/bit [74] 

Eୖୣ୮ ൌ 	nୖୣ୮wୖୣ୮ ൌ

	82,944,000	bits ∗ 	4 ∗ 10ିହ 	୎୭୳୪ୣୱ
ୠ୧୲

	ൌ
	3318	Joules. 

The energy consumed by the phone when 
continuously transmitting all EKG 
information (in case of telemetry) plus 
reporting all positive results (in case of 
detection model) via GSM/EDGE during a 
24-hour period 

Table 20: Energy requirements for a wearable computing device 



 

105 

 

7.2 Using telemetry as a baseline energy model 

Healthcare physicians prescribe telemetry in one of two modes: continuous monitoring or 

user triggered monitoring. In the subsequent sections, A-Fib detection energy models will 

be compared to the continuous telemetry energy model. 

7.2.1 Energy model of telemetry with continuous monitoring 
 

Ambulatory Monitors such as Holter Monitors, Event Monitors, and telemetry fall short 

of providing adaptive, scalable, energy-aware real-time monitoring and analysis. 

Continuous monitoring, detecting and reporting of cardiac arrhythmia drain the battery 

quickly. Batteries in current devices last as a little as one day such as in Cardionet 

telemetry. Energy shortcomings may happen at the most unfortunate time and the onset 

of A-Fib goes undetected because the battery in the device is dead. Today, telemetry 

systems continuously sense EKG information for a period of time and transmit it to a 

healthcare center for further diagnostics and analysis by a doctor or a healthcare 

specialist. The system transmits all the monitored data including positive results as well 

as negative results.  

E୉୏ୋ౏౛౤౩౛  is the	energy	consumed	by	an EKG	sensing	device	ሺMICA2ሻ	when	

continuously	reading	EKG	signals	for	a	24‐hour period.
 
E୉୏ୋ౐౮   is the	energy	consumed	by	an	EKG	sensing	device	ሺMICA2ሻ	when	

continuously	transmitting	sensed EKG information via	Bluetooth	for	a	24	hour	period.	
 
E୉୏ୋ౎౮  is the	energy	consumed	by	a	smartphone	when	continuously reading EKG 

information via	Bluetooth	for	a	24‐hour	period.	
 
Eୖୣ୮  is the energy consumed by the phone when continuously transmitting all EKG 

information via GSM/EDGE during a 24-hour period. 
Table 21: Telemetry energy requirements 
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Today, when prescribed by a physician, telemetry is applied continuously for a few days 

in the hope of capturing episodes of A-Fib. However, the procedure is burdened by the 

need to replace drained batteries daily [23]. The telemetry energy model continuously 

senses EKG signals, transmits EKG data, receives EKG records, and reports. 

			E୲ୣ୪ୣ୫ୣ୲୰୷	 ൌ E୫୭୬୧୲୭୰ ൅	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬                                   

Where:  

E୫୭୬୧୲୭୰ ൌ 	E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൌ 5184 ൅ 8.3 ൅ 8.3 ൌ 5200.6	Joules   

																																				E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ ൌ 	Eୖୣ୮ ൌ 3318	Joules                                           

																																									E୲ୣ୪ୣ୫ୣ୲୰୷ ൌ 8519	Joules	                                                      

The telemetry report includes all positive and negative results, depicted by the rate r୮  

and rate r୬ respectively. 

                    	Positive	rate	 ൌ 	 r୮ ൌ ሺTP ൅ FPሻ/ሺTP	 ൅ 	FP	 ൅ 	TN	 ൅ 	FNሻ		                             

Negative	rate ൌ 	 r୬ ൌ ሺTN ൅ 		FNሻ/ሺTP	 ൅ 	FP	 ൅ 	TN	 ൅ 	FNሻ	            

										E୲ୣ୪ୣ୫ୣ୲୰୷	 ൌ E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	ሺ	r୮ 	൅	r୬	ሻ	Eୖୣ୮              

This mode of operation causes quick battery drainage and necessitates frequent battery 

replacement. 

The total energy consumed is approximately 8519 Joules, i.e. the sum of the energies that 

are required for sensing EKG signals, transmitting to the smartphone via Bluetooth, 

receiving EKG record, and reporting EKG record for a period of 24 hours. 
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In a 24-hour period, such a telemetry system would use approximately 50% of the 

capacity of the 3.7-volt Li-Polymer F-S1 battery. Continuous telemetry does not 

discriminate between positive and negative results, in fact telemetry reports all the results 

to a remote healthcare center where physicians perform the detection of positive results. 

If we assume that telemetry EKG interpretations are conducted by a cardiologist or a 

cardio-physiologist who are trained experts at EKG readings, then all judgments of what 

constitutes A-Fib is going to be assumed to be as accurate as possible. Unfortunately, not 

every physician is a cardiologist, so general practitioners are often the first to interpret 

EKG readings during a general screening evaluation. General practitioners introduce 

human errors when interpreting EKG readings leading to a false positive rate of 8% and a 

false negative of 20%.  

7.2.2 Energy model of telemetry with user-triggered event 

The patient may trigger the detection of the first episode of A-Fib as soon as he or she 

feels symptoms of A-Fib such as heart palpitations. The telemetry system starts 

consuming energy as soon the user triggers the event. Similar to the continuous telemetry 

model, the user-triggered event energy model continually senses EKG signals, transmits 

EKG data, receives EKG records, and reports all data to a remote healthcare center.  

																													E୘୉୲ୣ୪ୣ୫ୣ୲୰୷ ൌ E୫୭୬୧୲୭୰ ൅	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ ൌ 	8519	Joules             

The total energy consumed is approximately 8519 joules, i.e. the sum of the energies that 

are required for sensing EKG signals, transmitting to the smartphone via Bluetooth, 

receiving EKG records, and reporting EKG records for a period of 24 hours. Using 

triggered events to start an A-Fib telemetry-monitoring device saves energy early in 
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standby mode but runs the risk of missing the first 30 seconds of A-Fib. Moreover, 

triggering events might not be possible if the user is incapacitated. 

In a 24-hour period, the user-triggered event energy model would use approximately 50% 

of the capacity of the 3.7-volt Li-Polymer F-S1 battery. 
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results who are correctly or incorrectly 
diagnosed 

Negative	rate ൌ 	 r୬ ൌ TN ൅ FN 
The proportion of subjects with negative 
test results who are correctly or incorrectly 
diagnosed. 

r୮ 					൅ 					 r୬ 					ൌ 1 Inclusive of all test results possibilities 

Battery capacity = 16,916.4 Joules 3.7-volt Li-Polymer F-S1 battery  

Eୟୡ୲୧୴ୣ	 
Required energy to keep the system in 
active or working mode 

Eୱ୲ୟ୬ୢୠ୷	 
A battery would last approximately 

168 hours on standby. 

Nominal energy to keep the system in 
standby or sleep mode, equal 30 micro-
watts for MICA2 

E୲ୣ୪ୣ୫ୣ୲୰୷	 
The total energy required by A-Fib 
telemetry to continuously sense and 
transmit EKG records for a 24-hour period 

E୘୉୲ୣ୪ୣ୫ୣ୲୰୷	 
The total energy required by event-triggered 
telemetry to continuously sense and 
transmit EKG records for a 24-hour period 

E୘୭୲ୟ୪୅୊୧ୠ	 
The total energy required to continuously 
sense, detect and transmit EKG records for 
a 24-hour period 

MICA2 is a portable, low power, 
wireless two-lead EKG system 
integrated with the UC Berkley’s 
MICA2 mote developed by UC 
Berkley and manufactured by 
Crossbow Technology, Inc. [69]. 

The device consumes 60mW of power when 
monitoring continuously (active mode) and 
30 microwatts in standby mode where 
monitoring is disabled. The EKG 
information is read at 120Hz sampling rate 
with four transmissions per second of 30 
samples each 

Tୗୣ୬ୱୣ ൌ 3600
sec

hr
∗ 24 hr

ൌ 86400 sec 

The 24 hour period in seconds of sensing 
EKG signals  

Pୗୣ୬ୱୣ ൌ 60 ∗ 10ିଷ	ܹܽݏݐݐ 
The power consumed by a EKG sensing 
device (MICA2) sensing EKG signals   

E୉୏ୋ౏౛౤౩౛ ൌ 	Pୗୣ୬ୱୣTୗୣ୬ୱୣ  
ൌ 60 ∗ 10	ିଷW ∗ 86400 sec

ൌ 5184 Joules 

The energy consumed by a EKG sensing 
device (MICA2) when continuously reading  
EKG signals for a 24 hour period  

Sampling	rate	 ൌ 120 Hz

ൌ 	120
samples
sec

 

MICA2 EKG Sampling rate where 1 sample 
= 1 byte = 8 bits 
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One	sample	size	in	bits	

ൌ 120
samples
sec 	

∗ 8
bits

sample
ൌ 960

bits
sec

 

n୘୶ୗୣ୬ୱୣ ൌ 	960 ୠ୧୲ୱ

ୱୣୡ
	∗ 3600 ୱୣୡ

୦୰
∗

24	hr	 ൌ 	82,944,000	bits = 10.368 
Mbytes 

The number of sensed EKG bits transmitted 
by the MICA2 EKG sensing device to the 
GSM/EDGE smartphone for a 24-hour 
period 

w୘୶ ൌ 	10ି଻
Joules
bit

 

Bluetooth transmits and receives data at 
rates up to 2Mbps in the 2.45GHz band.  
Radio communications expend 10-7 J/bit for 
transmission using Bluetooth. [74] 

E୉୏ୋ౐౮ ൌ 	n୘୶ୗୣ୬ୱୣw୘୶  

ൌ 82,944,000	bits ∗ 	10ି଻
Joules
bit

ൌ 8.3	Joules 

The energy consumed by an EKG sensing 
device (MICA2) when continuously 
transmitting sensed EKG information via 
Bluetooth for a 24-hour period 

nୖ୶ୗୣ୬ୱୣ ൌ 	n୘୶ୗୣ୬ୱୣ 
The number of sensed EKG bits received by 
GSM/EDGE smartphone for a 24-hour 
period 

wୖ୶	 ൌ 		 10ି଻
Joules
bit

 

Bluetooth transmits and receives data at 
rates up to 2Mbps in the 2.45GHz band.  
Radio communications expend 10-7 J/bit for 
transmission using Bluetooth. [74] 

E୉୏ୋ౎౮ ൌ 	nୖ୶ୗୣ୬ୱୣwୖ୶  

ൌ 82,944,000	bits ∗ 	10ି଻
Joules
bit

ൌ 8.3	Joules 

The energy consumed by a smartphone 
when continuously reading EKG 
information via Bluetooth for a 24-hour 
period 

nୖୣ୮ ൌ 	nୖ୶ୗୣ୬ୱୣ + positive results in 

bits 

Slightly above 82,944,000 bits 

The number of sensed EKG and positive 
results in bits transmitted via GSM/EDGE 
for a 24-hour period 

wୖୣ୮ ൌ 	4 ∗ 10				ିହ	Joules/bit GSM (Global System for Mobile) 

communication expends 4*10
-5

J/bit [74]. 
Eୖୣ୮ ൌ 	nୖୣ୮wୖୣ୮ ൌ

	82,944,000	bits ∗ 	4 ∗ 10ିହ 	୎୭୳୪ୣୱ
ୠ୧୲

	ൌ

	3318	Joules. 

The energy consumed by the phone when 
continuously transmitting all EKG 
information (in case of telemetry) plus 
reporting all positive results (in case of 
detection model) via GSM/EDGE during a 
24-hour period 
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E୉୏ୋ౏౛౤౩౛	 is the energy consumed by an EKG sensing device (MICA2) when 

continuously reading EKG signals for a 24-hour period 
 
E୉୏ୋ౐౮  is the energy consumed by an EKG sensing device (MICA2) when 

continuously transmitting sensed EKG information via Bluetooth for a 24-hour 
period 
 
E୉୏ୋ౎౮  is the energy consumed by a smartphone when continuously reading EKG 

information via Bluetooth for a 24-hour period 
 
Eୟୡ୲୧୴ୣ	  is the energy required to keep the system in monitoring, detecting and 
transmission mode 
 
Eୱ୲ୟ୬ୢୠ୷	 is the energy required to keep the system in standby or sleep mode., A 
battery would last approximately 168 hours on standby 
 

Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ is the energy required by A-Fib detection algorithm to detect A-Fib 

 

E୘୭୲ୟ୪୅୊୧ୠ  is the total energy required to detect A-Fib during a 24-hour period 

 
Eୖୣ୮  is the energy consumed by the phone when continuously transmitting all EKG 

information plus reporting all positive results via GSM/EDGE during a 24-hour 
period 
 
Positive	rate	 ൌ 	 r୮ 		ൌ True Positive ൅ False Positive  

 
Table 22: Energy requirements for a general detection model 

An A-Fib detection energy model and an A-Fib telemetry energy model are different 

models. Both energy models are capable of sensing EKG signals, transmitting EKG data, 

receiving EKG records, and reporting results; however, an A-Fib detection energy model 

has the capability of detecting A-Fib locally and transmitting the results when an episode 

of A-Fib is detected. 

The telemetry energy model: 

																																										E୲ୣ୪ୣ୫ୣ୲୰୷	 ൌ E୫୭୬୧୲୭୰ ൅	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ 
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								E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ ൌ 	Eୖୣ୮ ൌ 3318	Joules 
 
									E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 8519	 ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ	 

Case 2:  Today, energy is scarce and needs to be optimized in order to extend battery life 

in wearable computing healthcare devices. The general detection energy model below 

will be modified in order to achieve energy consumption optimization. The model would 

transmit the positive results of the classifier and the corresponding data at the positive 

rate   r୮ . 

								E୘୭୲ୟ୪୅୊୧ୠ	 ൌ E୫୭୬୧୲୭୰ ൅		Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅ 	r୮E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮Eୖୣ୮ 

								E୫୭୬୧୲୭୰ ൌ 	E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൌ 5200.6	Joules 

 

								E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ ൌ 	Eୖୣ୮ ൌ 3318	Joules 

 

									E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 5200.6	 ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅ 	r୮	3318 

A-Fib is predicted present, with an accuracy of 98.67%, a false positive of 3.1% and a 

false negative of 1.3% (see Section 5.2.6), if probability p (A-Fib is Present | Age, Age2, 

Gender, BMI, QRSduration, PRinterval, Heartrate) > 0.5  

Otherwise, A-Fib is absent 

logit(p) = - 41.175 + 0.820 Age – 0.006 Age2 + 4.737 Gender – 0.047 BMI +  

                 0.098 QRSduration - 0.178 PRinterval + 0.066 Heartrate 

And 

p = 1 / (1 + e-logit(p)) 
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8.2.1 Detection energy model based on a A-Fib group incidence rate i  

We design an incidence rate based A-Fib detection energy model by integrating the 

incidence rate into the general energy model for A-Fib [88]. In this dissertation, we 

consider an incidence rate i equal to 2% for illustration purposes. If the detection 

algorithm is as accurate as the cardiologist’s interpretation of EKG readings, then having 

a detection positive rate equal to the clinical incidence rate gives our energy-aware model 

the best energy performance. Because A-Fib is not a common occurrence [56], energy 

consumption can be reduced and therefore device battery life extended if A-Fib is 

reported only when there is an actual occurrence of A-Fib. The incidence rate based A-

Fib energy model detects the first episode of A-Fib by continually sensing EKG signals, 

transmitting EKG data, receiving EKG records, classifying, and reporting when the 

classifier detects the first 30 seconds of A-Fib. The report includes all positive results, 

that is all True Positive and False Positive outcomes and the corresponding data.  

A-Fib is predicted present, with an accuracy of 98.67%, a false positive of 3.1% and a 

false negative of 1.3% (see Section 5.2.6), if probability p (A-Fib is Present | Age, Age2, 

Gender, BMI, QRSduration, PRinterval, Heartrate) > 0.5  

Otherwise, A-Fib is absent.  

The covariates coefficients are extracted from the logistic regression results in Section 

5.2.6: 

logit(p) = - 41.175 + 0.820 Age – 0.006 Age2 + 4.737 Gender – 0.047 BMI +  

                 0.098 QRSduration - 0.178 PRinterval + 0.066 Heartrate  

p = 1 / (1 + e-logit(p))  
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The A-Fib detection model executes in twenty arithmetic operations (ten multiplication 

operations and ten additions/subtractions). About 98% of all mobile phones use at least 

one ARM-designed core on their motherboards [89]. ARM processors account for 

approximately 90% of all embedded 32-bit RISC processors. Using a 32 bit 512 MHz 

processor [90], the energy  Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ required when executing 20 arithmetic 

operations is negligible compared to the energy Eୖୣ୮ expended when transmitting 

reports.  

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ E୫୭୬୧୲୭୰ ൅		Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮		E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ 

 

௠௢௡௜௧௢௥ܧ ൌ 	E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൌ  ݏ݈݁ݑ݋ܬ	5200.6

௧௥௔௡௦௠௜௦௦௜௢௡ܧ ൌ 	Eୖୣ୮ ൌ  ݏ݈݁ݑ݋ܬ	3318

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 5200.6	 ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮	3318 

The ideal general detection energy model for predicting A-Fib is when r୮ ൌ i ൌ 0.02 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 5200.6	 ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅ 	i	3318 

 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 5267	Joules		if	r୮ ൌ i ൌ 0.02  and  EdetectingAFib    is negligible  

Figure 43 illustrates the energy consumption as the positive detection rate varies with 

respect to the clinical incidence rate.  
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sum of the energies that are required for sensing EKG signals, transmitting to the 

smartphone via Bluetooth, receiving EKG records, detecting and reporting EKG records 

and positive results during a 24-hour period. In a 24-hour period, such a detection system 

would necessitate 31% of the capacity of the 3.7-volt Li-Polymer F-S1 battery.  

8.2.2 Detection energy model based on prevalence window D  

We design a prevalence window-based A-Fib detection energy model by incorporating 

the prevalence window into the general energy model for A-Fib [91] [92]. Prevalence 

window D is defined as the fraction of the period the device is in one of two states. A 

state could be defined as ON (monitoring) and OFF (not monitoring or sleeping). We 

apply the model for a short time during the morning and evening and turn it off the rest of 

the day because when A-Fib exists it is prominent in the morning between 8 AM and 10 

AM and also around 10 PM and 12 AM [85][86] (see Figure 45). The energy model in 

this case runs continuously two hours in the morning and two hours in the evening with 

the anticipation that A-Fib occurs predominantly during these prescribed windows of 

time. In a 24-hour period, the energy model is on during the two 2-hour windows and off 

during twenty hours.  

Essentially this scheme senses EKG signals, transmits EKG data, receives EKG records, 

classifies and reports positive results depicted by the rate r୮  and the corresponding data 

during a prevalence window ܦ ൌ Ton
24
ൌ ସ

ଶସ
ൌ 1/6	 ൌ 16.67% of the 24-hour period. The 

prevalence windows widths, when A-Fib monitoring occurs, are described by  

t1୭୬	and	t2୭୬  . 

Prevalence	window ൌ D ൌ
t1୭୬ ൅ t2୭୬

24
ൌ 	
T୭୬
24

 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 	Eୟୡ୲୧୴ୣD ൅ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 
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data, receives EKG records, detects A-Fib locally and reports all data to a remote care 

center, a remote server, or cardiologist. 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ ൫E୫୭୬୧୲୭୰ ൅		Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮			E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬	൯ ൬
1
6
൰ ൅ Eୱ୲ୟ୬ୢୠ୷ ൬

5
6
൰ 

For	r୮  ൌ	1	

																																			ൌ 8518 ∗ ଵ

଺
൅ 16919 ∗ ଶସ

ଵ଺଼
∗ ହ
଺
ൌ 3334	Joules 

The prevalence window-based A-Fib detection energy model uses 3334 Joules or 19.7% 

of the battery capacity as compared to the full time telemetry; it represents 39.1% of the 

energy consumed by telemetry. 

Special case 2: The energy model monitoring continuously inside a prevalence 
window D = 4 hours but transmits with incidence rate = 0.02 
 
This model runs continuously two hours in the morning and two hours in the evening 

with the anticipation that A-Fib occurs predominantly during these prescribed windows 

of time at the incidence rate  r୮. This scheme is overridden by a user-triggered event as 

soon as the patient feels heart palpitations. In this case, the model senses EKG signals, 

transmits EKG data, receives EKG records, classifies A-Fib locally and reports detection 

positive results to a care center or cardiologist at the incidence rate r୮  = 0.02 during 

prevalence window D ൌ 4	hours	or	1/6	 of the 24-hour period.  

ETotalAFib	 ൌ ൫E୫୭୬୧୲୭୰ ൅		EdetectingAFib 	൅	 rp		E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬	൯ ൬
1
6
൰ ൅ Eୱ୲ୟ୬ୢୠ୷ ൬

5
6
൰	

 

For incidence rate = 0.02 

ETotalAFib	 ൌ ൫E୫୭୬୧୲୭୰ ൅		EdetectingAFib 	൅ 0.02	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬	൯ ൬
1
6
൰ ൅ Eୱ୲ୟ୬ୢୠ୷ ൬

5
6
൰	

	

ൌ ሺ5200.6 ൅ 0.02 ∗ 3318ሻ ∗
1
6
൅ 16919 ∗

24
168

∗
5
6
ൌ 2892	Joules 
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The prevalence window-based A-Fib detection energy model uses 2892 Joules or 17 % of 

the battery capacity; it represents 33.9 % of the energy consumed by telemetry. 

8.2.3 A user-triggered event energy model of A-Fib detection 

The patient may trigger the detection of the first episode of A-Fib as soon as he or she 

feels symptoms of A-Fib, such as heart palpitations. The energy model then continually 

senses EKG signals, transmits EKG data, receives EKG records, classifies, and reports all 

the EKG data and detection results. The report includes all results, i.e., positive and 

negative results. 

ETotalAFib	 ൌ E୫୭୬୧୲୭୰ ൅		EdetectingAFib 	൅ 	rp	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ 

For incidence rate = 1, the model approaches a telemetry model 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 	8518.6	Joules 

For incidence rate = 0.02,  

	E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 5267	Joules              

The total energy consumed is approximately 5267 Joules, i.e. once the device is 

activated, the sum of the energies that are required for sensing EKG signals, transmitting 

to the smartphone via Bluetooth, receiving EKG records, classifying and reporting EKG 

records for a period of 24 hours. 

In a 24-hour period, such a detection system would use approximately 31% of the capacity 

of the 3.7-volt Li-Polymer F-S1 battery or 61.8 % as compared to telemetry. 

A user-triggered monitoring device saves energy because the device is in standby mode, but 

runs the risk of missing the first 30 seconds of A-Fib especially if the user is incapacitated. 
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Figure 47: A-Fib energy-aware models 

 
Table 23: Energy consumption of energy models in a 24-hour period 

The largest energy consumed during a 24-hour period is by continuous telemetry; (about 

50.4% of battery capacity), compared to the energy consumed by the detection energy 

model using an incidence rate of 0.02 and a 4-hour circadian prevalence window (17% of 

battery capacity).  

 Percentage Joules 
Battery : 3.7-volt Li-Polymer F-S1 100% 16,916 
Energy consumption during a 24-hour period 
Telemetry Device: 

 Telemetry (continuous monitoring and transmission) 50.4% 8,519 

Wearable Computing Device: 
 Incidence rate = 1, prevalence window = 4 hours   

o Detection + incidence rate 50.4% 8,519 
o Detection + incidence rate + prevalence window 19.7% 3,334 

 incidence rate = 0.02, prevalence window = 4 hours   
o Detection + incidence rate 31.1% 5,267 
o Detection + incidence rate + prevalence window 17.0% 2,892 
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8.4.1 Special cases of A-Fib detection energy model  

In the following section, we determine the amount of energy that would be saved when 

replacing the telemetry with a detection model under different special cases of incidence 

rate and prevalence window. 

Telemetry energy equation: 

E୲ୣ୪ୣ୫ୣ୲୰୷	 ൌ E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୖୣ୮ 

The general detection energy equation: 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 

൫E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	EdetectingAFib 	൅	r୮	Eୖୣ୮൯D ൅ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 

E୲ୣ୪ୣ୫ୣ୲୰୷ െ	E୘୭୲ୟ୪୅୊୧ୠ	

ൌ E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୖୣ୮

െ ൫E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮	Eୖୣ୮൯D

െ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 

Where:                                  	0 ൑ D ൑ 1	,				0 ൑ 	 rp ൑ 1 

The difference in energy is dependent on the positive rate r୮	  and the prevalence window 

D.  

If	E୲ୣ୪ୣ୫ୣ୲୰୷ െ	ETotalAFib	 ൌ 0   implies that there is no energy consumption difference 

between telemetry and a detection model. 

If	E୲ୣ୪ୣ୫ୣ୲୰୷ െ	ETotalAFib	 ൏ 0   implies that the energy consumption caused by detection 

exceeds the one caused by telemetry. 
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If	E୲ୣ୪ୣ୫ୣ୲୰୷ െ	ETotalAFib	 ൐ 0	  implies that there is a gain in switching monitoring from a 

telemetry model to a detection model.   

Assuming	൫	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ	൯D		to	be	negligible	compared	to	Eୟୡ୲୧୴ୣ , we explore some special 

cases. 

Case 1:  	D ൌ 0	,					rp ൌ 0	or	i ൌ 1  

The detection model never runs because the prevalence window is 0. The difference is all 

telemetry assuming Eୱ୲ୟ୬ୢୠ୷ is negligible. 

E୲ୣ୪ୣ୫ୣ୲୰୷ െ	E୘୭୲ୟ୪୅୊୧ୠ	 	ൌ 		 E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୖୣ୮ 

Case 2:  	D ൌ 1	,					rp ൌ 0 

The detection model never runs because the incidence rate is set to 0. 

E୲ୣ୪ୣ୫ୣ୲୰୷ െ	E୘୭୲ୟ୪୅୊୧ୠ	 	ൌ 		0 

Case 3:  	D ൌ 1	,					rp ൌ 1 

The detection model runs continuously during the 24-hour period because the incidence 

rate i is set to 1 and the prevalence window is 100%, and continuously reports. The 

difference is ۳ܘ܍܀ assuming Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ is negligible when comparing it to ۳ܘ܍܀ 

E୲ୣ୪ୣ୫ୣ୲୰୷ െ	E୘୭୲ୟ୪୅୊୧ୠ	 	ൌ 	Eୖୣ୮	 

Experimental cases:   

E୲ୣ୪ୣ୫ୣ୲୰୷ െ	E୘୭୲ୟ୪୅୊୧ୠ	 	

ൌ 		 E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୖୣ୮

െ	൫E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮	Eୖୣ୮൯D

െ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 

E୲ୣ୪ୣ୫ୣ୲୰୷ ൌ 		8519		Joules	 
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E୲ୣ୪ୣ୫ୣ୲୰୷ െ	E୘୭୲ୟ୪୅୊୧ୠ	

ൌ 	8519 െ ൫5184 ൅ 8.3 ൅ 8.3 ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ ൅ 3,318	r୮	൯	D

െ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 

Using a 32-bit 512 MHz processor [90], the energy  Eୡ୪ୟୱୱ୧୤୷ required when executing 20 

arithmetic operations is negligible compared to the energy Eୖୣ୮ expended when 

transmitting reports.  

Eୱ୲ୟ୬ୢୠ୷ ൌ 	16919 ∗
24

168
∗ ሺ1 െ Dሻ ൌ 2417 ∗ ሺ1 െ  ሻܦ

E୲ୣ୪ୣ୫ୣ୲୰୷ െ	ETotalAFib	 ൌ 8519 െ		൫5200.6 ൅ 3,318		rp൯D െ 2417 ∗ ሺ1 െ  ሻܦ

Energy	Reduction ൌ R ൌ
E୲ୣ୪ୣ୫ୣ୲୰୷ െ	ETotalAFib	

E୲ୣ୪ୣ୫ୣ୲୰୷
∗ 100% 

		R	 ൌ
8519െ	൫5200.6൅3,318∗		rp൯Dെ2417∗ሺ1െDሻ

8519
 100% 

Where:   	0 ൑ D ൑ 1	,				0 ൑ 	 rp ൑ 1 

In the following section, we examine the range of values of different 	D	and	r୮ for which 

the energy reduction between telemetry and detection scheme is significant. 

What would be the energy reduction when switching from telemetry to detection scheme? 

Fixing  D ൌ 1	,			rp ൌ 1									ܴ ൌ 	0% 

Fixing  D ൌ 1	,					rp ൌ .02  

ܴ ൌ 	
8519 െ	ሺ5200.6 ൅ 3,318 ∗ 0.02ሻ െ 2417 ∗ ሺ1 െ ሻܦ

8519
		100% ൌ 14.5% 

Fixing  D ൌ 1	,					rp ൌ 0  

ܴ ൌ 	
8519 െ	ሺ5200.6ሻ െ 2417 ∗ ሺ1 െ ሻܦ

8519
		100% ൌ 15.3% 
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Fixing  D ൌ .167	,				rp ൌ 1,  

ܴ ൌ 	
8519 െ	ሺ5200.6 ൅ 3,318ሻ0.167 െ 2417 ∗ ሺ1 െ ሻܦ

8519
		100% ൌ 59.7% 

Fixing  D ൌ .167	,				rp ൌ .02 ,  

ܴ ൌ 	
8519 െ	ሺ5200.6 ൅ 3,318 ∗ 0.02ሻ0.167 െ 2014

8519
		100% ൌ 	66.0% 

Fixing  D ൌ .167	,					rp ൌ 0 ,  

ܴ ൌ 	
8519 െ	ሺ5200.6ሻ0.167 െ 2014

8519
		100% ൌ 	66.2% 

Table 25 and Figure 50 summarize the energy reduction when switching from telemetry 

to a detection model while applying a different prevalence window and positive rate: 

D ܘܚ Energy 
Reduction 

ࡾ

ൌ
ૡ૞૚ૢ െ ൫૞૛૙૙. ૟ ൅ ૜, ૜૚ૡ ∗ ൯۲ܘܚ െ ૛૝૚ૠሺ૚ െ ۲ሻ

ૡ૞૚ૢ
૚૙૙%

1 1 0% Running and reporting continuously for the 24-hour period. 

1 .02 38.2% 
Running continuously for the 24-hour period and reporting 2% 
of the time. Incidence rate is enabled. 

1 0 39 % 
Only local storage is allowed. 
Running continuously for the 24-hour period, but no reporting. 

.167 1 59.7% 
Running and reporting continuously for 16.7% of the 24-hour 
period. 

.167 .02 66% 
Running continuously for 16.7% of the 24-hour period and 
reporting 2% of the time. 

.167 0 66.2% 
Only local storage is allowed. 
Running and reporting continuously for 16.7% of the 24-hour 
period but no reporting. 

 
Table 25: Varying positive rate rp, and prevalence window D affects energy reduction  

Figure 50 shows the energy consumption with respect to prevalence window D given an 

A-Fib incidence rate of 0.02.  

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 

൫E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	Eୢୣ୲ୣୡ୲୧୬୥୅୊୧ୠ 	൅	r୮	Eୖୣ୮൯D ൅ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 
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battery life of a monitoring device. For instance, A-Fib risk factors may be classified in 

three categories made up of risk ranges such as k < 0.05, 0.05 < k < 0.15, k > 0.15. 

Knowing the A-Fib risk factor of a patient allows one to prescribe an A-Fib monitoring 

and detection scheme (see Figures 52 and 53) and schedule (see Table 26). A high A-Fib 

risk factor may suggest more frequent monitoring compared to a low A-Fib risk factor.  

Select Energy Model based on 
Risk Factor 

Risk Factor 
Use 

Energy 
Model 

Compared 
to Telemetry 

Energy 
Risk factor category 1 would be for 
a user who is healthy, athletic; this 
is similar to wearing a sports watch. 

k < 0.05 Incidence and 
prevalence 

window 

33.9% 

Risk factor category 2 would be for 
a user who wants to monitor A-Fib 
daily during an AM/PM windows. 

0.05≤ k < 0.15 Incidence 39.1% 

Risk factor category 3 is for the 
chronic case where a user monitors 
continuously with the data and 
detection results transmitted to a 
care center. 

k ≥ 0.15 Telemetry 100.0% 

Table 26: Risk factors and energy models 
 

For example, a user who is healthy, and athletic, having an A-Fib risk factor category 1,  

k < 0.05, would require occasional A-Fib monitoring as depicted by Figure 52. The 

proposed scheme would select a schedule requiring an assessed A-Fib risk factors k, a 

circadian prevalence window D, and an age dependent incidence rate. However, a user 

with a risk factor category 2, 0.05≤ k < 0.15, or category 3, k ≥ 0.15 would be interested 

in monitoring A-Fib daily as depicted by Figure 53. In this case, the proposed scheme 

would select a schedule requiring an assessed A-Fib risk factors k, and an age dependent 

incidence rate, requiring continuous monitoring and detection. 

Figure 52 proposes a schedule for an A-Fib risk with K < 0.05 that would casually 

monitor A-Fib episodes. This is the case for a rare A-Fib condition requiring less frequent 
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monitoring. The schedule depends on an assessed A-Fib risk factor, a prevalence window 

and an age dependent incidence rate.  

 

Figure 52: Efficient wearable monitoring and detection scheme based on A-Fib Risk 
Factor k, Incidence Rate rp and Circadian Prevalence Window D 

 

Figure 53 proposes a schedule for a high A-Fib risk factor with K ≥ 0.15 that would 

continuously monitor A-Fib episodes and transmit detection results to a care center. This 

is the case for a chronic A-Fib condition requiring frequent monitoring. The aggressive 

schedule does not depend on the prevalence window and only requires an assessed A-Fib 

risk factor K, and an age dependent incidence rate.  
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Figure 53: Efficient wearable monitoring and detection scheme based on A-Fib Risk 
Factor k and A-Fib Incidence Rate rp 
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CHAPTER 9 

9 ADAPTING THE ENERGY-AWARE MODELS TO THE PAROXYSMAL    
A-FIB PHASE 

 

In order to optimize the execution of an energy-constrained healthcare application such as 

A-Fib, one must make sensible use of the energy that is available. One must make 

judicious decision as to when to run different components and dynamically switch on and 

off monitoring and detection. Three parameters identified as incidence rate, prevalence 

window, and positive rate, have a decisive impact on energy consumption. They must be 

sensibly selected to reduce energy consumption, extend battery life and ultimately expand 

A-Fib monitoring and detection. We design a hierarchical scheme to detect A-Fib from 

its onset to its final stage. The total energy model would be a combination of a first 

episode of A-Fib energy model, a paroxysmal energy model, and if necessary a 

persistent/permanent energy model (see Figure 54). First, we diagnose the first episode of 

A-Fib by applying a classifier that would detect heart palpitations that last longer than 30 

seconds in the received data packet. If the result is positive, we check for the next stage 

of A-Fib known as paroxysmal A-Fib. A strong indicator of A-Fib presence is the 

absence of P waves on the EKG plot and an erratic noise-like activity in their place, 

combined with irregular R-R intervals [20]. Sometimes when the heart rate is too fast, 

irregular R-R intervals may be difficult to determine [93]. In addition, wide QRS 

complexes may be present with rapid ventricular response. 
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Figure 54: Flow diagram of A-Fib 

9.1 Detecting paroxysmal A-Fib 

After the first episode of A-Fib has been detected, it becomes critically important to 

diagnose the next level of A-Fib, paroxysmal A-Fib. In paroxysmal A-Fib, the heart is in 

and out of normal sinus rhythm. Episodes of A-Fib come and go on their own. They 

typically last less than 24 hours but can last up to seven days before they terminate 

spontaneously [94] [95]. Figure 55 reveals how prevalent paroxysmal A-Fib is during a 

24-hour period while examining 100 patients [96]. 
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9.2 Detecting persistent A-Fib 

In persistent A-Fib, episodes last longer than seven days and do not go away on their 

own. Medical treatment is necessary to restore normal sinus rhythm. The next stage is 

longstanding persistent where episodes of A-Fib are continuous and last longer than one 

year leading to a permanent A-Fib where a person's irregular heartbeat does not return to 

normal sinus rhythm, even with medical treatment. 

9.3 Detecting permanent A-Fib 

In permanent A-Fib, a person's irregular heartbeat does not return to normal sinus 

rhythm, even with medical treatment [55] [56]. 
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borrowing specification from the MICA2, a portable, low power, wireless two-lead EKG 

system integrated with the UC Berkley’s MICA2 mote developed by UC Berkley and 

manufactured by Crossbow Technology, Inc. [69], and a GSM/EDGE smartphone.  

Telemetry is widely accepted in healthcare for remotely collecting and sending vital data 

to a monitoring station for analysis and interpretation. However telemetry drains the 

battery quickly which forces the patient to replace the battery often, as often as every day. 

Telemetry energy equation: 

																													E୘ୣ୪ୣ୫ୣ୲୰୷ ൌ E୫୭୬୧୲୭୰ ൅	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬ ൌ 	8519	Joules  

Our energy-aware detection models use an efficient wearable computing scheme that 

outperforms telemetry energy models. They include an A-Fib incidence rate	i or a 

detection positive rate r୮ and A-Fib prevalence window D. The prevalence window D is 

defined as the fraction of the period the device is ON monitoring (Ton) during a 24-hour 

period. The energy model is active (Eactive) during two hours in the morning t1on and two 

hours in the evening t2on with the anticipation that A-Fib occurs predominantly during 

these windows of time; otherwise it is on standby (Estandby).   

Window ൌ D ൌ
T୭୬

T୭୬ ൅ T୭୤୤
ൌ
t1୭୬ ൅ t2୭୬

24
 

ETotalAFib	 ൌ 	Eୟୡ୲୧୴ୣD ൅ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 

The general energy-aware detection model equation: 

ETotalAFib	 ൌ ൫E୫୭୬୧୲୭୰ ൅ EdetectingAFib ൅	r୮	E୲୰ୟ୬ୱ୫୧ୱୱ୧୭୬൯D ൅	Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ	  

൫E୉୏ୋ౏౛౤౩౛ ൅	E୉୏ୋ౐౮ ൅	E୉୏ୋ౎౮ ൅	EdetectingAFib 	൅	r୮	Eୖୣ୮൯D ൅ Eୱ୲ୟ୬ୢୠ୷ሺ1 െ Dሻ 

0 ൑ D ൑ 1	,				0 ൑ 	 r୮ ൑ 1 
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We use a detection positive rate i = 0.02 and a prevalence window D ൌ 1/6 representing 

monitoring two hours in the morning and two hours in the evening. 

E୘୭୲ୟ୪୅୊୧ୠ	 ൌ 2892	Joules 

Our study suggests that the largest energy consumed is by continuous telemetry, 

compared to the energy consumed by the energy-aware detection model using an 

incidence rate rp of 0.02 and a 4-hour circadian prevalence window D (see Table 27)  

34%	of	telemetry	energy	model ൏ 	Proposed	Models	 ൏ 100%	of	telemetry	energy	model  

 
Table 27: Energy models compared to telemetry 

10.2 Validating the Results 

In this section, we validate our study results summarized in Section 10.1 using a two-lead 

EKG Heart Monitor A102D7 device from Alive Technologies wirelessly [88] connected 

to an Apple MacBook computer via Bluetooth. Although our validation uses a different 

wearable healthcare device depicted in Figure 59, our goal is to confirm comparable 

results to our study findings where the proposed energy-aware models consumption 

varies as follows: 

34%	of	telemetry	energy	model ൏ 	Proposed	Models	 ൏ 	100%	of	telemetry	energy	model 

 Percentage Joules
Energy consumption during a 24-hour period 

Telemetry Device: 
 Telemetry (continuous monitoring and 

transmission) 
100% 8,519 

 incidence rate = 1, prevalence window = 4 hours   
o detection + incidence rate + prevalence 

window 
39% 3,334 

 incidence rate = 0.02, prevalence window = 4 hours   
o detection + incidence rate + prevalence 

window 
34% 2,892 
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10.2.2.1 Test cases 

Typically, batteries discharge nonlinearly with respect to time. In the following test cases, 

we focus on battery lifetime and average rate of energy consumption.  The following 

steps enumerate the various test cases: 

a. Establishing the battery lifetime and the average rate of energy consumption for 

when the device is in standby.  

b. Establishing the baseline battery lifetime and the average rate of energy 

consumption for when the device is monitoring and transmitting continuously. 

c. Measuring the battery lifetime and the average rate of energy consumption 

required for a risk, incidence and window-based model: 

 Case one: Using an incidence rate of 1 to represent a worst-case scenario, (i.e. 

monitoring continuously and transmitting continuously inside two 2-hour 

windows to simulate A-Fib prevalence circadian windows between 8 AM – 10 

AM and 10 PM- 12 AM). 

 Case two: Repeating case 1 except we use an incidence rate of 0.02 to represent 

an optimum case scenario when the detection algorithm is as accurate as possible, 

and the positive rate is equal to the incidence rate. 

d. Summarizing the validation results: we compare the energy consumption of the 

detection models from steps c and d to the energy consumption of the telemetry 

model in step b. 
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10.2.2.1.1 Establishing the battery lifetime and the average consumption for when the 
device is in standby mode 

 

In the standby mode, we turn off both the monitoring and the transmission. Using the 

two-lead Heart Monitor A102D7 device from Alive Technologies wirelessly connected to 

an Apple MacBook laptop via Bluetooth, we run the device in standby starting with the 

battery (rechargeable Li-ion battery of type Casio NP-20 3.7V 670mAh) at full capacity 

(100%) and let it run until the battery is fully discharged (0%). Table 29 and Figure 61 

display the cumulative Joules consumed versus the corresponding elapsed time. In 

standby mode, the estimated battery lifetime, for the two-lead Heart Monitoring device 

A102D7 from Alive Technologies is 168 hours. The estimated cumulative consumed 

energy is 8658 Joules; that is, 51.54 joules per hour. 

Standby 
Elapsed  Decimal Percent of Current Cumulative

Time Hours Battery Joules Joules 

 
Value 

Capacity 
Remaining 

Consumed Consumed 

0     0    0 0.0 100 0 0 
0   54  29 3.4 98 173.2 173.2 
2   34  47 10.1 94 346.3 519.5 
5   02  38 20.2 88 519.5 1039.0 
8   04  01 28.6 83 432.9 1471.9 
11  06  11 42.0 75 692.6 2164.5 
13  44  11 50.4 70 432.9 2597.4 
15  21  58 57.1 66 346.3 2943.7 
18  26  09 67.2 60 519.5 3463.2 
21  25  24 80.6 52 692.6 4155.8 
23  32  11 87.4 48 346.3 4502.2 
24  59  06 95.8 43 432.9 4935.1 
26  39  54 100.8 40 259.7 5194.8 
28  00  50 105.8 37 259.7 5454.5 
29  03  18 112.6 33 346.3 5800.9 
32  19  14 122.6 27 519.5 6320.3 
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34  58  55 134.4 20 606.1 6926.4 
37  00  15 142.8 15 432.9 7359.3 
39  02  48 147.8 12 259.7 7619.0 
40  03  41 151.2 10 173.2 7792.2 
41  02  38 154.6 8 173.2 7965.4 
42  05  54 157.9 6 173.2 8138.5 
43  04  23 161.3 4 173.2 8311.7 
44  00  13 164.6 2 173.2 8484.8 
45  05  28 166.3 1 86.6 8571.4 
46  04  35 168.0 0 86.6 8658.0 

 
Table 29: Alive Technologies Heart Monitoring Device A102D7 in standby 

 

Figure 61: Alive Technologies Heart Monitoring Device A102D7 in standby  
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10.2.2.1.2 Establishing the baseline battery lifetime and the average consumption rate 
for when the device is in telemetry mode 

 

In telemetry mode (incidence rate =1), we turn on both the monitoring and the 

transmission on the Alive Heart Monitor. The two-lead Heart Monitor A102D7 device 

from Alive Technologies is wirelessly connected to an Apple MacBook laptop via 

Bluetooth. We run the device in telemetry mode, starting with the battery (rechargeable 

Li-ion battery of type Casio NP-20 3.7V 670mAh) at full capacity (100%) and let it run 

until the battery is fully discharged (0%). Figure 62 displays the monitored and 

transmitted EKG recordings and their remaining battery capacity.  
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Figure 62: Timed EKG recordings and remaining battery capacity for monitoring and 
transmitting EKG signals via Bluetooth using a two-lead Heart Monitor A102D7 from 

Alive Technologies and an Apple MacBook 

Table 30 and Figure 63 display the cumulative consumed Joules and the corresponding 

elapsed time. In telemetry mode, the estimated battery lifetime, for the two-lead Heart 

Monitoring device A102D7 from Alive Technologies, is 46 Hours, 4 Minutes and 35 
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Seconds. The estimated cumulative consumed energy is 8658 Joules; that is, 187.81 joules 

per hour.     

Telemetry: continuous monitoring and transmission with Incidence rate = 1 

Detection Mode 

Percent Current 
Cumulative 

Joules  
Consumed 

Elapsed Decimal Battery Joules 

Time (hours) Capacity  Consumed 

hr  min  sec Remaining 

Continuous Transmission 0     0    0 0 100 0 0 
Continuous Transmission 0   54  29 0.9 98 169.0 169.0 
Continuous Transmission 2   34  47 2.6 94 319.3 488.3 
Continuous Transmission 5   02  38 5.0 89 450.7 939.0 
Continuous Transmission 8   04  01 8.1 82 582.2 1521.3 
Continuous Transmission 11  06  11 11.1 76 563.4 2084.7 
Continuous Transmission 13  44  11 13.7 70 488.3 2573.0 
Continuous Transmission 15  21  58 15.4 67 319.3 2892.3 
Continuous Transmission 18  26  09 18.4 60 563.4 3455.7 
Continuous Transmission 21  25  24 21.4 54 563.4 4019.1 
Continuous Transmission 23  32  11 23.5 49 394.4 4413.5 
Continuous Transmission 24  59  06 25.0 46 281.7 4695.2 
Continuous Transmission 26  39  54 26.7 42 319.3 5014.5 
Continuous Transmission 28  00  50 28.0 39 244.2 5258.7 
Continuous Transmission 29  03  18 29.1 37 206.6 5465.2 
Continuous Transmission 32  19  14 32.3 30 601.0 6066.2 
Continuous Transmission 34  58  55 35.0 24 507.1 6573.3 
Continuous Transmission 37  00  15 37.0 20 375.6 6948.9 
Continuous Transmission 39  02  48 39.0 15 375.6 7324.6 
Continuous Transmission 40  03  41 40.1 13 206.6 7531.1 
Continuous Transmission 41  02  38 41.0 11 169.0 7700.2 
Continuous Transmission 42  05  54 42.1 9 206.6 7906.8 
Continuous Transmission 43  04  23 43.1 7 187.8 8094.6 
Continuous Transmission 44  00  13 44.0 5 169.0 8263.6 
Continuous Transmission 45  05  28 45.1 2 206.6 8470.2 
Continuous Transmission 46  04  35 46.1 0 187.8 8658.0 

Table 30: Baseline percent battery capacity remaining versus elapsed time  
(Telemetry mode) 
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Figure 63: Battery lifetime for A-Fib continuously monitoring and transmission via 
Bluetooth using Alive Technologies Heart Monitor A102D7 and an Apple MacBook 

 

10.2.2.1.3 Measuring the battery lifetime and the energy consumption rate required 
for a risk-based, incidence and window-based A-Fib detection model  
 

The implementation of a risk and incidence-based A-Fib detection helps extend the 

battery life of the Alive Technologies Heart Monitor A102D7 device. Knowing the A-Fib 

risk factor of a patient allows one to prescribe an A-Fib monitoring and detection scheme 

(see Figure 64) and schedule (see Table 31). A high A-Fib risk factor may suggest more 

frequent monitoring compared to a low A-Fib risk factor. A-Fib risk factors may be 

classified in three categories made up of risk ranges such as low risk with k < 0.05, 

medium risk with 0.05 < k < 0.15, and high risk with k > 0.15. A low risk A-Fib factor or  
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Figure 64: Efficient wearable monitoring and detection scheme based on A-Fib Risk 
Factor k, Incidence Rate rp and circadian prevalence window D 

 

category 1, may require an energy-aware detection model that would best fit a user who 

is healthy and athletic where monitoring is triggered occasionally during exercises. A 

medium risk A-Fib factor or category 2 may require an energy-aware model that would 

best fit a user who needs monitoring during AM and PM prevalence windows. A high-

risk A-Fib factor may require a telemetry model that is fit for a user who needs to 

monitor A-Fib continuously because he may have a chronic case of A-Fib.  

Select Energy Model based on 
Risk Factor 

Risk 
Factor 

Use  
Energy Model 

Compared to 
Telemetry 

Energy 
Risk factor category 1 is for a user 
who is healthy; similar to wearing a 
sports watch. 

K < 0.05 Based on incidence 
and prevalence 

window  

33.9% 

Risk factor category 2 is for a user 0.05≤ K < Based on incidence 39.1% 
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who wants to monitor A-Fib daily 
during AM/PM windows.  

0.15 

Risk factor category 3 is for the 
chronic case. The user monitors 
continuously. Results are transmitted 
to a care center. 

K ≥ 0.15 Use Telemetry 100.0% 

 
Table 31: Energy-aware detection model selection based on risk factor category  

The A-Fib detection algorithm outputs a positive result when the probability of A-Fib 

being present is greater than 0.5. We utilize an asymmetric prevalence window D = 1/6 

within a 24 hour period and an incidence rate i=0.02 in the energy model (see Figure 65). 

The EKG signals are sensed and transmitted to an Apple MacBook laptop during 

windows of time where A-Fib is assumed prevalent. 

A-Fib is predicted present if probability p (A-Fib is Present | Age, Age2, Gender, BMI, 

QRSduration, PRinterval, Heartrate)  >  0.5  

Otherwise, A-Fib is absent. 

Where: 

 

logit(p) = - 41.175 + 0.820 Age – 0.006 Age2 + 4.737 Gender – 0.047 BMI +  

0.098 QRSduration - 0.178 PRinterval + 0.066 Heartrate 

And 
p = 1 / (1 + e-logit(p)) 

Prevalence window D is defined as the fraction of the period the device is ON monitoring 

(Ton) during a 24-hour period. The energy model Eactive runs during two hours in the 

morning t1on and two hours in the evening t2on with the anticipation that A-Fib occurs 

predominantly during these windows of time; otherwise it is on standby Estandby.   

Window ൌ D ൌ
T୭୬

T୭୬ ൅ T୭୤୤
ൌ
t1୭୬ ൅ t2୭୬

24
ൌ
1
6
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lifetime, for the two-lead Heart Monitoring device A102D7 from Alive Technologies is 

approximately 128 hours. The estimated cumulative consumed energy is 8658 Joules; 

that is, an average of 68 joules per hour. 

Continuous monitoring and transmission with two 2‐hour circadian 
windows with incidence rate = 1 

Detection Mode 

Percent 

Elapsed Battery  Current  Cumulative 

Time  Capacity  Joules  Joules 

(hours)  Remaining Consumed  Consumed 

Standby  0  100  0.0  0.0 

Standby  8  95  412.3  412.3 

2 hour window  10  91  375.6  787.9 

Standby  22  84  618.4  1406.3 

2 hour window  24  79  375.6  1782.0 

Standby  32  75  412.3  2194.2 

2 hour window  34  70  375.6  2569.9 

Standby  46  63  618.4  3188.3 

2 hour window  48  59  375.6  3563.9 

Standby  56  54  412.3  3976.2 

2 hour window  58  50  375.6  4351.8 

Standby  70  43  618.4  4970.2 

2 hour window  72  38  375.6  5345.9 

Standby  80  33  412.3  5758.1 

2 hour window  82  29  375.6  6133.8 

Standby  94  22  618.4  6752.2 

2 hour window  96  18  375.6  7127.8 

Standby  104  13  412.3  7540.1 

2 hour window  106  9  375.6  7915.7 

Standby  128  0  618.4  8534.1 

 
Table 32: Percent of battery capacity discharge versus time inside two 2-hour windows 

with incidence rate = 1 and in standby otherwise 
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Figure 66: Percent of battery capacity discharge versus elapsed time inside two 2-hour 

windows with incidence rate = 1 and in standby otherwise 
 

 Case two: Using an incidence rate of 0.02 to represent an optimum case 
scenario when the detection algorithm is as accurate as possible, and the 
positive rate is equal to the incidence rate 

In case two, while in active mode, we monitor and transmit inside two 2-hour prevalent 

windows between 8 AM - 10 AM and 10 PM - 12 AM at the incidence rate of 0.02, and 

in standby mode the remainder of the 24-hour period. The 2-hour circadian windows 

require 0.98*51.54 + 0.02*187.81= 54.25 Joules per hour. Table 33 and Figure 67 

display the percentage of battery capacity remaining versus elapsed time during two 2-

hour prevalent windows with incidence rate = 0.02, and during a standby the remainder 

of the 24-hour period. When applying our energy-aware model, with monitoring and 
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transmitting inside two 2-hour prevalent windows between 8 AM - 10 AM and 10 PM - 

12 AM and an A-Fib incidence rate = 0.02, the estimated battery lifetime, for the two-

lead Heart Monitoring device A102D7 from Alive Technologies is approximately 166 

hours. The estimated cumulative consumed energy is 8658 Joules; that is, an average of 

52 joules per hour.   

Continuous monitoring and transmission, two 2‐hour windows 
with incidence rate = 0.02 

Detection Mode 

Percent

Current Joules 
Consumed 

Cumulative 
Joules 

Consumed 

Elapsed Battery

Time Capacity

(hours) Remaining

Standby  0 100 0 0.0 

Standby  8 95 412.3 412.3 

2 hour window  10 94 108.5 520.8 

Standby  22 87 618.4 1139.2 

2 hour window  24 86 108.5 1247.8 

Standby  32 81 412.3 1660.0 

2 hour window  34 80 108.5 1768.6 

Standby  46 72 618.4 2387.0 

2 hour window  48 71 108.5 2495.5 

Standby  56 66 412.3 2907.8 

2 hour window  58 65 108.5 3016.3 

Standby  70 58 618.4 3634.8 

2 hour window  72 57 108.5 3743.3 

Standby  80 52 412.3 4155.6 

2 hour window  82 51 108.5 4264.1 

Standby  94 43 618.4 4882.5 

2 hour window  96 42 108.5 4991.0 

Standby  104 37 412.3 5403.3 

2 hour window  106  36  108.5  5511.8 

Standby  118 29 618.4 6130.3 

2 hour window  120 28 108.5 6238.8 

Standby  128 23 412.3 6651.1 

2 hour window  130 22 108.5 6759.6 

Standby  142 15 618.4 7378.0 

2 hour window  144 13 108.5 7486.6 

Standby  152 8 412.3 7898.8 

2 hour window  154 7 108.5 8007.4 

Standby  166 0 618.4 8625.8 

 
Table 33: Percent of battery capacity discharge versus time inside two 2-hour windows 

with incidence rate = 0.02 and in standby otherwise 
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Figure 67: Percent of battery capacity discharge versus elapsed time inside two 2-hour 

windows with incidence rate = 0.02 and otherwise in standby 

10.2.2.1.4 Summarizing the validation results 
 

 In standby mode, the estimated battery lifetime, for the two-lead Heart 

Monitoring device A102D7 from Alive Technologies, is 168 hours. The estimated 

cumulative consumed energy is 8658 Joules; that is, 51.54 joules per hour. 

 In telemetry mode, the estimated battery lifetime, for the two-lead Heart 

Monitoring device A102D7 from Alive Technologies, is 46 Hours, 4 Minutes and 

35 Seconds (46.08 hours). The estimated cumulative consumed energy is 8658 

Joules; that is, 187.81 joules per hour.   

 Energy-aware detection model with i=1, D=0.167. When applying our energy-

aware model, with monitoring and transmitting inside two 2-hour prevalent 
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windows between 8 AM - 10 AM and 10 PM - 12 AM and an A-Fib incidence 

rate = 1, the estimated battery lifetime, for the two-lead Heart Monitoring device 

A102D7 from Alive Technologies is approximately 128 hours. The estimated 

cumulative consumed energy is 8658 Joules; that is, an average of 68 joules per 

hour. 

 Energy-aware detection model with i=0.02, D=0.167. When applying our energy-

aware model, with monitoring and transmitting inside two 2-hour prevalent 

windows between 8 AM - 10 AM and 10 PM - 12 AM and an A-Fib incidence 

rate = 0.02, the estimated battery lifetime, for the two-lead Heart Monitoring 

device A102D7 from Alive Technologies is approximately 166 hours. The 

estimated cumulative consumed energy is 8658 Joules; that is, an average of 52 

joules per hour.   

Figure 68 summarizes the energy consumption ranging from when the device is in 

telemetry to when the device is in standby mode.  Depending on the values assigned to 

the incidence rate and circadian A-Fib prevalence windows parameters our energy 

models consume as much as telemetry at the lower bound and as little as a standby in the 

upper bound. 

            Telemetry	Energy	 ൑ Proposed	Models	Energy	 ൑ Standby	Energy                          

					46.1	hours ൑ 	Proposed	Models	Battery	lifetime	 ൑ 168	hours        

																																	51.54
୎୭୳୪ୣୱ

୦୭୳୰
൑ ETotalAFib	 ൑ 187.81

୎୭୳୪ୣୱ

୦୭୳୰
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  Figure 68: Validation results from the energy-aware models and telemetry 

Table 34 compares validation results percentages between our energy-aware models and 

telemetry for the two-lead Heart Monitoring device A102D7 from Alive Technologies. 

			28	%	of	telemetry ൏ 	E୘୭୲ୟ୪୅୊୧ୠ	 ൏ 100%	telemetry 
 

Mode Type  Validation 

 Telemetry (continuous monitoring and transmission)  100% 
   

detection + incidence rate + prevalence window  28% 

 incidence rate = 0.02, prevalence window = 4 hours    
     

detection + incidence rate + prevalence window  36% 

 incidence rate = 1, prevalence window = 4 hours    
 

Table 34: Validation results summary 
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10.3 Comparing validation results to study results 

As anticipated, our goal is to confirm that our validation results are comparable to our 

study findings. Table 35 displays both validation results and study results. Our validation 

confirms our study results; that our proposed energy-aware detection models perform 

better than telemetry energy model.  

From our study results, we claim: 

34%	of	telemetry	energy	 ൑ Proposed	Models	energy ൑ 100%	of	telemetry	energy	 

From our validation, we verify that depending on the values assigned to the incidence  
 
rate and circadian A-Fib prevalence windows parameters our energy models consume as 

much as 28% of telemetry at the lower bound and as much as 100% of telemetry energy. 

				28	%	telemetry	energy ൑ Proposed	Models	energy	 ൑ 100%	telemetry	energy 

 
For example, Table 35 and Figure 69 show that the energy-aware model that uses an 

incidence rate i=1 and a prevalence window D=0.167 consumes 39% of the energy 

consumed by telemetry according to our study as compared to 36% in validation. The 

differences in the results may be explained by the fact that our study and our validation 

use different monitoring and transmission devices. Both devices use different chip 

technology and different firmware. We expect power efficiency in both hardware and 

software technologies to contribute to the difference between the results. 

Mode Type  Validation  Study 

 Telemetry (continuous monitoring and transmission)  100%  100% 
Detection + incidence rate + prevalence window     
 incidence rate = 0.02, prevalence window = 4 hours  28%  34% 
 Incidence rate = 1, prevalence window = 4 hours  36%  39% 

 
Table 35: Comparing validation results and study results 
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that the classifier does not recognize all actual positives. A sensitivity of 100% implies 

that the test extracted all actual positives whereas in a high specificity test, negative 

results are used to rule out the disease.  Our algorithm exhibits better sensitivity and 

specificity when compared to clinical measurements diagnosing A-Fib are performed by 

internists and general practitioners instead of cardiologists. Studies [59] suggest 

sensitivity (True Positive rate) of 80% and specificity (True Negative rate) of 92%. Our 

detection algorithm has an overall detection accuracy of 97.37%. 

10.4.2 Validating detection algorithm accuracy 

We validate the accuracy of our detection algorithm using a test data in logistic 

regression model.  

In our validation, we use a Hold Out method and a cross-validation method. In the Hold 

Out, we randomly partition the data into two disjoint set, one with 2/3 of dataset for 

training and 1/3 of the dataset for testing. In the k-Fold Cross-Validation method, we 

randomly partition data into 10 disjoint sets, equal in size, then sequentially choose one 

set for testing and nine for training. The testing/training process is conducted ten times. 

We compare the outcome of our detection algorithm with the actual clinical values.  

Table 36 displays the actual versus predicted values of A-Fib logistic regression 

algorithm results from a Hold Out method inputting a randomly generated test dataset 

made up of 1/3 of the original dataset. The overall detection accuracy is: 

            														Overall	Accuracy	 ൌ ଵ଴଴

ଵ଴ଷ
∗ 100% = 97.09%     

Table 37 displays the actual versus predicted values of A-Fib logistic regression 

algorithm results from a 10-Fold Cross-Validation method. The overall detection 

accuracy is: 
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            														Overall	Accuracy	 ൌ ଶଽ଺

ଷ଴ସ
∗ 100% = 97.36%        

Both methods offer similar accuracies of 97.09% and 97.36% respectively, and validate 

the accuracy from our study at 97.37%.             

Actual versus prediction values of A-Fib using logistic regression model: 

P is the probability of predicting correctly the presence or absence of A-Fib given an actual value 

No.  actual  predicted  error p

1  2:NOAF  2:NOAF  1

2  1:AF  1:AF  0.835

3  2:NOAF  2:NOAF  1

4  2:NOAF  2:NOAF  1

5  2:NOAF  2:NOAF  1

6  2:NOAF  2:NOAF  1

7  2:NOAF  2:NOAF  1

8  2:NOAF  2:NOAF  0.988

9  2:NOAF  2:NOAF  1

10  1:AF  1:AF  0.867

11  2:NOAF  2:NOAF  1

12  2:NOAF  2:NOAF  1

13  2:NOAF  2:NOAF  1

14  2:NOAF  2:NOAF  1

15  1:AF  1:AF  0.869

16  2:NOAF  2:NOAF  1

17  2:NOAF  2:NOAF  1

18  2:NOAF  2:NOAF  1

19  2:NOAF  2:NOAF  1

20  2:NOAF  2:NOAF  1

21  2:NOAF  1:AF  + 0.895

22  1:AF  1:AF  0.985

23  2:NOAF  2:NOAF  1

24  1:AF  1:AF  0.96

25  2:NOAF  2:NOAF  1

26  2:NOAF  2:NOAF  1

27  2:NOAF  2:NOAF  1

28  2:NOAF  2:NOAF  1

29  2:NOAF  2:NOAF  1

30  2:NOAF  2:NOAF  1

31  2:NOAF  2:NOAF  1

32  2:NOAF  2:NOAF  1

33  2:NOAF  2:NOAF  1

34  2:NOAF  2:NOAF  1

35  2:NOAF  2:NOAF  1

36  2:NOAF  2:NOAF  1

37  2:NOAF  2:NOAF  1

38  1:AF  1:AF  0.946

39  1:AF  1:AF  0.887

40  2:NOAF  2:NOAF  1

41  2:NOAF  1:AF  + 0.926

42  2:NOAF  2:NOAF  1

43  2:NOAF  2:NOAF  0.736

44  2:NOAF  2:NOAF  1

45  2:NOAF  2:NOAF  1

46  2:NOAF  2:NOAF  1

47  2:NOAF  2:NOAF  1

48  2:NOAF  2:NOAF  1

No. actual predicted  error  p

53 1:AF 1:AF 0.95

54 2:NOAF 2:NOAF 1 

55 2:NOAF 2:NOAF 1 

56 1:AF 1:AF 0.966

57 2:NOAF 2:NOAF 1 

58 1:AF 1:AF 0.97

59 1:AF 1:AF 0.916

60 2:NOAF 2:NOAF 1 

61 2:NOAF 2:NOAF 1 

62 2:NOAF 2:NOAF 1 

63 2:NOAF 1:AF +  0.902

64 2:NOAF 2:NOAF 1 

65 2:NOAF 2:NOAF 1 

66 1:AF 1:AF 0.789

67 2:NOAF 2:NOAF 1 

68 2:NOAF 2:NOAF 1 

69 1:AF 1:AF 0.87

70 1:AF 1:AF 0.991

71 1:AF 1:AF 0.916

72 2:NOAF 2:NOAF 1 

73 2:NOAF 2:NOAF 1 

74 2:NOAF 2:NOAF 1 

75 1:AF 1:AF 0.876

76 1:AF 1:AF 0.957

77 2:NOAF 2:NOAF 1 

78 2:NOAF 2:NOAF 1 

79 2:NOAF 2:NOAF 1 

80 2:NOAF 2:NOAF 1 

81 2:NOAF 2:NOAF 1 

82 2:NOAF 2:NOAF 1 

83 1:AF 1:AF 0.955

84 2:NOAF 2:NOAF 1 

85 1:AF 1:AF 0.959

86 1:AF 1:AF 0.976

87 2:NOAF 2:NOAF 1 

88 2:NOAF 2:NOAF 1 

89 2:NOAF 2:NOAF 1 

90 2:NOAF 2:NOAF 1 

91 2:NOAF 2:NOAF 1 

92 2:NOAF 2:NOAF 1 

93 1:AF 1:AF 0.587

94 2:NOAF 2:NOAF 1 

95 2:NOAF 2:NOAF 1 

96 2:NOAF 2:NOAF 1 

97 2:NOAF 2:NOAF 1 

98 1:AF 1:AF 0.93

99 1:AF 1:AF 0.936

100 2:NOAF 2:NOAF 1 
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49  2:NOAF  2:NOAF  1

50  2:NOAF  2:NOAF  1

51  1:AF  1:AF  0.959

52  2:NOAF  2:NOAF  1
 

101 2:NOAF 2:NOAF 1 

102 2:NOAF 2:NOAF 1 

103 2:NOAF 2:NOAF 1 
 

 

Table 36: Actual versus prediction values of A-Fib using logistic regression model using 
1/3-2/3 Hold Out method 

 
Actual versus prediction values of A-Fib using logistic regression model: 

P is the probability of predicting correctly the presence or absence of A-Fib given an actual value 

No.  actual  predicted  err  p

1  1:AF  1:AF     0.991

2  1:AF  1:AF     0.955

3  1:AF  1:AF     0.998

4  1:AF  1:AF     0.915

5  1:AF  1:AF     0.953

6  1:AF  1:AF     0.995

7  1:AF  1:AF     0.992

8  1:AF  1:AF     0.991

9  2:NOAF  2:NOAF     1

10  2:NOAF  2:NOAF     1

11  2:NOAF  2:NOAF     1

12  2:NOAF  1:AF  +  0.897

13  2:NOAF  2:NOAF     1

14  2:NOAF  2:NOAF     1

15  2:NOAF  2:NOAF     1

16  2:NOAF  2:NOAF     1

17  2:NOAF  2:NOAF     1

18  2:NOAF  2:NOAF     1

19  2:NOAF  1:AF  +  0.959

20  2:NOAF  2:NOAF     1

21  2:NOAF  2:NOAF     1

22  2:NOAF  2:NOAF     1

23  2:NOAF  2:NOAF     1

24  2:NOAF  2:NOAF     1

25  2:NOAF  2:NOAF     1

26  2:NOAF  2:NOAF     1

27  2:NOAF  2:NOAF     1

28  2:NOAF  2:NOAF     1

29  2:NOAF  2:NOAF     1

30  2:NOAF  2:NOAF     1

31  2:NOAF  2:NOAF     1

1  1:AF  1:AF     0.952

2  1:AF  1:AF     0.926

3  1:AF  1:AF     0.96

4  1:AF  1:AF     0.908

5  1:AF  1:AF     0.889

6  1:AF  1:AF     0.98

7  1:AF  1:AF     0.908

8  1:AF  1:AF     0.965

9  2:NOAF  2:NOAF     1

10  2:NOAF  2:NOAF     1

11  2:NOAF  2:NOAF     1

12  2:NOAF  2:NOAF     1

13  2:NOAF  2:NOAF     1

14  2:NOAF  2:NOAF     1

15  2:NOAF  2:NOAF     1

No. actual predicted  err  p 

29 2:NOAF 2:NOAF     1 

30 2:NOAF 2:NOAF     1 

1 1:AF 1:AF     0.955 

2 1:AF 1:AF     0.906 

3 1:AF 1:AF     0.985 

4 1:AF 1:AF     0.977 

5 1:AF 1:AF     0.993 

6 1:AF 1:AF     0.995 

7 1:AF 1:AF     0.967 

8 1:AF 1:AF     0.903 

9 2:NOAF 2:NOAF     1 

10 2:NOAF 2:NOAF     1 

11 2:NOAF 2:NOAF     1 

12 2:NOAF 2:NOAF     1 

13 2:NOAF 2:NOAF     1 

14 2:NOAF 2:NOAF     1 

15 2:NOAF 2:NOAF     1 

16 2:NOAF 2:NOAF     1 

17 2:NOAF 2:NOAF     1 

18 2:NOAF 2:NOAF     1 

19 2:NOAF 2:NOAF     1 

20 2:NOAF 2:NOAF     1 

21 2:NOAF 2:NOAF     1 

22 2:NOAF 2:NOAF     1 

23 2:NOAF 2:NOAF     1 

24 2:NOAF 2:NOAF     1 

25 2:NOAF 2:NOAF     1 

26 2:NOAF 2:NOAF     1 

27 2:NOAF 2:NOAF     1 

28 2:NOAF 2:NOAF     1 

29 2:NOAF 2:NOAF     1 

30 2:NOAF 2:NOAF     1 

1 1:AF 1:AF     0.976 

2 1:AF 1:AF     0.875 

3 1:AF 1:AF     0.825 

4 1:AF 1:AF     0.933 

5 1:AF 1:AF     0.832 

6 1:AF 1:AF     0.789 

7 1:AF 1:AF     0.975 

8 1:AF 1:AF     0.935 

9 2:NOAF 2:NOAF     1 

10 2:NOAF 2:NOAF     1 

11 2:NOAF 2:NOAF     1 

12 2:NOAF 2:NOAF     1 

13 2:NOAF 2:NOAF     1 

14 2:NOAF 2:NOAF     1 
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16  2:NOAF  2:NOAF     1

17  2:NOAF  2:NOAF     1

18  2:NOAF  2:NOAF     1

19  2:NOAF  2:NOAF     1

20  2:NOAF  2:NOAF     1

21  2:NOAF  2:NOAF     1

22  2:NOAF  2:NOAF     1

23  2:NOAF  1:AF  +  0.918

24  2:NOAF  2:NOAF     1

25  2:NOAF  1:AF  +  0.752

26  2:NOAF  2:NOAF     1

27  2:NOAF  2:NOAF     1

28  2:NOAF  2:NOAF     1

29  2:NOAF  2:NOAF     1

30  2:NOAF  2:NOAF     1

31  2:NOAF  2:NOAF     1

1  1:AF  1:AF     0.745

2  1:AF  1:AF     0.995

3  1:AF  1:AF     0.824

4  1:AF  1:AF     0.997

5  1:AF  1:AF     0.985

6  1:AF  1:AF     0.721

7  1:AF  1:AF     0.909

8  1:AF  1:AF     0.742

9  2:NOAF  2:NOAF     1

10  2:NOAF  2:NOAF     1

11  2:NOAF  2:NOAF     1

12  2:NOAF  2:NOAF     1

13  2:NOAF  2:NOAF     1

14  2:NOAF  2:NOAF     1

15  2:NOAF  2:NOAF     1

16  2:NOAF  2:NOAF     1

17  2:NOAF  2:NOAF     1

18  2:NOAF  2:NOAF     1

19  2:NOAF  2:NOAF     1

20  2:NOAF  2:NOAF     1

21  2:NOAF  1:AF  +  1

22  2:NOAF  2:NOAF     1

23  2:NOAF  2:NOAF     1

24  2:NOAF  2:NOAF     1

25  2:NOAF  2:NOAF     1

26  2:NOAF  2:NOAF     1

27  2:NOAF  2:NOAF     1

28  2:NOAF  2:NOAF     1

29  2:NOAF  2:NOAF     1

30  2:NOAF  2:NOAF     1

31  2:NOAF  2:NOAF     1

1  1:AF  1:AF     0.811

2  1:AF  1:AF     0.783

3  1:AF  1:AF     0.991

4  1:AF  1:AF     0.997

5  1:AF  1:AF     0.985

6  1:AF  1:AF     0.714

7  1:AF  1:AF     0.992

8  1:AF  1:AF     0.923

9  2:NOAF  2:NOAF     0.713

10  2:NOAF  2:NOAF     1

11  2:NOAF  2:NOAF     1

12  2:NOAF  2:NOAF     1

13  2:NOAF  2:NOAF     1

14  2:NOAF  2:NOAF     1

15  2:NOAF  2:NOAF     1

15 2:NOAF 2:NOAF     1 

16 2:NOAF 2:NOAF     1 

17 2:NOAF 2:NOAF     1 

18 2:NOAF 2:NOAF     1 

19 2:NOAF 2:NOAF     1 

20 2:NOAF 2:NOAF     1 

21 2:NOAF 2:NOAF     1 

22 2:NOAF 2:NOAF     1 

23 2:NOAF 2:NOAF     1 

24 2:NOAF 2:NOAF     1 

25 2:NOAF 2:NOAF     1 

26 2:NOAF 2:NOAF     1 

27 2:NOAF 2:NOAF     1 

28 2:NOAF 2:NOAF     1 

29 2:NOAF 2:NOAF     1 

30 2:NOAF 2:NOAF     1 

1 1:AF 1:AF     0.803 

2 1:AF 1:AF     0.842 

3 1:AF 1:AF     0.994 

4 1:AF 1:AF     0.887 

5 1:AF 1:AF     0.767 

6 1:AF 1:AF     0.878 

7 1:AF 1:AF     0.901 

8 1:AF 2:NOAF  +  0.571 

9 2:NOAF 2:NOAF     1 

10 2:NOAF 2:NOAF     1 

11 2:NOAF 2:NOAF     1 

12 2:NOAF 2:NOAF     0.967 

13 2:NOAF 2:NOAF     1 

14 2:NOAF 2:NOAF     1 

15 2:NOAF 2:NOAF     1 

16 2:NOAF 2:NOAF     1 

17 2:NOAF 2:NOAF     1 

18 2:NOAF 2:NOAF     1 

19 2:NOAF 2:NOAF     1 

20 2:NOAF 2:NOAF     1 

21 2:NOAF 2:NOAF     1 

22 2:NOAF 2:NOAF     1 

23 2:NOAF 2:NOAF     1 

24 2:NOAF 2:NOAF     1 

25 2:NOAF 2:NOAF     1 

26 2:NOAF 2:NOAF     1 

27 2:NOAF 2:NOAF     1 

28 2:NOAF 2:NOAF     1 

29 2:NOAF 2:NOAF     1 

30 2:NOAF 2:NOAF     1 

1 1:AF 1:AF     0.957 

2 1:AF 1:AF     0.995 

3 1:AF 1:AF     0.988 

4 1:AF 1:AF     0.865 

5 1:AF 1:AF     0.996 

6 1:AF 1:AF     0.777 

7 1:AF 1:AF     0.715 

8 1:AF 1:AF     0.975 

9 2:NOAF 2:NOAF     1 

10 2:NOAF 2:NOAF     1 

11 2:NOAF 2:NOAF     1 

12 2:NOAF 2:NOAF     1 

13 2:NOAF 2:NOAF     1 

14 2:NOAF 2:NOAF     1 

15 2:NOAF 2:NOAF     1 

16 2:NOAF 2:NOAF     1 
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16  2:NOAF  1:AF  +  0.987

17  2:NOAF  2:NOAF     1

18  2:NOAF  2:NOAF     1

19  2:NOAF  2:NOAF     1

20  2:NOAF  2:NOAF     1

21  2:NOAF  2:NOAF     1

22  2:NOAF  2:NOAF     1

23  2:NOAF  2:NOAF     1

24  2:NOAF  2:NOAF     1

25  2:NOAF  2:NOAF     0.666

26  2:NOAF  2:NOAF     1

27  2:NOAF  1:AF  +  0.602

28  2:NOAF  2:NOAF     1

29  2:NOAF  2:NOAF     1

30  2:NOAF  2:NOAF     1

31  2:NOAF  2:NOAF     1

1  1:AF  1:AF     0.965

2  1:AF  1:AF     0.98

3  1:AF  1:AF     0.883

4  1:AF  1:AF     0.865

5  1:AF  1:AF     0.982

6  1:AF  1:AF     0.988

7  1:AF  1:AF     0.895

8  1:AF  1:AF     0.869

9  2:NOAF  2:NOAF     1

10  2:NOAF  2:NOAF     1

11  2:NOAF  2:NOAF     1

12  2:NOAF  2:NOAF     1

13  2:NOAF  2:NOAF     1

14  2:NOAF  2:NOAF     1

15  2:NOAF  2:NOAF     1

16  2:NOAF  2:NOAF     1

17  2:NOAF  2:NOAF     1

18  2:NOAF  2:NOAF     1

19  2:NOAF  2:NOAF     1

20  2:NOAF  2:NOAF     1

21  2:NOAF  2:NOAF     1

22  2:NOAF  2:NOAF     1

23  2:NOAF  2:NOAF     1

24  2:NOAF  2:NOAF     1

25  2:NOAF  2:NOAF     1

26  2:NOAF  2:NOAF     1

27  2:NOAF  2:NOAF     1

28  2:NOAF  2:NOAF     1
 

17 2:NOAF 2:NOAF     1 

18 2:NOAF 2:NOAF     1 

19 2:NOAF 2:NOAF     1 

20 2:NOAF 2:NOAF     1 

21 2:NOAF 2:NOAF     0.896 

22 2:NOAF 2:NOAF     1 

23 2:NOAF 2:NOAF     1 

24 2:NOAF 2:NOAF     1 

25 2:NOAF 2:NOAF     1 

26 2:NOAF 2:NOAF     1 

27 2:NOAF 2:NOAF     1 

28 2:NOAF 2:NOAF     1 

29 2:NOAF 2:NOAF     1 

30 2:NOAF 2:NOAF     1 

1 1:AF 1:AF     0.897 

2 1:AF 1:AF     0.968 

3 1:AF 1:AF     0.973 

4 1:AF 1:AF     0.921 

5 1:AF 1:AF     0.971 

6 1:AF 1:AF     0.991 

7 1:AF 1:AF     0.948 

8 1:AF 1:AF     0.919 

9 2:NOAF 2:NOAF     1 

10 2:NOAF 2:NOAF     1 

11 2:NOAF 2:NOAF     1 

12 2:NOAF 2:NOAF     1 

13 2:NOAF 2:NOAF     1 

14 2:NOAF 2:NOAF     1 

15 2:NOAF 2:NOAF     1 

16 2:NOAF 2:NOAF     0.899 

17 2:NOAF 2:NOAF     1 

18 2:NOAF 2:NOAF     1 

19 2:NOAF 2:NOAF     1 

20 2:NOAF 2:NOAF     1 

21 2:NOAF 2:NOAF     1 

22 2:NOAF 2:NOAF     1 

23 2:NOAF 2:NOAF     1 

24 2:NOAF 2:NOAF     1 

25 2:NOAF 2:NOAF     1 

26 2:NOAF 2:NOAF     1 

27 2:NOAF 2:NOAF     1 

28 2:NOAF 2:NOAF     1 

29 2:NOAF 2:NOAF     1 

30 2:NOAF 2:NOAF     1 

 
Table 37: Actual versus prediction values of A-Fib using logistic regression model using 

a 10-Fold Cross-Validation method 
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CHAPTER 11 

11     CONCLUSION AND FUTURE WORK 

11.1 Conclusion 
 
A-Fib is a condition proven potentially dangerous and is prevalent in 2.2 million 

Americans. The likelihood of developing the condition increases with age. Serious 

arrhythmia is responsible for 500,000 deaths annually [13]. The cost to treat A-Fib in the 

United States exceeds $6.4 billion per year [12]. Early recognition of A-Fib is difficult 

because most people are not aware of this silent rhythm disturbance [50]. A-Fib is 

typically diagnosed or misdiagnosed during a routine screening visit or during a yearly 

scheduled check-up by a general practitioner or a referred cardiologist; it is possible that 

some patients have paroxysmal A-Fib that is not detected until it is too late. Current       

A-Fib telemetry devices do not deliver continuous real-time detection, require a long 

battery life, and necessitate patient interaction and device activation. They may become 

impractical when the patient is incapacitated during symptomatic periods. The focus of 

this dissertation is the design of a class of adaptive and efficient energy-aware models for 

real-time monitoring, early detection and reporting of progressive development of cardiac 

A-Fib. The design realizes the personalized energy-aware models by using a baseline 

energy model and incorporating a real-time detection algorithm for the onset of A-Fib, 

individual A-Fib risk factors, A-Fib incidence rates, and A-Fib prevalence circadian 
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windows. We recommend an A-Fib Risk factor assessment beforehand to determine a 

risk category and implement a monitoring and a detection schedule. Different 

combinations of values of incidence rate and prevalence window contribute to different 

energy reductions in the detection energy model. Our energy models may consume as 

much as telemetry when the model is continuously monitoring and transmitting EKG 

data, and almost as little as standby when the model operates inside two 2-hour circadian 

prevalence windows with an incidence rate equal to 0.02, resulting in an energy reduction 

by as much as 66% when compared to telemetry. We further extend the detection of A-

Fib to the paroxysmal phase, and derive the total energy-aware model for the detection 

and reporting of A-Fib from its onset to its final stage. Studies [50] suggest if the 

detection algorithm is as accurate as the cardiologist’s accuracy of interpreting EKG 

readings then having a detection positive rate equal to the incidence rate gives our 

energy-aware model the best energy performance. The detection positive rate plays an 

important role in the validity of the energy reduction scheme. The design promises to 

provide a greater positive public health impact from predicting A-Fib and a viable 

approach to meeting the energy needs of current and future real-time monitoring, 

detecting and reporting required in wearable computing healthcare applications that are 

constrained by scarce energy resources. Efficiently applying these energy models in 

wearable computing and monitoring devices will keep people out of overburdened 

hospitals and emergency rooms by continuously providing feedback of patients’ 

physiological and vital signals to the local, on-body network, or remote server.  
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11.2 Future Work 

This work has bridged the gap between health science and engineering by introducing 

energy-aware monitoring schemes and few atrial fibrillation detection algorithms. 

Although, this body of work concentrates on atrial fibrillation, our results suggest that 

future work may use machine learning and mathematical methods such as support vector 

machines, neural networks, and Fast Fourier to diagnose other maladies. It is hoped that 

further algorithm discoveries will aid the creation of open source repositories. Future 

work may embed a variety of healthcare monitoring and detection applications in current 

ubiquitous wearable devices such as smartphones, and use them as surrogate tools to 

provide patients and doctors with less expensive monitoring and detection alternatives. 

The constant progress in mobile hardware technology, wireless personal area networking, 

wireless security and bio-sensing technology makes the smartphone platform an ideal 

candidate for the areas of on-body healthcare monitoring and detection. However, further 

improvements to the smartphone platform are needed to balance innovative interfaces, 

energy management, network resources, and privacy concerns. The smartphone platform 

must be cost-effective to economically monitor a patient’s health on a continuous basis 

and rival the more traditional, cumbersome and significantly more expensive, stationary 

monitoring system presently located in emergency rooms and hospitals. It must be able to 

monitor and collect biomedical data continuously over a long period and detect the health 

problem before the patient’s condition deteriorates.  

In our future work, we wish to develop accurate detection algorithms for other types of 

arrhythmias and extend our energy-aware models to optimize the energy consumption 

required to monitor and detect all arrhythmias. Early real time detection of dangerous 



 

173 

arrhythmias allows for earlier and less expensive medical intervention than what is 

provided with today’s conventional clinical means. 
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APPENDIX 
 

A-Fib is predicted present if probability p (A-Fib is Present | Age, Age2, Gender, BMI, 
QRSduration, PRinterval, Heartrate) > 0.5                                                             
 
Otherwise, A-Fib is absent. 
 
Where: 
 
logit (p) = - 41.175 + 0.820 Age – 0.006 Age2 + 4.737 Gender – 0.047 BMI +  
                  
                   0.098QRSduration - 0.178 PRinterval + 0.066 Heartrate               
 
 
p = 1 / (1 + e-logit (p))              for predicting the presence of A-Fib (AF) 
 
and  
 
1-p = e-logit (p)/ (1 + e-logit (p))  for predicting the absence of A-Fib  (NOAF) 
 
 

Dataset used in our study: 

No.  age  ag^2  sex  BMI 
QRS 
Dur. 

PR 
Int. 

Heart 
Rate 

Actual  
Class 

predicted  Logit(p)  prediction   

(yrs)  (yrs2) 
(M=0,  
F =1) 

(kg 
/m2)  (ms)  (ms) 

(b/ 
min) 

(1:AF,  
2:NOAF) 

(1:AF,  
2:NOAF) 

  (AF: p,  
NOAF:1‐p)  Err 

1  25  625  1  19  97  133  93  2:NOAF  2:NOAF ‐28.611  1    

2  25  625  1  30  77  141  73  2:NOAF  2:NOAF ‐33.832  1    

3  26  676  1  25  71  150  70  2:NOAF  2:NOAF ‐35.471  1    

4  26  676  0  15  92  0  73  2:NOAF  2:NOAF ‐10.782  1    

5  27  729  1  20  82  168  70  2:NOAF  2:NOAF ‐36.86  1    

6  29  841  1  22  83  164  71  2:NOAF  2:NOAF ‐35.11  1    

7  29  841  0  23  81  143  78  2:NOAF  2:NOAF ‐35.89  1    

8  30  900  0  25  91  180  56  2:NOAF  2:NOAF ‐42.576  1    

9  30  900  0  28  87  164  68  2:NOAF  2:NOAF ‐39.469  1    

10  31  961  1  21  95  161  67  2:NOAF  2:NOAF ‐32.697  1    

11  31  961  1  28  82  195  76  2:NOAF  2:NOAF ‐39.758  1    

12  32  1024  0  25  111  171  74  2:NOAF  2:NOAF ‐36.93  1    

13  32  1024  1  24  100  145  72  2:NOAF  2:NOAF ‐28.728  1    

14  32  1024  1  24  78  174  68  2:NOAF  2:NOAF ‐36.31  1    

15  33  1089  1  31  80  149  87  2:NOAF  2:NOAF ‐30.309  1    

16  33  1089  1  21  76  130  92  2:NOAF  2:NOAF  ‐26.519  1    

17  34  1156  0  25  94  186  83  2:NOAF  2:NOAF  ‐39.824  1    

18  34  1156  1  20  90  135  73  2:NOAF  2:NOAF  ‐26.826  1    

19  35  1225  1  35  82  133  55  2:NOAF  2:NOAF  ‐28.741  1    

20  35  1225  1  21  55  163  81  2:NOAF  2:NOAF  ‐34.353  1    
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21  35  1225  1  26  87  142  62  2:NOAF  2:NOAF  ‐28.968  1    

22  36  1296  0  26  90  156  72  2:NOAF  2:NOAF  ‐34.849  1    

23  36  1296  0  28  96  159  85  2:NOAF  2:NOAF  ‐34.031  1    

24  37  1369  0  23  88  153  55  2:NOAF  2:NOAF  ‐35.11  1    

26  37  1369  0  24  100  137  73  2:NOAF  2:NOAF  ‐29.945  1    

27  38  1444  1  25  79  0  70  2:NOAF  2:NOAF  ‐2.755  0.953    

28  39  1521  0  26  103  147  73  2:NOAF  2:NOAF  ‐30.797  1    

29  39  1521  1  29  90  156  72  2:NOAF  2:NOAF  ‐29.143  1    

30  39  1521  1  27  87  160  80  2:NOAF  2:NOAF  ‐29.527  1    

31  39  1521  1  23  79  155  81  2:NOAF  2:NOAF  ‐29.167  1    

32  40  1600  1  20  77  129  70  2:NOAF  2:NOAF  ‐24.974  1    

33  40  1600  1  23  82  140  68  2:NOAF  2:NOAF  ‐26.715  1    

34  40  1600  0  24  93  151  68  2:NOAF  2:NOAF  ‐32.379  1    

35  41  1681  1  22  78  228  53  2:NOAF  2:NOAF  ‐43.38  1    

36  41  1681  1  32  88  157  62  2:NOAF  2:NOAF  ‐29.638  1    

37  42  1764  0  24  87  136  75  2:NOAF  2:NOAF  ‐29.179  1    

38  42  1764  1  20  82  157  66  2:NOAF  2:NOAF  ‐29.076  1    

39  42  1764  0  26  113  213  78  2:NOAF  2:NOAF  ‐40.233  1    

40  43  1849  1  29  80  162  70  2:NOAF  2:NOAF  ‐30.011  1    

41  43  1849  0  32  90  169  68  2:NOAF  2:NOAF  ‐35.287  1    

42  43  1849  0  29  100  188  80  2:NOAF  2:NOAF  ‐36.756  1    

43  44  1936  0  20  84  118  64  2:NOAF  2:NOAF  ‐26.199  1    

44  44  1936  1  24  88  146  71  2:NOAF  2:NOAF  ‐25.78  1    

45  44  1936  0  29  188  125  77  2:NOAF  2:NOAF  ‐16.818  1    

46  45  2025  1  32  77  143  72  2:NOAF  2:NOAF  ‐26.348  1    

47  45  2025  1  26  82  122  87  2:NOAF  2:NOAF  ‐20.848  1    

48  46  2116  1  38  90  155  60  2:NOAF  2:NOAF  ‐28.01  1    

49  46  2116  0  27  91  156  72  2:NOAF  2:NOAF  ‐31.518  1    

50  46  2116  1  28  84  173  69  2:NOAF  2:NOAF  ‐30.738  1    

51  47  2209  1  21  75  132  76  2:NOAF  2:NOAF  ‐23.269  1    

52  47  2209  1  21  92  187  77  2:NOAF  2:NOAF  ‐31.327  1    

53  47  2209  0  31  108  173  86  2:NOAF  2:NOAF  ‐31.88  1    

54  47  2209  0  20  79  145  49  2:NOAF  2:NOAF  ‐31.663  1    

55  47  2209  1  33  78  0  117  1:AF  1:AF  2.663  0.905    

56  48  2304  1  23  81  0  67  2:NOAF  2:NOAF  0.377  0.507    

57  48  2304  1  26  83  146  61  2:NOAF  2:NOAF  ‐25.952  1    

58  48  2304  1  25  85  176  74  2:NOAF  2:NOAF  ‐30.191  1    

59  48  2304  0  39  85  177  72  2:NOAF  2:NOAF  ‐35.896  1    

60  48  2304  0  25  91  224  102  2:NOAF  2:NOAF  ‐41.036  1    

61  48  2304  0  23  77  196  89  2:NOAF  2:NOAF  ‐38.188  1    

62  48  2304  1  34  81  0  81  1:AF  1:AF  0.784  0.592    

63  49  2401  1  21  78  0  67  2:NOAF  2:NOAF  0.415  0.502    

64  49  2401  0  26  95  157  60  2:NOAF  2:NOAF  ‐31.299  1    

65  49  2401  1  22  73  132  71  2:NOAF  2:NOAF  ‐23.354  1    

66  49  2401  1  23  94  170  72  2:NOAF  2:NOAF  ‐28.041  1    

67  49  2401  1  32  78  0  115  1:AF  1:AF  3.066  0.933    

68  49  2401  1  32  77  0  116  1:AF  1:AF  3.034  0.931    

69  50  2500  1  24  89  130  63  2:NOAF  2:NOAF  ‐21.826  1    

70  50  2500  1  29  75  125  93  2:NOAF  2:NOAF  ‐20.563  1    

71  50  2500  0  27  103  142  70  2:NOAF  2:NOAF  ‐27.006  1    

72  50  2500  0  28  94  160  68  2:NOAF  2:NOAF  ‐31.271  1    

73  50  2500  1  30  81  105  87  2:NOAF  2:NOAF  ‐16.858  1    

74  50  2500  1  41  85  151  73  2:NOAF  2:NOAF  ‐26.095  1    

75  50  2500  1  22  84  145  76  2:NOAF  2:NOAF  ‐24.034  1    

76  50  2500  1  24  75  151  68  2:NOAF  2:NOAF  ‐26.606  1    

77  50  2500  1  32  80  0  119  1:AF  1:AF  3.752  0.964    

78  51  2601  1  32  96  147  71  2:NOAF  2:NOAF  ‐23.8  1    

79  51  2601  0  28  100  145  81  2:NOAF  2:NOAF  ‐26.941  1    

80  51  2601  0  27  94  203  71  2:NOAF  2:NOAF  ‐38.466  1    

81  51  2601  1  30  79  0  118  1:AF  1:AF  3.896  0.968    

82  51  2601  1  32  81  0  81  1:AF  1:AF  1.556  0.749    
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83  52  2704  1  29  78  137  69  2:NOAF  2:NOAF  ‐23.573  1    

84  52  2704  0  29  88  202  59  2:NOAF  2:NOAF  ‐39.56  1    

85  52  2704  1  43  84  217  68  2:NOAF  2:NOAF  ‐37.949  1    

86  52  2704  1  43  84  188  66  2:NOAF  2:NOAF  ‐32.919  1    

87  52  2704  1  23  67  153  98  2:NOAF  2:NOAF  ‐25.303  1    

88  52  2704  0  27  92  152  74  2:NOAF  2:NOAF  ‐29.184  1    

89  52  2704  1  32  78  0  120  1:AF  1:AF  4.038  0.972    

90  52  2704  1  32  82  0  82  1:AF  1:AF  1.922  0.809    

91  53  2809  0  28  85  157  51  2:NOAF  2:NOAF  ‐32.135  1    

92  53  2809  1  29  86  141  117  2:NOAF  2:NOAF  ‐20.143  1    

93  53  2809  1  23  86  133  80  2:NOAF  2:NOAF  ‐20.879  1    

94  53  2809  1  27  80  199  63  2:NOAF  2:NOAF  ‐34.525  1    

95  53  2809  1  31  89  0  117  1:AF  1:AF  5.155  0.99    

96  53  2809  1  31  81  0  124  1:AF  1:AF  4.833  0.987    

97  53  2809  1  31  81  0  81  1:AF  1:AF  1.995  0.817    

98  53  2809  1  31  82  0  82  1:AF  1:AF  2.159  0.84    

99  54  2916  0  32  138  163  75  2:NOAF  2:NOAF  ‐26.435  1    

100  54  2916  1  20  78  155  73  2:NOAF  2:NOAF  ‐25.722  1    

101  54  2916  1  25  82  158  54  2:NOAF  2:NOAF  ‐27.353  1    

102  54  2916  0  27  113  216  61  2:NOAF  2:NOAF  ‐39.008  1    

103  54  2916  1  26  70  182  78  2:NOAF  2:NOAF  ‐31.264  1    

104  54  2916  1  32  87  0  70  1:AF  1:AF  1.988  0.814    

105  54  2916  1  28  88  0  73  1:AF  1:AF  2.472  0.876    

106  55  3025  0  31  100  202  71  2:NOAF  2:NOAF  ‐37.152  1    

107  55  3025  0  31  87  292  64  2:NOAF  2:NOAF  ‐54.908  1    

108  55  3025  1  32  88  0  71  2:NOAF  1:AF  2.318  0.856  + 

109  55  3025  0  25  132  184  53  2:NOAF  2:NOAF  ‐31.718  1    

110  55  3025  0  25  85  198  79  2:NOAF  2:NOAF  ‐37.1  1    

111  55  3025  1  27  93  155  67  2:NOAF  2:NOAF  ‐24.811  1    

112  55  3025  1  32  88  0  71  1:AF  1:AF  2.318  0.856    

113  55  3025  1  31  82  0  82  1:AF  1:AF  2.503  0.877    

114  56  3136  1  24  81  174  53  2:NOAF  2:NOAF  ‐29.998  1    

115  56  3136  1  24  90  164  79  2:NOAF  2:NOAF  ‐25.62  1    

116  56  3136  1  27  90  147  65  2:NOAF  2:NOAF  ‐23.659  1    

117  56  3136  0  28  81  162  79  2:NOAF  2:NOAF  ‐31.071  1    

118  56  3136  0  28  83  183  72  2:NOAF  2:NOAF  ‐35.075  1    

119  56  3136  1  32  87  0  70  1:AF  1:AF  2.308  0.853    

120  56  3136  1  32  90  0  72  1:AF  1:AF  2.734  0.899    

121  56  3136  1  33  92  0  92  1:AF  1:AF  4.203  0.975    

122  56  3136  1  30  91  0  91  1:AF  1:AF  4.18  0.974    

123  56  3136  1  31  80  0  80  1:AF  1:AF  2.329  0.855    

124  57  3249  1  26  82  181  66  2:NOAF  2:NOAF  ‐30.24  1    

125  57  3249  1  22  75  157  69  2:NOAF  2:NOAF  ‐26.268  1    

126  57  3249  0  27  82  205  107  2:NOAF  2:NOAF  ‐36.59  1    

127  57  3249  0  25  93  157  77  2:NOAF  2:NOAF  ‐28.854  1    

128  57  3249  1  32  90  0  73  1:AF  1:AF  2.942  0.914    

129  57  3249  1  32  90  0  90  1:AF  1:AF  4.064  0.97    

130  58  3364  1  26  71  136  81  2:NOAF  2:NOAF  ‐22.188  1    

131  58  3364  1  26  90  157  70  2:NOAF  2:NOAF  ‐24.79  1    

132  58  3364  0  5  87  166  70  2:NOAF  2:NOAF  ‐30.436  1    

133  58  3364  1  25  97  128  74  2:NOAF  2:NOAF  ‐18.631  1    

134  58  3364  0  25  95  145  76  2:NOAF  2:NOAF  ‐26.458  1    

135  58  3364  1  24  98  158  72  2:NOAF  2:NOAF  ‐23.958  1    

136  58  3364  1  30  85  140  71  2:NOAF  2:NOAF  ‐22.376  1    

137  58  3364  1  35  82  0  104  2:NOAF  1:AF  4.193  0.973  + 

138  58  3364  0  25  133  148  70  2:NOAF  2:NOAF  ‐23.664  1    

139  58  3364  1  35  82  0  104  1:AF  1:AF  4.193  0.973    

140  58  3364  1  32  88  0  74  1:AF  1:AF  2.942  0.913    

141  58  3364  1  28  90  0  76  1:AF  1:AF  3.458  0.946    

142  58  3364  1  33  91  0  91  1:AF  1:AF  4.311  0.976    

143  58  3364  1  27  91  0  91  1:AF  1:AF  4.593  0.982    
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144  58  3364  1  33  92  0  92  1:AF  1:AF  4.475  0.98    

145  59  3481  0  27  83  194  69  2:NOAF  2:NOAF  ‐36.794  1    

146  59  3481  0  27  108  180  60  2:NOAF  2:NOAF  ‐32.446  1    

147  59  3481  1  28  97  149  72  2:NOAF  2:NOAF  ‐22.524  1    

148  59  3481  0  24  121  0  75  2:NOAF  1:AF  1.999  0.801  + 

149  59  3481  1  36  84  152  66  2:NOAF  2:NOAF  ‐25.104  1    

150  59  3481  1  30  83  209  75  2:NOAF  2:NOAF  ‐34.472  1    

151  59  3481  0  27  92  158  65  2:NOAF  2:NOAF  ‐29.768  1    

152  59  3481  0  20  92  128  75  2:NOAF  2:NOAF  ‐23.439  1    

153  59  3481  0  24  83  164  63  2:NOAF  2:NOAF  ‐31.709  1    

154  59  3481  0  24  121  0  75  1:AF  1:AF  1.999  0.801    

155  59  3481  1  35  83  0  105  1:AF  1:AF  4.475  0.979    

156  59  3481  1  33  83  0  107  1:AF  1:AF  4.701  0.983    

157  59  3481  1  36  86  0  86  1:AF  1:AF  3.468  0.945    

158  59  3481  1  31  91  0  91  1:AF  1:AF  4.523  0.98    

159  60  3600  1  32  93  121  80  2:NOAF  2:NOAF  ‐17.486  1    

160  60  3600  1  24  81  191  84  2:NOAF  2:NOAF  ‐30.482  1    

161  60  3600  1  27  80  144  98  2:NOAF  2:NOAF  ‐21.431  1    

162  60  3600  1  30  91  137  76  2:NOAF  2:NOAF  ‐20.7  1    

163  60  3600  0  24  120  0  74  1:AF  1:AF  1.941  0.788    

164  60  3600  1  36  84  0  105  1:AF  1:AF  4.632  0.982    

165  60  3600  1  32  90  0  90  1:AF  1:AF  4.418  0.978    

166  61  3721  0  28  95  197  80  2:NOAF  2:NOAF  ‐35.273  1    

167  61  3721  0  27  84  178  84  2:NOAF  2:NOAF  ‐32.658  1    

168  61  3721  0  24  90  174  53  2:NOAF  2:NOAF  ‐33.263  1    

169  61  3721  1  27  83  158  73  2:NOAF  2:NOAF  ‐25.185  1    

170  61  3721  1  32  147  147  56  2:NOAF  2:NOAF  ‐18.312  1    

171  61  3721  0  25  122  0  77  1:AF  1:AF  2.382  0.849    

172  61  3721  0  23  121  0  76  1:AF  1:AF  2.312  0.84    

173  61  3721  0  25  124  0  124  1:AF  1:AF  5.68  0.993    

174  61  3721  1  36  87  0  87  1:AF  1:AF  3.832  0.96    

175  62  3844  0  25  102  135  70  2:NOAF  2:NOAF  ‐23.988  1    

176  62  3844  1  23  80  185  75  2:NOAF  2:NOAF  ‐29.883  1    

177  62  3844  1  26  72  169  103  2:NOAF  2:NOAF  ‐26.112  1    

178  62  3844  0  29  110  157  66  2:NOAF  2:NOAF  ‐27.572  1    

179  62  3844  0  24  146  138  64  2:NOAF  2:NOAF  ‐20.559  1    

180  62  3844  1  32  90  172  89  2:NOAF  2:NOAF  ‐26.088  1    

181  62  3844  1  38  97  0  100  2:NOAF  1:AF  5.658  0.993  + 

182  62  3844  0  28  95  181  70  2:NOAF  2:NOAF  ‐33.003  1    

183  62  3844  1  26  81  174  87  2:NOAF  2:NOAF  ‐27.176  1    

184  62  3844  1  26  73  177  77  2:NOAF  2:NOAF  ‐29.154  1    

185  62  3844  0  24  121  0  78  1:AF  1:AF  2.479  0.859    

186  62  3844  1  34  83  0  106  1:AF  1:AF  4.87  0.985    

187  62  3844  0  24  121  0  76  1:AF  1:AF  2.347  0.842    

188  62  3844  1  35  87  0  107  1:AF  1:AF  5.281  0.99    

189  62  3844  1  27  91  0  91  1:AF  1:AF  4.993  0.987    

190  63  3969  0  31  83  180  50  2:NOAF  2:NOAF  ‐35.392  1    

191  63  3969  1  23  79  160  75  2:NOAF  2:NOAF  ‐25.461  1    

192  63  3969  0  26  97  147  89  2:NOAF  2:NOAF  ‐25.337  1    

193  63  3969  1  29  85  165  64  2:NOAF  2:NOAF  ‐26.771  1    

194  63  3969  0  26  91  151  59  2:NOAF  2:NOAF  ‐28.617  1    

195  63  3969  1  25  79  141  63  2:NOAF  2:NOAF  ‐22.965  1    

196  63  3969  1  20  78  140  65  2:NOAF  2:NOAF  ‐22.518  1    

197  63  3969  1  24  94  175  59  2:NOAF  2:NOAF  ‐27.764  1    

198  63  3969  1  34  85  0  109  1:AF  1:AF  5.334  0.99    

199  63  3969  0  25  125  0  81  1:AF  1:AF  3.092  0.917    

200  63  3969  0  24  125  0  125  1:AF  1:AF  6.043  0.995    

201  63  3969  0  25  125  0  125  1:AF  1:AF  5.996  0.995    

202  63  3969  1  36  87  0  87  1:AF  1:AF  3.984  0.964    

203  63  3969  1  33  86  0  86  1:AF  1:AF  3.961  0.963    

204  63  3969  1  35  85  0  85  1:AF  1:AF  3.703  0.952    
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205  63  3969  0  25  123  0  123  1:AF  1:AF  5.668  0.993    

206  64  4096  1  34  87  171  65  2:NOAF  2:NOAF  ‐27.754  1    

207  64  4096  1  37  82  194  85  2:NOAF  2:NOAF  ‐31.159  1    

208  64  4096  1  26  78  162  78  2:NOAF  2:NOAF  ‐25.8  1    

209  64  4096  1  31  62  160  68  2:NOAF  2:NOAF  ‐27.907  1    

210  64  4096  1  30  84  163  78  2:NOAF  2:NOAF  ‐25.578  1    

211  64  4096  0  26  85  154  70  2:NOAF  2:NOAF  ‐28.955  1    

212  64  4096  1  31  80  157  62  2:NOAF  2:NOAF  ‐26.005  1    

213  64  4096  0  21  74  0  63  2:NOAF  2:NOAF  ‐2.848  0.973    

214  64  4096  0  24  94  162  81  2:NOAF  2:NOAF  ‐28.677  1    

215  64  4096  0  23  87  131  61  2:NOAF  2:NOAF  ‐25.118  1    

216  64  4096  0  25  83  0  65  2:NOAF  2:NOAF  ‐2.022  0.94    

217  64  4096  1  23  74  0  80  1:AF  1:AF  2.917  0.899    

218  64  4096  0  23  124  0  124  1:AF  1:AF  5.984  0.995    

219  65  4225  1  28  68  200  82  2:NOAF  2:NOAF  ‐33.328  1    

220  65  4225  0  24  87  137  63  2:NOAF  2:NOAF  ‐26.055  1    

221  65  4225  0  21  85  161  78  2:NOAF  2:NOAF  ‐29.392  1    

222  65  4225  0  29  100  139  63  2:NOAF  2:NOAF  ‐25.372  1    

223  65  4225  0  22  98  199  102  2:NOAF  2:NOAF  ‐33.345  1    

224  65  4225  1  20  85  143  68  2:NOAF  2:NOAF  ‐22.064  1    

225  65  4225  1  23  74  0  82  1:AF  1:AF  3.095  0.912    

226  65  4225  0  26  122  0  78  1:AF  1:AF  2.657  0.872    

227  65  4225  1  34  87  0  87  1:AF  1:AF  4.182  0.969    

228  65  4225  0  25  126  0  126  1:AF  1:AF  6.264  0.996    

229  65  4225  1  34  88  0  88  1:AF  1:AF  4.346  0.973    

230  66  4356  0  25  87  157  57  2:NOAF  2:NOAF  ‐30.024  1    

231  66  4356  1  33  153  156  64  2:NOAF  2:NOAF  ‐18.555  1    

232  66  4356  1  23  73  0  81  2:NOAF  1:AF  2.965  0.899  + 

233  66  4356  1  48  99  154  94  2:NOAF  2:NOAF  ‐22.216  1    

234  66  4356  0  29  86  164  88  2:NOAF  2:NOAF  ‐29.51  1    

235  66  4356  1  21  72  164  71  2:NOAF  2:NOAF  ‐26.891  1    

236  66  4356  1  26  80  188  59  2:NOAF  2:NOAF  ‐31.406  1    

237  66  4356  1  27  76  160  66  2:NOAF  2:NOAF  ‐26.399  1    

238  66  4356  1  23  73  0  81  1:AF  1:AF  2.965  0.899    

239  66  4356  1  23  77  0  77  1:AF  1:AF  3.093  0.911    

240  66  4356  0  24  123  0  123  1:AF  1:AF  5.853  0.994    

241  67  4489  0  23  90  184  81  2:NOAF  2:NOAF  ‐32.836  1    

242  67  4489  0  26  97  144  93  2:NOAF  2:NOAF  ‐24.379  1    

243  67  4489  0  23  109  175  63  2:NOAF  2:NOAF  ‐30.56  1    

244  67  4489  0  29  106  173  69  2:NOAF  2:NOAF  ‐30.384  1    

245  67  4489  1  27  87  158  61  2:NOAF  2:NOAF  ‐25.273  1    

246  67  4489  1  19  78  180  81  2:NOAF  2:NOAF  ‐28.375  1    

247  67  4489  1  24  72  0  80  1:AF  1:AF  2.776  0.879    

248  67  4489  1  26  90  0  84  1:AF  1:AF  4.71  0.98    

249  67  4489  1  33  88  0  111  1:AF  1:AF  5.967  0.994    

250  67  4489  1  24  77  0  77  1:AF  1:AF  3.068  0.907    

251  68  4624  0  27  170  192  63  2:NOAF  2:NOAF  ‐27.786  1    

252  68  4624  1  21  78  159  86  2:NOAF  2:NOAF  ‐24.391  1    

253  68  4624  0  20  79  170  69  2:NOAF  2:NOAF  ‐32.063  1    

254  68  4624  1  29  146  200  61  2:NOAF  2:NOAF  ‐27.051  1    

255  68  4624  1  25  76  0  84  1:AF  1:AF  3.395  0.929    

256  68  4624  1  23  77  0  77  1:AF  1:AF  3.125  0.909    

257  68  4624  0  25  123  0  123  1:AF  1:AF  5.838  0.993    

258  69  4761  0  24  82  145  80  2:NOAF  2:NOAF  ‐26.783  1    

259  69  4761  1  28  75  156  98  2:NOAF  2:NOAF  ‐23.69  1    

260  69  4761  1  25  74  159  81  2:NOAF  2:NOAF  ‐25.303  1    

261  69  4761  0  23  123  193  50  2:NOAF  2:NOAF  ‐33.242  1    

262  69  4761  1  25  77  0  84  1:AF  1:AF  3.491  0.934    

263  69  4761  1  25  77  0  77  1:AF  1:AF  3.029  0.899    

264  70  4900  1  35  76  187  89  2:NOAF  2:NOAF  ‐30.047  1    

265  70  4900  0  26  105  178  93  2:NOAF  2:NOAF  ‐29.653  1    
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266  70  4900  1  33  76  165  88  2:NOAF  2:NOAF  ‐26.103  1    

267  70  4900  0  25  93  118  92  2:NOAF  2:NOAF  ‐20.168  1    

268  70  4900  0  22  80  149  120  2:NOAF  2:NOAF  ‐24.971  1    

269  70  4900  1  26  74  0  82  1:AF  1:AF  3.004  0.894    

270  70  4900  1  24  76  0  76  1:AF  1:AF  2.898  0.884    

271  71  5041  1  23  78  195  98  2:NOAF  2:NOAF  ‐30.143  1    

272  71  5041  1  27  82  294  68  2:NOAF  2:NOAF  ‐49.541  1    

273  71  5041  0  18  71  158  92  2:NOAF  2:NOAF  ‐29.141  1    

274  71  5041  1  30  82  182  83  2:NOAF  2:NOAF  ‐28.756  1    

275  71  5041  1  25  79  0  79  1:AF  1:AF  3.317  0.919    

276  71  5041  1  25  91  0  91  1:AF  1:AF  5.285  0.988    

277  71  5041  1  32  89  0  89  1:AF  1:AF  4.628  0.977    

278  72  5184  1  27  77  142  57  2:NOAF  2:NOAF  ‐23.739  1    

279  72  5184  0  26  90  180  71  2:NOAF  2:NOAF  ‐32.995  1    

280  72  5184  0  25  77  172  84  2:NOAF  2:NOAF  ‐31.94  1    

281  72  5184  1  25  93  177  61  2:NOAF  2:NOAF  ‐28.043  1    

282  72  5184  1  27  79  152  68  2:NOAF  2:NOAF  ‐24.597  1    

283  72  5184  0  24  85  168  58  2:NOAF  2:NOAF  ‐32.113  1    

284  72  5184  1  23  82  140  63  2:NOAF  2:NOAF  ‐22.309  1    

285  73  5329  0  23  91  154  66  2:NOAF  2:NOAF  ‐28.508  1    

286  73  5329  1  29  137  164  80  2:NOAF  2:NOAF  ‐20.401  1    

287  73  5329  1  31  82  136  103  2:NOAF  2:NOAF  ‐19.383  1    

288  73  5329  0  21  104  0  64  2:NOAF  2:NOAF  0.14  0.689    

289  73  5329  1  25  76  0  76  1:AF  1:AF  2.737  0.857    

290  74  5476  0  25  106  165  61  2:NOAF  2:NOAF  ‐29.482  1    

291  74  5476  0  23  84  175  44  2:NOAF  2:NOAF  ‐34.446  1    

292  75  5625  1  23  73  159  89  2:NOAF  2:NOAF  ‐25.043  1    

293  75  5625  1  22  81  180  65  2:NOAF  2:NOAF  ‐29.534  1    

294  75  5625  1  23  163  147  72  2:NOAF  2:NOAF  ‐15.209  1    

295  75  5625  1  28  82  176  77  2:NOAF  2:NOAF  ‐28.214  1    

296  76  5776  1  24  71  186  63  2:NOAF  2:NOAF  ‐31.894  1    

297  77  5929  0  28  98  0  59  2:NOAF  2:NOAF  ‐1.427  0.922    

298  78  6084  0  20  97  121  75  2:NOAF  2:NOAF  ‐21.741  1    

299  78  6084  1  27  79  127  75  2:NOAF  2:NOAF  ‐20.165  1    

300  79  6241  1  27  93  178  74  2:NOAF  2:NOAF  ‐28.059  1    

301  80  6400  0  28  93  183  80  2:NOAF  2:NOAF  ‐33.471  1    

302  80  6400  0  27  90  201  67  2:NOAF  2:NOAF  ‐37.78  1    

303  81  6561  1  22  86  191  76  2:NOAF  2:NOAF  ‐30.972  1    

304  83  6889  1  21  84  186  84  2:NOAF  2:NOAF  ‐30.031  1    

 

Table 38: Dataset containing 80 A-Fib episodes and 204 Non A-Fib cases 

Raw results from WEKA tool: 
 
Scheme:      weka.classifiers.functions.Logistic -R 1.0E-8 -M -1 
Relation:     arrhythmia 

Instances:    304 

Attributes:   8 

              age 

              ageage 

              sex 

              BMI 



 

180 

              QRSduration 

              PRinterval 

              heartrate 

              class 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

 

Logistic Regression with ridge parameter of 1.0E-8 

Coefficients... 

                  Class 

Variable             AF 

======================= 

age                0.8203 

ageage             -0.0062 

sex                 4.7368 

BMI              -0.0471 

QRSduration      0.0982 

PRinterval        -0.1776 

heartrate            0.0657 

Intercept        -41.1751 

 

Odds Ratios... 

                  Class 

Variable             AF 

======================= 

age               2.2712 

ageage            0.9938 

sex             114.0704 

BMI                0.954 

QRSduration   1.1032 

PRinterval       0.8372 
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heartrate         1.0679 

 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         296               97.3684 % 

Incorrectly Classified Instances         8                2.6316 % 

Kappa statistic                           0.9337 

Mean absolute error                       0.046  

Root mean squared error                   0.1521 

Relative absolute error                  11.8332 % 

Root relative squared error              34.543  % 

Total Number of Instances               304      

 

=== Detailed Accuracy By Class === 

 

               TP Rate    FP Rate   Precision    Recall   F-Measure    ROC Area   Class 

                 0.988      0.031       0.919      0.988     0.952       0.986      AF 

                 0.969      0.013       0.995      0.969     0.982       0.986      NOAF 

                 0.974       0.017       0.975     0.974      0.974       0.986        Weight. Ave. 

 

=== Confusion Matrix === 

 

   a    b    <-- classified as 

  79   1  |   a = AF 

   7 217 |   b = NOAF 

 
BMI calculations:  

Since the Body Mass Index (BMI) depends on weight and height, we use only BMI in the 

model in order to avoid collinearity. 

	ܫܯܤ ൌ 	
ሺ݇݃ሻ	ݐ݄ܹ݃݅݁
ଶሺ݉ଶሻݐ݄݃݅݁ܪ
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No. 
Height 
(m) 

Weight 
(kg) 

BMI 
Kg/m2 

No. 
Height
(m) 

Weight
(kg) 

BMI 
Kg/m2 

No. 
Height 
(m) 

Weight 
(kg) 

BMI 
Kg/m2 

1  1.7  55  19  102  1.7  78  27  203  1.68  93  33 

2  1.61  78  30  103  1.61  67  26  204  1.61  91  35 

3  1.61  65  25  104  1.55  77  32  205  1.67  70  25 

4  1.69  43  15  105  1.68  79  28  206  1.55  82  34 

5  1.63  53  20  106  1.74  94  31  207  1.54  88  37 

6  1.61  57  22  107  1.84  105  31  208  1.61  67  26 

7  1.66  63  23  108  1.56  78  32  209  1.61  80  31 

8  1.71  73  25  109  1.73  75  25  210  1.56  73  30 

9  1.66  77  28  110  1.7  72  25  211  1.66  72  26 

10  1.6  54  21  111  1.61  70  27  212  1.57  76  31 

11  1.51  64  28  112  1.56  78  32  213  1.73  63  21 

12  1.73  75  25  113  1.71  91  31  214  1.71  70  24 

13  1.65  65  24  114  1.63  64  24  215  1.62  60  23 

14  1.55  58  24  115  1.65  65  24  216  1.59  63  25 

15  1.66  85  31  116  1.64  73  27  217  1.63  61  23 

16  1.66  58  21  117  1.69  80  28  218  1.71  67  23 

17  1.71  73  25  118  1.71  82  28  219  1.56  68  28 

18  1.5  45  20  119  1.57  79  32  220  1.81  79  24 

19  1.65  95  35  120  1.56  78  32  221  1.76  65  21 

20  1.59  53  21  121  1.58  82  33  222  1.71  85  29 

21  1.56  63  26  122  1.71  88  30  223  1.73  66  22 

22  1.71  76  26  123  1.72  92  31  224  1.58  50  20 

23  1.84  95  28  124  1.66  72  26  225  1.62  60  23 

24  1.77  72  23  125  1.64  59  22  226  1.69  74  26 

25  1.58  50  20  126  1.66  74  27  227  1.64  92  34 

26  1.88  85  24  127  1.72  74  25  228  1.66  69  25 

27  1.59  63  25  128  1.58  80  32  229  1.61  88  34 

28  1.71  76  26  129  1.58  80  32  230  1.67  70  25 

29  1.6  74  29  130  1.62  68  26  231  1.56  80  33 

30  1.61  70  27  131  1.7  75  26  232  1.62  60  23 

31  1.64  62  23  132  1.9  18  5  233  1.61  124  48 

32  1.61  52  20  133  1.55  60  25  234  1.68  82  29 

33  1.55  55  23  134  1.77  78  25  235  1.59  53  21 
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34  1.68  68  24  135  1.61  62  24  236  1.54  62  26 

35  1.58  55  22  136  1.47  65  30  237  1.61  70  27 

36  1.53  75  32  137  1.6  90  35  238  1.62  60  23 

37  1.77  75  24  138  1.61  65  25  239  1.66  63  23 

38  1.64  54  20  139  1.6  90  35  240  1.7  69  24 

39  1.87  91  26  140  1.58  80  32  241  1.71  67  23 

40  1.56  71  29  141  1.7  81  28  242  1.75  80  26 

41  1.63  85  32  142  1.59  83  33  243  1.68  65  23 

42  1.66  80  29  143  1.74  82  27  244  1.64  78  29 

43  1.67  56  20  144  1.58  82  33  245  1.59  68  27 

44  1.58  60  24  145  1.61  70  27  246  1.67  53  19 

45  1.7  84  29  146  1.59  68  27  247  1.59  61  24 

46  1.64  86  32  147  1.6  72  28  248  1.62  68  26 

47  1.58  65  26  148  1.65  65  24  249  1.65  90  33 

48  1.62  100  38  149  1.62  94  36  250  1.63  64  24 

49  1.78  86  27  150  1.55  72  30  251  1.61  70  27 

50  1.66  77  28  151  1.66  74  27  252  1.68  59  21 

51  1.51  48  21  152  1.61  52  20  253  1.63  53  20 

52  1.62  55  21  153  1.76  74  24  254  1.46  62  29 

53  1.74  94  31  154  1.65  65  24  255  1.62  66  25 

54  1.67  56  20  155  1.61  91  35  256  1.67  64  23 

55  1.63  88  33  156  1.65  90  33  257  1.73  75  25 

56  1.55  55  23  157  1.62  94  36  258  1.77  75  24 

57  1.64  70  26  158  1.6  79  31  259  1.59  71  28 

58  1.57  62  25  159  1.61  83  32  260  1.54  59  25 

59  1.56  95  39  160  1.59  61  24  261  1.62  60  23 

60  1.79  80  25  161  1.55  65  27  262  1.61  65  25 

61  1.83  77  23  162  1.58  75  30  263  1.64  67  25 

62  1.64  91  34  163  1.66  66  24  264  1.6  90  35 

63  1.6  54  21  164  1.57  89  36  265  1.64  70  26 

64  1.68  73  26  165  1.6  82  32  266  1.6  84  33 

65  1.68  62  22  166  1.84  95  28  267  1.79  80  25 

66  1.69  66  23  167  1.7  78  27  268  1.65  60  22 

67  1.65  87  32  168  1.71  70  24  269  1.61  67  26 

68  1.66  88  32  169  1.53  63  27  270  1.65  65  24 

69  1.67  67  24  170  1.55  77  32  271  1.56  56  23 
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70  1.59  73  29  171  1.62  66  25  272  1.63  72  27 

71  1.72  80  27  172  1.67  64  23  273  1.7  52  18 

72  1.85  96  28  173  1.67  70  25  274  1.65  82  30 

73  1.73  90  30  174  1.62  95  36  275  1.64  67  25 

74  1.61  106  41  175  1.7  72  25  276  1.66  69  25 

75  1.62  58  22  176  1.62  60  23  277  1.69  91  32 

76  1.65  65  24  177  1.64  70  26  278  1.61  70  27 

77  1.64  86  32  178  1.71  85  29  279  1.69  74  26 

78  1.61  83  32  179  1.74  73  24  280  1.72  74  25 

79  1.65  76  28  180  1.56  78  32  281  1.65  68  25 

80  1.88  95  27  181  1.7  110  38  282  1.61  70  27 

81  1.7  87  30  182  1.78  89  28  283  1.63  64  24 

82  1.65  87  32  183  1.58  65  26  284  1.55  55  23 

83  1.55  70  29  184  1.64  70  26  285  1.66  63  23 

84  1.66  80  29  185  1.67  67  24  286  1.58  72  29 

85  1.56  104  43  186  1.62  89  34  287  1.61  80  31 

86  1.56  104  43  187  1.68  68  24  288  1.66  58  21 

87  1.55  55  23  188  1.58  87  35  289  1.66  69  25 

88  1.74  82  27  189  1.74  82  27  290  1.72  74  25 

89  1.68  90  32  190  1.61  80  31  291  1.71  67  23 

90  1.69  91  32  191  1.64  62  23  292  1.55  55  23 

91  1.74  85  28  192  1.75  80  26  293  1.55  53  22 

92  1.55  70  29  193  1.55  70  29  294  1.6  59  23 

93  1.62  60  23  194  1.74  79  26  295  1.63  74  28 

94  1.61  70  27  195  1.59  63  25  296  1.5  54  24 

95  1.67  86  31  196  1.64  54  20  297  1.66  77  28 

96  1.7  90  31  197  1.68  68  24  298  1.52  46  20 

97  1.72  92  31  198  1.63  90  34  299  1.61  70  27 

98  1.7  90  31  199  1.65  68  25  300  1.49  60  27 

99  1.72  95  32  200  1.7  69  24  301  1.74  85  28 

100  1.7  58  20  201  1.66  69  25  302  1.61  70  27 

101  1.59  63  25  202  1.6  92  36  303  1.65  60  22 

 
        304  1.62  55  21 

Table 39: BMI calculations
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