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Fads models for stocks under asymmetric information in a purely continuous(GBM)

market were first studied by P. Guasoni (2006), where optimal portfolios and maximum

expected logarithmic utilities, including asymptotic utilities for the informed and

uninformed investors, were presented. We generalized this theory to Lévy markets,

where stock prices and the process modeling the fads are allowed to include a jump

component, in addition to the usual continuous component. We employ the methods

of stochastic calculus and optimization to obtain analogous results to those obtained in

the purely continuous market. We approximate optimal portfolios and utilities using

the instantaneous centralized and quasi–centralized moments of the stocks percentage

returns. We also link the random portfolios of the investors, under asymmetric

information to the purely deterministic optimal portfolio, under symmetric information.
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Chapter 1

Introduction

Fads models for stocks under asymmetric information were first studied by Shiller

[47] and Summers [49] in a purely deterministic setting. Guasoni [21] extended

this theory to the purely continuous random environment, where stock prices follow

Geometric Brownian Motion (GBM). There are two investors trading in the market–

the uninformed and informed investors, tagged by the superscripts i = 0 and i = 1,

respectively.

Guasoni [21] gave optimal portfolios and maximum expected logarithmic utilities,

including asymptotic utilities for both uninformed and informed investors. He also

gave the excess asymptotic utility of the informed investor, which takes the form:

λ
2
p (1 − p)T , where T is the long run investment horizon, λ is the mean reverting

rate of the fads process, and p ∈ [0, 1] is a measure of the lack of fads in the market,

where p = 1 means the market is 100% free of fads.

In this dissertation, we generalize the theory of fads/mispricing models of stocks

under asymmetric information in two important ways.

First, we allow the stock price dynamic to have a jump component driven by a

1



pure jump Lévy process, while the process that models the mispricing/fads remains

as a continuous mean-reverting Ornstein–Uhlenbeck process, similar to the one used

in Guasoni [21].

Secondly, we allow both the stock price dynamic and the process modelling the fads

to have Lévy jumps. In this case the fads process includes a pure jump component

driven by a zero mean Lévy process, in addition to its usual continuous mean reverting

O–U component. We employ the methods of stochastic calculus and optimization to

obtain analogous results as in the purely continuous case studied by Guasoni [21].

Organization

The dissertation is organized as follows:

Chapter 2 reviews purely continuous fads models under asymmetric information

where stocks follow GBM, and utility functions are logarithmic. Optimal portfolios

and asymptotic (excess) utilities are presented. We review important properties of

Lévy processes and general jump processes useful to our research. We also give a

brief review of important Lévy processes used in financial applications, such as the

celebrated Merton jump diffusion and the Variance Gamma processes. Results for

which proofs are provided, are our contribution.

Chapter 3 extends the theory of fads models for stocks under asymmetric inform

–ation to the jump case. Jumps are modelled by pure jump Lévy processes, while

the fads are represented by a purely continuous mean–reverting O–U process driven

by a standard Brownian motion, as in Guasoni [21]. We obtain optimal portfolios

2



and maximum expected logarithmic utilities for both the informed and uninformed

investors, including asymptotic excess utility of the form λ̃
2
p (1 − p)T , which is

analogous to the result obtained by Guasoni [21] in the purely continuous case. We

also link the random portfolios of the investors to the symmetric, purely deterministic

optimal portfolios of Lévy diffusion markets having deterministic market coefficients.

We also study the pure jump Lévy market which results when there is no diffusive

coefficient.

Chapter 4 generalizes the work done in Chapter 3. In this case, stocks are

still subjected to Lévy jumps, but the mispricing/fads process is no longer purely

continuous. Instead, we add an innovation–a pure jump component that is driven by

a zero mean pure jump Lévy process independent of the Lévy process driving the

stock. We solve this model for both investors, obtaining similar optimal portfolios

and maximum expected logarithmic utilities, and asymptotics, as in Chapter 3.

Chapter 5 gives a detailed account of specific Lévy markets having diffusive

coefficients and deterministic market coefficients µt, rt, and σ2
t . We study the Kou

jump diffusion market; the Variance Gamma market, which is a form of the CGMY

market; the Double Poisson and m–double Poisson markets, which are theorectical

(toy) models. We obtain optimal portfolios and their approximations based on an

indepth study of the instantaneous centralized return moments Mk, k ∈ N, for each

process. We show that the optimal portfolios are fixed points of functions and

polynomials created from the Mks, which are dependents of the Lévy measure of the

jump process driving the market. We obtain interesting combinatorial identities as a

by-product of the instantaneous centralized moments of the Kou [30] jump diffusion

model. The combinatorial identities are contained in Appendix A.

3



Chapter 6 uses quasi–centralized momentsMa
k =

∫
Ra

(1−e−x)kv(x) dx, a ∈ {+,−},

which are always positive, to give an alternative method of approximation of the

optimal portfolios and utilities of the investors. The partial objective function G′(π)

is expressed as the sum of two convergent Taylor series, expanded about π = 0 and

π = 1, respectively. We truncate these series at a suitable point k, yielding an

approximation:

G′(π) = Σk
j=1M

+
j (1− π)j − Σk

j=1M
−
j π

j, π ∈ [0, 1].

Athough this approach uses two independent series expansions to approximate G′(π),

it does not depend on an integer k, for which
∫∞

0
(ejx − 1)v(x) dx < ∞, for each

integer 0 ≤ j ≤ k, as required when instantaneous centralized moments Mk are used

(cf Chapter 5). We therefore propose that this method of approximation is more

suitable for the cases where Mk exists only for small values of k, such as k ≤ 4. A

typical case is that of the Kou [30] model for 1 ≤ η+ ≤ 4. When Mk exist for k > 4,

we use the usual instantaneous centarlized moments of returns approximation, with

G′(π) = Σk
j=1(−1)j−1Mj π

j.

Chapter 7 outlines future research possibilities and presents some numerical findings.

Appendix A presents some combinatorial identities derived from the Kou jump

diffusion model, and proofs of the analytic formula for G′(π) and G′′(π).

Appendix B gives a detailed study of the CGMY diffusion market. We give details

of the optimal portfolios and maximum expected utilities for this market.

4



Chapter 2

Review of Continuous Fads Models

and Lévy Processes

with Applications in Finance

2.1 Part I: Continuous–Time Fads Models

In this chapter, we present an overview of asymmetric information in fads models

in a purely continuous random market– that is, in a market where stock prices and

fads move continuously, without jumping. Discrete-time fads/mispricing models were

first introduced by Shiller [47] in 1981 and by Summers [49] in 1986, as plausible

alternatives to the efficient market/constant expected returns assumption (cf Fama

[20]).

In 1993, Wang [53] gave a model of intertemporal/continuous–time asset prices

under asymmetric information. In this paper, investors have different information

concerning the future growth rate of dividends, which satisfies a mean–reverting

Ornstein–Uhlenbeck process. Informed investors know the future dividend growth

rate, while the uninformed investors do not. All the investors observe current dividend

5



payments and stock prices. The growth rate of dividends determines the rate of

appreciation of stock prices, and stock prices changes provide signals about the future

growth of dividends. Uninformed investors rationally extract information about the

economy from prices, as well as dividends.

It is shown that asymmetry among investors can increase price volatility and

negative autocorrelation in returns; that is, we have mean–reverting behavior of stock

prices. Thus imperfect information of some investors can cause stock prices to be

more volatile than in the symmetric case, when all investors are perfectly informed. In

addition, uninformed investors may rationally behave like price chasers, by employing

technical analysis for trading.

In 2001, Brunnermeier [11] presented an extensive review of asset pricing under

asymmetric information mainly in the discrete setting. He shows how information

affects trading activity, and that expected returns depend on the information set or

filtration of the investor. These models show that past prices still carry valuable

information, which can be exploited using technical/chart analysis, which uses part

or all of past prices to predict future prices.

In 2006, Guasoni [21] extended Summers’ model to the purely continuous random

setting using stochatic calculus. He developed models of stock price evolution for two

disjoint classes of investors; the informed and uninformed investors. The informed

investor, indexed by i = 1, observes both the fundamental and market values of the

stock, while the so–called uninformed investor, indexed by i = 0, observes market

prices only. Both investors have filtrations or information banks F i, i ∈ {0, 1} with

F0 ⊂ F1 ⊂ F ,
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where F is a fixed σ–algebra.

The problem of the maximization of expected logarithmic utility from terminal

wealth was solved for each investor, and an explicit formula for the asymptotic excess

utility of the informed investor is presented. Fads are represented by a mean–reverting

Ornstein– Uhlenbeck process U , with reversion rate λ > 0. The results in this chapter

provide the background for the extension to the Lévy market, where stock prices are

allowed to jump. We present this generalization in Chapter 3. All proof presented in

this, and subsequent chapters, are the author’s.

2.2 The Model

The model consists of two assets–a riskless asset B called bond, bank account or

money market, and a risky asset S called stock. The bond earns a continuously

compounded risk–free interst rate rt, while the stock has total percentage appreciation

rate or expected returns µt, at time t ∈ [0, T ]. The stock is subject to volatility

σt > 0. The market parameters are µt, rt, σt, t ∈ [0, T ], and are assumed to be

deterministic functions. We have Standing Assumptions :

(1) T > 0, is the investment horizon; all transactions take place in [0, T ].

(2) The market parameters r, µ, σ2 are Lebesque integrable.

(3) The stock’s Sharpe ratio or market price of risk θ, is square integrable.

(4) The risky asset S lives on a probability space (Ω, F , P) on which is defined two

independent standard Brownian motions W = (Wt)t≥0 and B = (Bt)t≥0. F is an

sigma–algebra of subsets of Ω, and P is the “real–world” probability measure on F .

(5) Fads or mispricings are modelled by the a mean–reverting Ornstein–Uhlenbeck

(O–U) process U = (Ut)t≥0 with mean–reversion rate or speed λ.
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(6) Informed and uninformed investors are represented by the indices “1”, and “0”,

respectively.

2.2.1 The Price Dynamics

The bond B has price

Bt = exp

(∫ t

0

rsds

)
,

while the stock S has log returns dynamic

d(logSt) = (µt −
1

2
σ2
t )dt+ σtdYt, t ∈ [0, T ], (2.2.1)

where

Yt = pWt + q Ut, p2 + q2 = 1, p ≥ 0, q ≥ 0, (2.2.2)

and

dUt = −λUtdt+ dBt, U0 = 0, λ > 0. (2.2.3)

Applying Itô’s transformation formula to (2.2.1) gives percentage returns dynamic

for the stock:

dSt
St

= µtdt+ σtdYt, t ∈ [0, T ]. (2.2.4)

Observe that µt is the expected percentage returns on the stock, while σtdYt

is the excess percentage returns. The fads or mispricing process U is a mean–

reverting Ornstein–Uhlenbeck process with speed λ, which is the unique solution of

the Langevin stochastic differential equation: (2.2.3) with explicit solution

Ut = U0 e
−λt +

∫ t

0

e−λ(t−s)dBs, t ∈ [0, T ]. (2.2.5)
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If the speed λ is close to zero, mean reversion is slow and there is a high likelihood of

fads, while if λ >> 0, the mispricing reverts rapidly, thereby reducing any advantages

of fads. 100q2 % is the percentage of fads in the market. Equation (2.2.1) and

equivalently, (2.2.4), has unique solution

St = S0 exp

(∫ t

0

(µs −
1

2
σ2
s)ds+

∫ t

0

σsdYs

)
, t ∈ [0, T ]. (2.2.6)

By imposing (2.2.3) on (2.2.2), we see that Y is a combination of a martingale W ,

which represents permanent price shocks, and U the mean–reverting O–U process,

which repesents temporary shocks. If λ = 0 or q = 0, (and µt and σt are constants)

we revert to the usual Geometric Brownian Motion (GBM) of Merton [36].

From (2.2.5) it is easy to show that if U0 6= 0, then

E[Ut] = U0 e
−λt, E[U2

t ] =
1− e−2λt

2λ
+ U2

0 e
−2λt, Var[Ut] =

1− e−2λt

2λ
, (2.2.7)

with E[Ut] −→ 0, and Var[Ut] −→ 1
2λ

, as t −→ ∞. If U0 = 0 then E[Ut] = 0, and

from (2.2.5)

Ut =

∫ t

0

e−λ(t−s)dBs, t ∈ [0, T ]. (2.2.8)

2.3 Filtrations or Information Flows of Investors

Definition 2.1. Let X = (Xt)t≥0 be a process defined on (Ω, F , P). Its natural

filtration FX = (FXt )t≥0 is the sub–σ algebra of F generated by X, and is given by

FXt
4
= σ(Xs : s ≤ t) = {X−1(A) ⊂ Ω : A ∈ B(R)}. (2.3.1)

FXt is the information generated by X up to time t. It is the smallest σ–field relative

to which Xt is measurable.

9



2.3.1 Augmentation

We can make FXt right–continuous and complete by augmenting it withN , the P–null

sets of F , given by

N = {A ⊂ Ω : ∃B ∈ F , A ⊂ B, P(B) = 0}. (2.3.2)

The augmented filtration of X is σ (FX ∨ N ). FX is complete if it contains the

P–null sets of F . This is achieved if N ⊂ FX0 . A filtration (Ft) is right continuous

if

Ft+ = Ft, where Ft+ =
⋂
s>t

Fs. (2.3.3)

In the sequel, we assume that all filtrations (Ft) are right–continuous and complete.

In this case, we say the filtration satisfies the usual hypothesis. Thus FX = (FXt )t≥0

will denote the complete right–continuous filtration generated by X on (Ω, F , P).

The informed investor observes the pair (S, U), while the uninformed investor

observes only the stock price S.

Definition 2.2 (Filtrations of Investors). Let F1 = (F1
t )t≥0 and F0 = (F0

t )t≥0 be

the filtrations generated by (S, U) and S, respectively. That is, for each t ∈ [0, T ]

F1
t

4
= σ (Ss, Us : s ≤ t) = FS,Ut . (2.3.4)

F0
t

4
= σ (Ss : s ≤ t) = FSt . (2.3.5)

F1 and F0 are the respective information flows of the informed and uninformed

investors. Equivalently, since W and B generate S and U for the informed investor,
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while Y generates S for the uninformed investor, then

F1
t

4
= σ (Ws, Bs : s ≤ t) = FS,Ut . (2.3.6)

F0
t

4
= σ (Ys : s ≤ t) = FYt . (2.3.7)

Clearly

F0 ⊂ F1 ⊂ F ⇐⇒ F0
t ⊂ F1

t , t ∈ [0, T ]. (2.3.8)

The market participants can be classified in accordance to their respective information

flows. Those with access to F1, are called informed investors–they observed both the

fundamental and market prices of the risky asset.

Those with access to F0 only, are called uninformed investors–they observe market

prices only. These uninformed investors know that there are fads/mispricing in the

market but cannot observe them directly. Consequently, these uninformed investors

resort to technical analysis for trading strategies. Information asymmetry results if

F1 6= F0. Otherwise, we have a informationally symmetric market in which investors

have equal knowledge.

2.4 The Stock Price Dynamic for the Investors

It follows from (2.2.4), that for both investors the general percentage returns for the

stock has dynamic

dSt
St

= µt dt+ σt dYt. (2.4.1)

We will rewrite this dynamic relative to the filtration of each investor.
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2.4.1 Price Dynamic for the Informed Investor

From equations (2.2.2) and (2.2.3), we have

dYt = p dWt + q dUt

= p dWt + q d(−λUtdt+ dBt)

= p dWt + q dBt − q λUtdt

= dB1
t + υ1

t dt, (2.4.2)

where

B1
t

4
= pWt + q Bt (2.4.3)

υ1
t

4
= −q λUt. (2.4.4)

Substituting (2.4.3) into (2.4.1), yields

dSt
St

= µtdt+ σtdYt

= µtdt+ σt(dB
1
t + υ1

t dt)

= (µt + υ1
t σt)dt+ σtdB

1
t

= µ1
t dt+ σtdB

1
t , (2.4.5)

where

µ1
t

4
= µt + υ1

t σt. (2.4.6)

So under F1, the informed investor has price dynamic (2.4.5) with price

St = S0 exp

(∫ t

0

(µ1
s −

1

2
σ2
s)ds+

∫ t

0

σsdB
1
s

)
, t ∈ [0, T ], (2.4.7)
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where B1 is an F1–Brownian motion given by (2.4.3) and µ1
t is given by (2.4.6).

2.4.2 Price Dynamic for the Uninformed Investor

Using the Hitsuda [24] representation of Gaussian processes (see Cheridito [14]),

Guasoni [21] obtained F0–Brownian motion B0 and process υ0, such that the dynamic

of the uninformed investor is

dSt
St

= µ0
tdt+ σtdB

0
t , (2.4.8)

with price

St = S0 exp

(∫ t

0

(µ0
s −

1

2
σ2
s)ds+

∫ t

0

σsdB
0
s

)
, t ∈ [0, T ], (2.4.9)

where

µ0
t

4
= µt + υ0

t σt, (2.4.10)

and υ0
t and γ(s) are defined in the following theorem.

Theorem 2.1 (Guasoni [21], Theorem 2.1). Let (Ω, F , P) be a probability space

on which independent Brownian motions W and B are defined. Let F0 = (F0
t )t≥0 ≡

(FYt )t≥0 be the filtration generated by Y satisfying the usual hypothesis. Define a

function ψ : [0,∞) −→ R by the prescription:

ψ(t) =

∫ t

0

γ(s)ds = −1

λ
log (cosh(λpt) + p sinh(λpt)) , (2.4.11)

where

γ(s) = ψ′(s) =
1− p2

1 + p tanh(pλs)
− 1. (2.4.12)

Then, we can construct an F0– Brownian motion B0 = (B0
t ) on (Ω, F , P) such that
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in terms of Ys : s ≤ t,

B0
t = Yt +

∫ t

0

φ0
sds, (2.4.13)

where

φ0
s

4
= λ(γ(s) + 1)Ys + λ2

∫ s

0

(γ(s) + p2)eλ(ψ(s)−ψ(u))Yudu

= λ

∫ s

0

eλ(ψ(s)−ψ(u))(1 + γ(s))dYu. (2.4.14)

The semi–martingale decomposition of Y under F0 is:

Yt = B0
t +

∫ t

0

υ0
sds, (2.4.15)

where υ0
t is given by

υ0
t

4
= −λ

∫ t

0

e−λ (t−s)(1 + γ(s)) dB0
s . (2.4.16)

Its canonical representation is:

Yt =

∫ t

0

(
e−λ (t−s)(1 + γ(s))− γ(s)

)
dB0

s . (2.4.17)

Remark 2.1. Observe from equations (2.4.13) and (2.4.15) that φ0 = −υ0, and

hence the drift µ0
t = µt + υ0

t σt, depends on the entire past history of Yu, u ≤ t,

and therefore depends on the entire history of the stock price Su up to time t ≥ u.

Thus for the uninformed investor, optimal trading involves a knowledge of past prices,

which suggest that trading must rely on technical analysis. γ(u) is the solution of

the Cauchy equation:

γ′(s) = λ(γ2(s)− p2), γ(0) = −p2. (2.4.18)
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Since both investors observe the same stock price S, it follows that

B0
t −B1

t =

∫ t

0

(υ1
s − υ0

s) ds.

We now prove a useful result for υ0
t that will be required in the sequel.

Lemma 2.1. Let p ∈ [0, 1] and t ∈ [0, T ]. Then

(1) E[υ0
t ]

2 = λ2
∫ t

0
e−2λ(t−s)(1 + γ(s))2ds.

(2) limt→∞E[υ0
t ]

2 = λ
2

(1− p)2 = λ
2

(1− p)(1 + (−1)i+1p), i = 0.

(3)
∫ T

0
E[υ0

t ]
2dt ' λ

2
(1− p)2 T, as T −→∞.

Proof. (1) By Itô–isometry (cf Oksendal [40]), we have

E[υ0
t ]

2 = E

(
λ

∫ t

0

e−λ(t−s)(1 + γ(s))dB0
s

)2

= E

(
λ2

∫ t

0

e−2λ(t−s)(1 + γ(s))2ds

)
= λ2

∫ t

0

e−2λ(t−s)(1 + γ(s))2ds.

(2) Since γ(t) is continuous, then by L’Hospital’s rule

lim
t→∞

E[υ0
t ]

2 = lim
t→∞

λ2

∫ t

0

e−2λ(t−s)(1 + γ(s))2ds = λ2 lim
t→∞

∫ t
0
e2λs(1 + γ(s))2ds

e2λt

= λ2 lim
t→∞

e2λt(1 + γ(t))2

2λe2λt
=
λ

2
lim
t→∞

(1 + γ(t))2 =
λ

2
(1− p)2,

since

lim
t→∞

γ(t) = lim
t→∞

1− p2

1 + p tanh(pλt)
− 1 =

1− p2

1 + p
− 1 = −p.
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(3) E[υ0
t ]

2 is a continuous function of t, so by the Mean Value Theorem

lim
T→∞

1

T

∫ T

0

E[υ0
t ]

2dt = lim
t→∞

E[υ0
t ]

2 =
λ

2
(1− p)2.

Thus for large values of T , we have
∫ T

0
E[υ0

t ]
2dt ' λ

2
(1− p)2 T.

We have an analogous result for the corresponding process υ1 defined in (2.4.4).

Lemma 2.2. Let p ∈ [0, 1], and t ∈ [0, T ]. Then

(1) E[υ1
t ]

2 = λ
2

(1− p2) (1− e−2λt).

(2) limt→∞E[υ1
t ]

2 = λ
2

(1− p2) = λ
2

(1− p)(1 + (−1)i+1p), i = 1.

(3)
∫ T

0
E[υ1

t ]
2dt ' λ

2
(1− p2)T, as T −→∞.

Proof. (1) Imposing Itô–isometry (cf Oksendal [40]) on Ut yields

E[υ1
t ]

2 = E(λ2 q2 U2
t ) = λ2 q2E(U2

t ) = λ2 q2

(∫ t

0

e−λ(t−s)dBs

)2

= λ2 q2

∫ t

0

e2λ(s−t)ds = λ2 q2 (1− e−2λt)

2λ

=
λ

2
q2 (1− e−2λt) =

λ

2
(1− p2) (1− e−2λt).

(2) It follows trivially from (1) that if λ ≥ 0 then

lim
t→∞

E[υ1
t ]

2 = lim
t→∞

λ

2
(1− p2) (1− e2λt) =

λ

2
(1− p2) =

λ

2
(1− p) (1 + (−1)i+1p), i = 1.

(3) E[υ1
t ]

2 is a continuous function of t, so by the Mean Value Theorem

lim
T→∞

1

T

∫ T

0

E[υ1
t ]

2dt = lim
t→∞

E[υ1
t ]

2 =
λ

2
(1− p2).

Thus for large values of T , we have
∫ T

0
E[υ0

t ]
2dt ' λ

2
(1− p2)T.
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We combine Lemmas 2.1 and 2.2 as follows.

Lemma 2.3. Let p ∈ [0, 1], t ∈ [0, T ], and i ∈ {0, 1}.

Let υ0
t = −λ

∫ t
0
e−λ(t−s)(1 + γ(s))dB0

s and υ1
t = −λ q Ut be given in Theorem 2.1, with

p2 + q2 = 1. Then

(1) E[υit]
2 = λ

2
(1− p)(1 + (−1)i+1p), as t→∞.

(2)
∫ T

0
E[υit]

2dt ' λ
2

(1− p)(1 + (−1)i+1p)T, as T −→∞.

(3) As T −→∞, the asymptotic excess second moments of the vis is

∫ T

0

E[υ1
t ]

2dt−
∫ T

0

E[υ0
t ]

2dt ' λ p (1− p)T ≤ λ

4
T.

Proof. (1) and (2) follow from from previous lemmas. p(1 − p) has a maximum at

p = 1
2
, which proves (3).

2.5 Utility Functions

We assume that each investor has a utility function U : (0, ∞)→ R for wealth, and

that it satisfies the Inada condition.

Definition 2.3 (Inada Condition).

A function U : (0, ∞)→ R, satisfies the Inada condition, if it is strictly increasing,

strictly concave, continuously differentiable, with .

U′(0) = lim
x↓0

U′(x) = +∞, U′(∞) = lim
x→∞

U′(x) = 0.

U(x) = log x, the logarithmic utility and Uθ(x) = xθ

θ
, θ < 1, the power utility, satisfy

this condition. In the sequel, all utility functions are assumed to be logarithmic.
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2.6 Portfolio and Wealth Processes of Investors

Definition 2.4 (Portfolio Process). A portfolio process π : [0, T ]× Ω→ R, is an

F = (Ft)t≥0–adapted process satisfying

∫ T

0

(πtσt)
2dt <∞, almost surely. (2.6.1)

Although π is a function of (t, ω), in the sequel we keep Ω in the background, and

assume that π is primarily a function of time t, where πt is the proportion of an

investor’s wealth invested in the stock at time t. The remainder 1 − πt, is invested

in the bond or money market. π is not restricted to [0, 1] for the purely continuous

model. That is, we allow short–selling (π < 0) and borrowing (π > 1) at the risk–

free interest rate. Short–selling occurs when stocks are borrowed and sold, with the

proceeds invested in the bond or savings accounts.

Definition 2.5 (Self–financing). A portfolio process π is called self–financing if

dVt = (1− πt)rtVt dt+ πtVt
dSt
St
, (2.6.2)

where Vt is the wealth or value of the holding of stock and bond at time t ∈ [0, T ].

Thus, for self–financing portfolios, the change in the wealth is due only to the change

in prices, provided that no money is brought in or taken out by the investor.

The Wealth Process

For a given non–random initial wealth x > 0, let V x, π ≡ V π ≡ V = (Vt)t≥0 denote

the wealth process corresponding to a self–financing portfolio π with V0 = x, and

satisfying the stochastic differential equation (2.6.2).

The following result will be useful, so we state it as a lemma:
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Lemma 2.4. Let π be the portfolio process for the stock S with Sharpe ratio

θt =
µt − rt
σt

, t ∈ [0, T ], (2.6.3)

and percentage returns dynamic given by (2.2.4). Then the wealth process V = V π

corresponding to π and initial wealth x > 0, has percentage returns dynamic

dVt
Vt

= (rt + πtσtθt) dt+ πt σt dYt, (2.6.4)

with unique discounted wealth process

Ṽt = x exp

(∫ t

0

(πsσsθs −
1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdYs

)
, (2.6.5)

and logarithmic utility

log Ṽt = log x+
1

2

∫ t

0

θ2
s ds−

1

2

∫ t

0

(πs σs − θs)2 ds+

∫ t

0

πs σs dYs. (2.6.6)

Proof. It is clear that

dVt
Vt

= (1− πt) rt dt+ πt
dSt
St
. (2.6.7)

Imposing the stock price dynamic (2.2.4) on the last equation, yields

dVt
Vt

= (1− πt)rt dt+ πt
dSt
St

= (1− πt)rt dt+ πt (µtdt+ σt dYt)

= (rt + πt(µt − rt)) dt+ πt σt dYt.

Thus, we get the percentage returns dynamic of the wealth process

dVt
Vt

= (rt + πt σt θt) dt+ πt σt dYt, (2.6.8)
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where θ, the stock’s Sharpe ratio or markt price of risk is given by (2.6.3). By the

Itô formula, the unique solution to (2.6.8) with V0 = x, is the stochastic exponential

Vt = x exp

(∫ t

0

rs ds+

∫ t

0

(πs σs θs −
1

2
π2
s σ

2
s) ds+

∫ t

0

πsσs dYs

)
, (2.6.9)

with discounted wealth process Ṽ given by

Ṽt
4
= exp (−

∫ t

0

rs ds)Vt = x exp

(∫ t

0

(πs σs θs −
1

2
π2
s σ

2
s )ds+

∫ t

0

πs σs dYs

)
.

The logarithmic utility of discounted wealth is

log Ṽt = log x+

∫ t

0

(πsσsθs −
1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdYs

= log x+
1

2

∫ t

0

θ2
sds−

1

2

∫ t

0

(πsσs − θs)2ds+

∫ t

0

πsσsdYs.

We now appy this result to each investor.

Theorem 2.2. Let i ∈ {0, 1} and let rt be the risk–free interest rate. Let πi and

V i be the respective portfolio and wealth processes for the i–th investor as a result of

investing in the stock S, with Sharpe ratio

θit =
µit − rt
σt

, µit = µt + υit σt, t ∈ [0, T ], (2.6.10)

and percentage returns dynamic driven by F i–adapted Brownian motion Bi, given by

dSt
St

= µit dt+ σt dB
i
t. (2.6.11)

Then the wealth process V i = V i, π corresponding to π, and initial wealth x > 0, has
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percentage returns dynamic

dV i
t

V i
t

= (rt + πitσtθ
i
t) dt+ πit σtdB

i
t, (2.6.12)

with unique discounted wealth process

Ṽ i
t = x exp

(∫ t

0

(πisσsθ
i
s −

1

2
(πis)

2σ2
s)ds+

∫ t

0

πisσsdB
i
s

)
(2.6.13)

and logarithmic utility

log Ṽ i
t = log x+

1

2

∫ t

0

(θis)
2ds− 1

2

∫ t

0

(πisσs − θis)2ds+

∫ t

0

πisσsdB
i
s. (2.6.14)

Proof. The results follow directly from Lemma 2.4 by replacing θ by θi, π by πi and

V by V i.

2.7 Logarithmic Utility Maximization from Terminal

Wealth

In the sequel, each investor is assumed to be rational; that is, the investor is a utility

maximizer. Thus, both informed and uninformed investors maximize their respective

expected utility from terminal wealth VT , where T is the investment horizon.

We confine our analysis to the logarithmic utility function U(x) = log x, as this

leads to closed–form tractable solutions. The terminal wealth VT is represented by

its discounted value ṼT . We then maximize EπU(ṼT ) where π is selected from an

admissible set A(x).

Definition 2.6 (Admissible Portfolio). A self–financing portfolio π is admissible

if V π
t is lower bounded for all t ∈ [0, T ]. That is, there exists K > −∞ such that
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almost surely, V π
t > K for all t ∈ [0, T ].-(cf Oksendal [40], page 235)

Since x > 0, we assume that V π
t > 0 and therefore Ṽ π

t > 0 for all t ∈ [0, T ]. Thus

equivalently, π is admissible if Ṽ π
t > 0 for all t ∈ [0, T ]. Karatzas and Shreve [29],

define an admissible portfolio in terms of the utility function U(x) by the prescription:

E[U(Ṽ π
t )]− <∞, (2.7.1)

where a− = max{0,−a}. Either definition will suffice!

Admissible set

Definition 2.7. Let x > 0 be the initial wealth of the investor. The admissible set

A(x) of this investor is define by

A(x) = {π : π − admissible, S − integrable,F − predictable} . (2.7.2)

Predictable σ–Algebra

π is F–predictable if it is measurable relative to the predictable sigma–algebra on

[0, T ]×Ω, which is the sigma–algebra of all left continuous functions with right

limits(LCRL) on [0, T ]×Ω- (see Protter [41] for details). Obviously, if π is admissible

it is LCRL; that is, we know the value of πt just before time t.

2.7.1 Utility Maximization Problem and Optimal Portfolios

For a given utility function U(·) and initial wealth x > 0, we maximize the expected

utility from (discounted) terminal wealth E[U(Ṽ π
t )], over the investors admissible set
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A(x). The value function for this problem is u(x) given by

u(x)
4
= sup

π∈A(x)

E[U(Ṽ π
t )], (2.7.3)

where it is assumed that u(x) <∞ for all x > 0. That is, there is an optimal portfolio

π∗ ∈ A(x) such that

u(x) = E[U(Ṽ π∗

t )]. (2.7.4)

Let i ∈ {0, 1}. For the i–th investor, define an admissible set:

Ai(x) =
{
π : Ṽ π

t > 0, a.s., S − integrable,F i − predictable
}

(2.7.5)

and a utility maximiation problem:

max
π

{
E[U(Ṽ π

t )] : π ∈ Ai(x)
}
, (2.7.6)

with respective value functions:

ui(x) = sup
π

{
E[U(Ṽ π

t )] : π ∈ Ai(x)
}

= EU(Ṽ π∗, i

t ). (2.7.7)

The logarithmic utility function is used so that an explicit solution of (2.7.7) is

obtained( cf Amendinger [25], Imkeller [26], Karatzas & Pikovsky [27]). We now

give a slightly modified version of Gausoni’s solution to (2.7.7) using the notations

developed in preceeding sections.

Theorem 2.3 (Guasoni [21], Theorem 3.1). Let i ∈ {0, 1}, ui(x) be the value

function, and π∗, i the optimal portfolio for the i-th investor that solves (2.7.7), where

utility is assumed to be logarithmic and the risk–free interest rate is r = 0. Then
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(1) the optimal portfolio for the i–th investor is:

π∗, it =
θit
σt

=
µit
σ2
t

=
µt + υitσt

σ2
t

, t ∈ [0, T ], (2.7.8)

where θi is the Sharpe ratio of the stock for the i–th investor.

(2) The maximum expected logarithmic utility from terminal wealth for the

i–th investor is

ui(x) ≡ uic(x) = log x+
1

2
E

∫ T

0

(θit)
2dt (2.7.9)

= log x+
1

2
E

∫ T

0

(
µt + υitσt

σt

)2

dt.

(3) As T −→∞, the asymptotic maximum expected logarithmic utility is

ui∞(x) ≡ ui∞, c(x) ' log x+
1

2

∫ T

0

µ2
t

σ2
t

dt+
λ

4
(1− p)(1 + (−1)i+1p)T. (2.7.10)

(4) The excess (additional) asymptotic maximum expected logarithmic utility of

the informed investor is

u1
∞(x)− u0

∞(x) ' λ

2
p(1− p)T. (2.7.11)

Remark 2.2. In Chapter 3, where jump processes are introduced, ui(x) and ui∞(x)

will be identical to uic(x) and ui∞, c(x) respectively, where the subscript “c” denotes

continuous. Note that in the foregoing µt, the stock’s expected percentage rate of

return, is identical to the stock’s total expected percentage return. In the jump case,

µ will become the continuous component of the total expected percentage returns b,

where b = µ+M1; M1 being the contribution to the returns from the jumps.
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2.8 Part II- A Review of Lévy Processes

Lévy processes are defined as stochastic processes with stationary and independent

increments, that start at zero, and are continuous in probability. If (Xt)t≥0 is a Lévy

process, then Xs−Xt is indepentent of the history of the process up to time t if s > t.

Its law depends only on s − t, the elapsed time, and not on s or t exclusively. In

this sense, Lévy processes are analogus to linear functions, and indeed, one can view

Lévy processes as linear processes.

We give a brief review of the properties of Lévy processes and their applications

to finance. We restrict our synopsis to real–valued Lévy processes, which are a

special class of infinite divisible stochastic processes. For a complete treatment of

Lévy processes and general semi–martingales, the reader may consult Bertoin [7],

Sato [45], Applebaum [3], and Protter [41]. For applications to finance, Schoutens

[46] and Cont & Tankov [16], are excellent resources. Most of the definitions and

results in this section follow Applebaum [3].

2.9 Infinite Divisible Processes

Lévy processes are a special class of infinite divisible stochastic processes. Important

examples are: Brownian motion/ Wiener process, Poisson, compound Poisson, Variance

Gamma, CGMY, α–stable, Hyperbolic, etc.

Definition 2.8 (Infinite Divisibility). A random variable X on a probability space

(Ω, F , P) is infinite divisible, if for each n ∈ N, there exist independent and identically

distributed (iid) random variables Y n
1 , . . . , Y

n
n such that

X
d
= Y n

1 + Y n
2 + · · ·+ Y n

n .
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Definition 2.9 (Characteristic Function (chf)). The characteristic function φX

of the random variable X with Law µX(dx), is defined by

φX(u)
4
= E(eiuX) =

∫
R

eiuxµX(dx), i2 = −1, u ∈ R.

Remark 2.3. X is infinitely divisible iff for each n ∈ IN, there exist a chf φn of a

random variable Xn, such that φX(u) = (φn(u))n.

Definition 2.10 (Lévy Measure). Let v(·) be a Borel measure defined on R−{0}

such that ∫
R−{0}

min(1, x2)v(dx) <∞.

v(·) is called a Lévy measure on B(R − {0}) and is σ–finite, with v((−ε, ε)c) < ∞

for all ε > 0. An equivalent definition of a Lévy measure is any Borel measure v(·)

satisfying ∫
R−{0}

x2

1 + x2
v(dx) <∞.

We now state an important result which will be useful in the sequel.

Theorem 2.4 (Lévy–Khintchine). Let t ≥ 0. The process Xt is infinite divisible

iff there exist γ, σ2 and a Lévy measure v on R− {0}, such that for all u ∈ R,

φXt(u) = et η(u)

where

η(u) = iγ u− 1

2
σ2 u2 +

∫
R−{0}

(
eiux − 1− iuxI|x|<1(x)

)
v(dx),

is called the Lévy exponent, characteristic exponent, or Lévy symbol,

with η(u) = log φX1(u).

Remark 2.4.

(1) The reader is directed to Bertoin [7], Sato [45] or Applebaum [3], for a proof.
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(2) The triple (γ, σ2, v) is called the Lévy triple or characteristic triple of Xt.

(3) We list triple for some commom processes:

Gaussian: γ is the mean, σ2 is variance/volatility; v = 0.

Poisson: γ = 0; σ2 = 0 ; v = λ δ1.

compound Poisson: γ = 0; σ2 = 0; v = λµY .,

where λ is the arrival rate and µY is a probability measure on R.

2.10 Lévy Processes

A Lévy process is any stochastic process that starts at zero, has independent and

stationary increments, and is continuous in probability. Let (Ω, F , P) be a probability

space equipped with a right continuous P–complete filtration F = (Ft)t≥0, where

Ft ⊂ F are σ–algebras of subsets of Ω. In the sequel, all processs are assumed to be

defined on this filtered space.

Definition 2.11 (Lévy Process).

An F–adapted process X = (Xt)t≥0 is a Lévy process if:

(1) X0 = 0, almost surely.

(2) X has increments independent of the past; that is Xt −Xs is independent of Fs,

where 0 ≤ s < t <∞.

(3) X has stationary increments; that is Xt −Xs has the same distribution as Xt−s,

0 ≤ s < t <∞.

(4) X is stochastically continuous; that is, for all ε > 0 and s ≥ 0,

lim
t→s

P(|Xt −Xs| > ε) = 0.

Equivalently, limt→sXt = Xs, where the limit is taken in probability.

One may give an alternative definition of a Lévy process without using the filtration.
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Definition 2.12 (Intrinsic Lévy Process).

A process X = (Xt)t≥0 with X0 = 0, is a Lévy process if:

(i) X has independent increments: that is, Xt −Xs is independent of Xv −Xu

if (s, t) ∩ (u, v) = φ.

(ii) X has stationary increments; that is, Xt−Xs has the same distribution as Xv−Xu

if t− s = v − u.

(iii) Xt is continuous in probability: for all s, t ≥ 0, limt→sXt = Xs, in probability.

In the sequel we will assume that all Lévy process are càdlàg; that is, are right

continuous with left limits (RCLL).(cf Theorem 30, Protter [41])

Proposition 2.1. If X is a Lévy process then Xt is infinite divisible for each t ≥ 0.

The characteristic functions of Lévy processes have a simple form, thanks to the

Lévy–Khintchine representation.

Theorem 2.5. Let t ≥ 0 and u ∈ R. If X is a Lévy process with triple (γ, σ2, v)

then its characteristic function is φXt(u) = et η(u), where

η(u) = iγ u− 1

2
σ2 u2 +

∫
R−{0}

(
eiux − 1− iuxI[ |x|<1 ](x)

)
v(dx)

is the Lévy exponent of X1.

2.10.1 Subordinators

Definition 2.13. A subordinator T is a one–dimensional Lévy process that is non–

decreasing, almost surely.

Since a subordinator is non–negative, it can be viewed as a random model of time

evolution (or business time, in finance jargon). It has no diffusive component.
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Theorem 2.6. Let T be a subordinator with triple (γ, 0, v).

(1) Its Lévy symbol is

η(u) = iγu+

∫ ∞
0

(eiux − 1)v(dx),

where γ ≥ 0, and the Lévy measure satisfies the requirements

v(−∞, 0) = 0 and

∫ ∞
0

(x ∧ 1)v(dx) <∞.

(2) If X is any Lévy process then Z = X(T ) is also a Lévy process.

2.10.2 Moments of a Lévy Process

Since a Lévy process is càdlàg (RCLL), the only type of discontinuity it posseses is

a jump discontinuity. Let Xt− = lims↑tXs be the left limit of X at t. The jump of X

at time t is given by

∆Xt
4
= Xt −Xt−.

If supt |∆Xt| ≤ K < ∞ almost surely, for some non–random positive constant K,

then we say that X has bounded jumps. Lévy processes with bounded jumps have

finite moments of all orders.

Theorem 2.7. Let X be a Lévy process with bounded jumps. Then for each t ≥ 0,

∆Xt = 0 almost surely; and for each n ∈ IN,

E(|Xt|n) <∞.

Theorem 2.8 ( Moments and Cumulants of a Lévy Process). Let X = (Xt)t≥0

be a Lévy process with triple (γ, σ2, v). For each t ≥ 0 and n ∈ N,

(1) E(|Xt|n) <∞ iff
∫
|x|≥1
|x|nv(dx) <∞.
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(2) φt(u), the characteristic function of Xt, is of class Cn, and the first n

moments of Xt can be computed by differentiation:

E[Xk
t ] =

1

ik
∂k

∂uk
φt(u)|u=0, k = 1, 2, . . . , n.

(3) The cumulants of Xt, defined by

Ck(Xt)
4
=

1

ik
∂k

∂uk
log φt(u)|u=0, k = 1, 2, . . . , n,

are given by

C1(Xt) = E(Xt) = t

(
γ +

∫
|x|≥1

x v(dx)

)
,

C2(Xt) = Var(Xt) = t

(
σ2 +

∫
R

x2 v(dx)

)
,

Ck(Xt) = t

∫
R−{0}

xk v(dx), 3 ≤ k ≤ n.

2.11 Martingales and Semi–martingales

Definition 2.14 (Martingale). A process X = (Xt)t≥0 defined on a filtered space

(Ω, F , (Ft)t≥0 , P) is called a martingale if the following conditions hold:

(1) Xt is Ft–measurable for each t ≥ 0.

(2) Xt is P–integrable; that is,
∫

Ω
|Xt(ω)|P(dω) <∞, a.s..

(3) E(Xt| Fs) = Xs, 0 ≤ s ≤ t.

Condition (3) means that the expected value of X at time t, given its current value Xs

and all previous values Xu, u ≤ s, is simply its current value Xs. In addition, E(Xt) =

E(X0) = 0 in the case of Lévy processes. If X is a Lévy process with characteristic

exponent η(u), then Mu = (Mu(t))t≥0 defined by Mu(t) = exp (iuXt − tη(u)), is a

complex martingale relative to FX = (FXt )t≥0, the natural filtration of X.
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Tankov [51] showed that if X is a martingale, then the process eX is also a martingale.

Definition 2.15 (Finite Variation).

The total variation of a real–valued function f : [a, b] −→ R, is defined by

TV (f) = sup
π

n∑
i=1

|f(ti)− f(ti−1)|,

where π is a finite partition π : a = t0 < t1 < · · · , < tn = b of [a, b].

A function is of finite variation(FV) if TV (f) <∞ on all compact subsets on R.

Definition 2.16 (Finite Variation Process).

A càdlàg (RCLL) adapted process A = (At) is a finite variation process (FV) if almost

surely, the paths of A : t → At(ω), ω ∈ Ω are of finite variation on each compact

interval of [0, ∞).

Proposition 2.2. A Lévy process X is of finite variation iff its triple (γ, , σ2, v)

satisfies σ2 = 0 and
∫
|x|≥1
|x|v(dx) <∞.

Standard Brownian motion does not have finite variation since σ2 6= 0.

Definition 2.17 (Semi–martingale). A process X = (Xt)t≥0 is a semi–martingale

if it is the sum of a martingale Mt and a finite variation process, At. That is,

Xt = Mt + At, t ≥ 0.

Theorem 2.9. If X = (Xt)t≥0 is a Lévy process, it is a semi–martingale. That is,

Xt = Mt +At where Mt is a martingale with bounded jumps and Mt ∈ Lp, p ≥ 1, and

At has paths of finite variation on compact subsets of R.
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Definition 2.18 (Quadratic Variation). The quadratic variation process of a semi–

martingale X, is the adapted cadlag process [X, X]t defined by the prescription:

[X, X]t = lim
‖π‖→0

n∑
i=1

(
Xti −Xti−1

)2
,

where π is any partition: π : 0 = t0 < t1 < · · · , < tn = t of [0, t], with mesh size

‖π‖ = max1≤i≤n|ti − ti−1|.

Remark 2.5. [X, X]t is an increasing process with jumps that are linked to the jumps

of X via the formula:

∆[X, X]t = (∆Xt)
2, t ≥ 0.

Theorem 2.10 (Properties of Quadratic Variation). Let X be a semi–martingale.

(1) If X is continuous and has paths of finite variation, then [X, X] = 0.

(2) If X is a martingale and [X, X] = 0, then X = X0, almost surely.

(3) If Xc = (Xc
t )t≥0 is the continuous part of X, then

[X, X]t = [Xc, Xc]t +
∑

0<s≤t

(∆Xs)
2.

(4) If X is a Lévy process with charcteristic triple (γ, σ2, v), then

E[X, X]t = t

(
σ2 +

∫
R

x2 v(dx)

)
.

Remark 2.6. Note that if σs is càdlàg, then the process Xt =
∫ t

0
σs dBs is a martingale

with quadratic variation [X, X]t =
∫ t

0
σ2
s ds.

Definition 2.19 (Pure Jump Process). X is a pure jump process if [Xc, Xc] = 0,
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almost surely. That is,

[X, X]t =
∑

0<s≤t

(∆Xs)
2 =

∫ t

0

∫
R

x2N(ds, dx),

where N is a Poisson random measure that counts the jumps of X.

Pure jump processes have no diffusive component; that is σ2 = 0.

2.12 Random Measures and Poisson Integrals

Random measures are important integrators in stochastic integrals.

Definition 2.20 (Random Measure).

Let (S, A) be a measurable space and let (Ω, F , P) be a probability space. A random

measure M on (S, A) is a collection of random variables {M(A) : A ∈ A}, such

that:

(1) M(∅) = 0.

(2)M is sigma–additive: For any sequence {An : n ∈ N} of mutually disjoint A–sets,

almost surely

M

(
∞⋃
n=1

An

)
=
∞∑
n=1

M(An).

(3) Independently scattered property: For each n ∈ N , and disjoint family of A–sets

{A1, . . . , An}, the random variables M(A1), . . . ,M(An) are independent.

Definition 2.21 (Poisson Random Measure). A random measureM is a Poisson

random measure if M(A) has a Poisson distribition for all A ∈ A with M(A) <∞,

almost surely. It has compensator measure λ(A) = EM(A).

One can construct the compensated Poisson random measure M̃, which is a
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martingale, by subtracting the compensator or intensity measure from M; that is,

M̃(A) =M(A)− λ(A).

Lévy Measure

Let X be a Lévy process. Instead of examiming the jump size ∆Xs = Xs −Xs−, we

count the jumps of a particular size in a fixed interval [0, t]. For each A ∈ B(R−{0})

with 0 /∈ A, let

N(t, A) = #{s ≤ t : ∆Xs ∈ A,∆Xs 6= 0} =
∑

0<s≤t

IA(∆Xs).

N(t, A) is the number of jumps of size in the set A up to time t, and is a random

counting measure with

E[N(t, A)] =

∫
Ω

N(t, A)(ω)P(dω).

We give an alternative, but equivalent definition of the Lévy measure of a process X.

Definition 2.22 (Lévy Measure). The Lévy measure v(·) of the process X is

defined as

v(A) = E[N(1, A)] =
∑

0<s≤1

E IA(∆Xs),

where A ∈ B(R − {0}) with 0 /∈ A. It is the average number of jumps per unit time

in any bounded Borel set A.

Theorem 2.11. Let X be a Lévy process on the filtered space (Ω, F , (Ft)t≥0 , P)

and A ∈ B(R− {0}). Let t ≥ 0.

(1) If A is bounded below; that is, 0 /∈ A, then N(t, A) is a Poisson process with

intensity v(A) = E[N(1, A)].

(2) If A1, A2, . . . , Am ∈ B(R−{0}) are disjoint Borel sets, then the random variables
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N(t, A1), , N(t, A2), . . . , N(t, Am) are independent .

(3) (Ñ(t, A)t≥0) is a martingale–valued random measure, where

Ñ(t, A) = N(t, A)− t v(A).

Poisson Integrals

Definition 2.23 (Poisson Integral). Let f be a Borel measurable function from

R→ R and let A ∈ B(R− {0}) be bounded below. For each t > 0, ω ∈ Ω , we define

the Poisson integral of f as the random finite sum:

∫
A

f(x)N(t, dx) =
∑
x∈A

f(x)N(t, {x})(ω) =
∑

0<s≤t

f(∆Xs)IA(∆Xs).

Remark 2.7.
∫
A
xN(t, dx) =

∑
0<s≤t ∆Xs IA(∆Xs) is the sum of all jumps in A up

to time t.

Theorem 2.12. Let X be a Lévy process with counting measure N , and let f be a

real–valued Borel measurable function on R− {0}.

(1) For each t ≥ 0 and A ∈ B(R−{0}), bounded below, the process Yt =
∫
A
f(x)N(t, dx)

has a compound Poisson process with characteristic function

φYt(u) = exp (t

∫
A

(eiux − 1)vf (dx)),

where vf = v ◦ f−1.

(2)If f IA is v–integrable; that is, f ∈ L(A, v), then

E

(∫
A

f(x)N(t, dx)

)
= t

∫
A

f(x)v(dx).
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(3) If f IA is v–square integrable; that is, f 2 ∈ L(A, v), then

Var

(∫
A

f(x)N(t, dx)

)
= t

∫
A

f 2(x) v(dx).

Definition 2.24 (Poisson Stochastic Integral). Let N(ds, dx) be a Poisson

random measure on R+× (R−{0}) with intensity measure ds v(dx), where v(·) is its

Lévy measure. Let A ∈ B(R − {0}) be bounded below and let Xt =
∫
A
xN(t, dx) be

the compound Poisson process that counts the jumps of X in A. Let f be a predictble

function on R+ × (R− {0})× Ω. The Poisson integral of f with respect to N is the

random sum (also a compound Poisson process)

∫ t

0

∫
A

f(s, x)N(ds, dx)
4
=
∑

0<s≤t

f(s, ∆Xs)IA(∆Xs).

If f is v–integrable on A, we define the compensated Poisson integral of f to be

∫ t

0

∫
A

f(s, x) Ñ(ds, dx)
4
=

∫ t

0

∫
A

f(s, x)N(ds, dx)−
∫ t

0

∫
A

f(s, x) v(dx)ds.

We have a similar result to the last.

Theorem 2.13. Let X be a Lévy process with counting measure N , and f a real–

valued Borel measurable function on R+ × (R− {0})× Ω .

(1) For each t ≥ 0 and A ∈ B(R− {0}), and predictable function f on

R+ × (R− {0})× Ω, ∫ t

0

∫
A

f(s, x)N(ds, dx),

is a compound Poisson process.

(2) If f IA is v–integrable; that is, f ∈ L(A, v), then

E

(∫ t

0

∫
A

f(s, x)N(ds, dx)

)
=

∫ t

0

∫
A

f(s, x)v(dx)ds.
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(3) If f IA is v–square integrable; that is, f 2 ∈ L(A, v), then the following process is

a martingale: ∫ t

0

∫
A

f(s, x) Ñ(ds, dx).

2.13 Lévy–Itô Decomposition

Definition 2.25 (Compensated Poisson Process). Let N = (Nt)t≥0 be a Poisson

process with intensity λ. That is, P(Nt = k) = e−λt (λt)k

k!
, k = 0, 1, 2, · · · ,∞.

The compensated Poisson process Ñ = (Ñt)t≥0 is the martingale given by

Ñt = Nt − λ t.

We now state an extremely important result for Lévy processes; see Bertoin [7],

or Applebaum [3], Theorem 2.4.16, for a proof.

Theorem 2.14 (Lévy–Itô Decomposition ). Let X be a Lévy process. Then there

exist γ, σ2 > 0, standard Brownian motion Bt, and independent Poisson random

measure N on R+ × (R− {0}), such that for each t ≥ 0

Xt = γ t+ σ Bt +

∫
|x|<1

x Ñ(t, dx) +

∫
|x|≥1

xN(t, dx),

where

γ = E

(
X1 −

∫
|x|≥1

xN(1, dx)

)
,

and v(·) is the Lévy measure of X with triple (γ, σ2, v).

The Lévy–Khintchine formula now follows directly from the Lévy–Itô decomposition

theorem. We restate it as

Corollary 2.1. If X is a Lévy process with triple (γ, σ2, v), then its characteristic
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function φXt(u), u ∈ R, is

φXt(u) = exp

(
t

{
iγ u− 1

2
σ2 u2 +

∫
R−{0}

(
eiux − 1− iuxI|x|<1(x)

)
v(dx)

})
.

Remark 2.8.

(1) The process
(∫
|x|≤1

x Ñ(t, dx)
)
t≥0

is the compensated sum of “small” jumps and

is a martingale.

(2) The process
(∫
|x|≥1

xN(t, dx)
)
t≥0

is the sum of “large” jumps, and is a compound

Poisson process.

A direct consequence of the Lévy–Itô decomposition is:

Theorem 2.15. Let X = (Xt)t≥0 be a Lévy process with triple (γ, σ2, v). Then X

is a linear combination of a Brownian motion B, an independent compound Poisson

process, and a finite variation process. That is, for each t ≥ 0

Xt = γ0 t+ σ Bt +

∫ ∞
−∞

xN(t, dx) = Xc
t +

∫ ∞
−∞

xN(t, dx),

where N(t, ·) is a Poisson process independent of B, and γ0 = γ−
∫
|x|<1

x v(dx) is the

drift of the process and Xc is the continuous part of X.

Remark 2.9.

(1) The process Y1(t) = Xt −
∫
|x|≥1

xN(t, dx) has bounded jumps and consequently,

has moments of all orders. However,
∫
|x|≥1

xN(t, dx) may have no finite moments,

as in the case when X is α–stable, 0 < α < 1.

(2) Every pure jump process X has decomposition

Xt = γ0 t+

∫ ∞
−∞

xN(t, dx) = γ0 t+
∑

0<s≤t

∆Xs.
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2.14 Itô Formula

The Itô formula allows Lévy processes and other general semi–martingales to be

transformed by smooth (C2) functions. For a proof , see Protter [41], Theorem 32.

Theorem 2.16 (Itô–Formula). Let X be a semi–martingale and let f be a real C2

function. Then f(X) is again a semi–martingale, with

f(Xt)− f(X0) =

∫ t

0

f ′(Xs−)dXs +
1

2

∫ t

0

f ′′(Xs−)d[Xc, Xc]s

+
∑

0≤s≤t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs}.

In differential form, we get

df(Xs) = f ′(Xs−)dXs +
1

2
f ′′(Xs−)d[Xc, Xc]s + {f(Xs)− f(Xs−)− f ′(Xs−)∆Xs}.

We apply Theorem 2.16 directly to Lévy processes ( cf Tankov [51]).

Theorem 2.17 (Itô Formula for Scalar Lévy Processes). Let X = (Xt)t≥0 be

a Lévy process with triple (γ, σ2, v) and f : R→ R be a C2 function. Then

f(Xt) = f(0) +

∫ t

0

f ′(Xs−)dXs +
1

2

∫ t

0

σ2f ′′(Xs−)ds

+
∑

0≤s≤t

{f(Xs− + ∆Xs)− f(Xs−)− f ′(Xs−)∆Xs}.

2.14.1 Stochastic Exponential

The Itô change of variable formula applied to simple, non–trivial, stochastic differential

equations, yield the Doleans–Dade or Stochastic Exponential of a semi–martingale X

(cf Protter [41], Theorem 37, of Chapter II). This result will be used extensively in

the sequel.
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Theorem 2.18. Let X be a semi–martingale with X0 = 0. There exists a unique

càdlàg semi–martingale Z that satisfies the equation

Zt = 1 +

∫ t

0

Zs−dXs ⇐⇒ dZt = Zt− dXt, Z0 = 1,

given by any one of the equivalent formulas:

(1) Zt = Z0 exp
{
Xt − 1

2
[X, X]t

}
Π0<s≤t(1 + ∆Xs) e

−∆Xs+
1
2

(∆Xs)2.

(2) Zt = Z0 exp
{
Xt − 1

2
[Xc, Xc]t

}
Π0<s≤t(1 + ∆Xs) e

−∆Xs.

(3) Zt = Z0 exp
{
Xc
t − 1

2
[Xc, Xc]t

}
Π0<s≤t(1 + ∆Xs).

Definition 2.26 (Stochastic Exponential).

For a semi–martingale X with X0 = 0, the stochastic exponential of X denoted by

E(X), is the unique semi–martingale Z, that is the solution of the equation:

Zt = 1 +

∫ t

0

Zs−dXs.

Equivalently, E(X) is the unique solution of the SDE

dZt = Zt− dXt, Z0 = 1.

Tankov [51] proved that the stochastic exponential of a Lévy process that is a

martingale, is also a martingale. This is an important martingale preserving property

that is encapsulated in the following theorem.

Theorem 2.19 (Martingale Preserving Property).

(1) If X is a Lévy process and a martingale then E(X), its Doleans–Dade (Stochastic)

exponential, is also a martingale.

(2) X is a martingale if and only if
∫
|x|≥1
|x|v(dx) < ∞ and γ +

∫
|x|≥1

x v(dx) = 0,

where X has triple (γ, σ2, v).
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2.15 Part-III: Lévy Processes in Finance

The most famous continuous–time financial model is the celebrated Black–Scholes

model ( cf [10], [37], [38]), which uses the normal distribution to fit the log returns of

a stock price S that has dynamic:

d(logSt) = (µ− 1

2
σ2) dt+ σ dBt.

This is equivalent to the percentage returns model:

dSt
St

= µ dt+ σ dBt.

One of the main problems with the Black–Scholes [10] model is that empirical studies

( cf Akgiray and Booth [2]) prove that log returns of stock/indices are not normally

distributed, and indeed, the log returns of most financial assets do not follow a normal

law. They are actually skewed and have kurtosis higher than that of the normal

distribution. That is, they exhibit the so called leptokurtic feature–having higher

peaks and thicker tails. New models were therefore required.

To be useful in finance, a process must be able to represent jumps, skewness, excess

kurtosis, be infinite divisible, with independent and stationary increments. Lévy

processes have all these desirable properties, and in the late 1980s Lévy models were

proposed for modelling financial data. Examples of such processes are: compound

Poisson, Kou and Merton Jump diffusions; Variance Gamma (VG), Normal Inverse

Guassian (NIG), CGMY (Carr, Geman, Madan & Yor), Tempered Stable, Generalized

Hyperbolic processes. There are many others.
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Madan and Seneta [35] proposed a Lévy process with VG increments. The

Hyperbolic model was proposed by Eberlein and Keller [18], while Barndorff–Nielson

[4] proposed the NIG process. The Generalized Hyperbolic process, of which the

above– mentioned are examples, was developed by Eberlein and Prause [19]. The

CGMY model was introduced by Carr et al [12], while Schoutens [46] developed the

Meixner model. The reader is directed to Schoutens [46] for details of these and other

models.

2.15.1 Exponential Lévy Market

Instead of modelling the log returns with a Brownian motion with drift, as in the

classical Black–Scholes model of asset price, we replace it with a Lévy process X =

(Xt)t≥0. Our market consist of one riskless asset B, called bond or savings account,

which earns the risk–free continuously compounded interest rate r, and one risky

asset S, called stock. The model for this market, called an exponential Lévy market,

is:

Bt = er t, St = S0e
Xt ,

where Xt is a Lévy process on a filtered probability space (Ω, F , (Ft)t≥0 , P). The log

returns log(St+s
St

) of this model follow the distribution of the increments (Xt+s −Xt),

of length s of the Lévy process X.

2.16 Exponential Lévy Models in Finance

Financial models with jumps are of two basic types– jump diffusion/finite activity

models and infinite activity models. It is called a finite activity model if
∫
R
v(dx) is

finite, and infinite activity, otherwise.

42



2.16.1 Jump–Diffusion/ Finite Activity Models

A Lévy process of the jump–diffusion type has the form:

Xt = γ t+ σ Bt +
Nt∑
i=1

Yi,

where (Nt)t≥0 is a Poisson process with intensity λ, that counts the jumps of X.

Yi are jump sizes that are iid random variables with law FY . The Lévy triple of X

is (γ, σ2, λ FY ). Log prices are linear combination of a Brownian motion Bt, with

drift, and a compound Poisson process. The jumps represent rare events, such as

market crashes and large sell–offs. There are a finite number of jumps in any finite

time interval [0, t], and hence the reason why it is called a finite activity process.

Merton Model

The Merton [38] model is the first model of this type found in the literature. Jumps

in the log–price Y are assumed to have a Gaussian distribution with mean m and

variance δ2, with Yi ∼ N(m, δ2). The Lévy measure of X is

v(dx) = λFY (dx) =
λ√

2π δ2
e−

1
2(x−mδ )

2

dx.

This model has heavier tails ( kurtosis > 3) than the Gaussian distribution.

Kou Model

The Kou [30] jump–diffusion model has log jump size Y distributed according to an

asymmetric Laplace law. Its Lévy density is:

vkou(x) = p λ+ e
−λ+ xI{x>0}(x) + (1− p)λ−e−λ− |x|I{x<0}(x),
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where λ± > 0 are parameters governing the decay of the tails for the distribution of

positive and negative jump sizes. p ∈ [0, 1] is the probability of an upward jump.

The probability distribution of returns in this model has semi–heavy tails.

The symmetric Kou model ( cf Lewis [33]) is a double–exponential model with

Poisson–driven jumps, with Lévy density:

v0(x) =
1

2 η
e−
|x−κ|
η , 0 < η < 1.

Because of the memoryless property of the exponential random variables, the Kou

model allows for tractable option pricing formulas, which is a big advantage over the

Merton model.

Dirac Model

This is a simple jump–diffusion model, which has only one possible jump amplitide

x0. Its Lévy density is the Dirac measure δx0 , where

v(dx) = δx0(dx).

For all jump–diffusion models,
∫
R
v(dx) <∞, and hence are finite activity models.

2.16.2 Infinite Activity Models

These models exhibit an infinite number of small jumps in every finite time interval,

and are called infinite activity or infinite intensity models and so,
∫
R
v(dx) = ∞.

Many of these models can be constructed via Brownian subordination; that is, by

taking a Brownian motion with drift (γ t + σ Bt) and sampling it at random times (
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business time) of a Lévy subordinator T , thereby producing a new Lévy process

Xt = γ Tt + σ BTt
.

Examples are the Variance Gamma (VG) and Normal Inverse Guassian(NIG) processes.

Others are specified by their Lévy densities; for example, CGMY and Tempered

Stable processes.

Variance Gamma (VG)

The VG process is built by subordinating a Brownian motion with drift, by a Gamma

suborninator. It’s a finite variation process with infinite, but relatively low activity

of small jumps. It can also be expressed as the difference of two independent Gamma

processes; that is,

XV G
t = Γ1

t − Γ2
t .

Its Lévy density is

v(x) =
C

|x|
e−λ− |x|I{x<0}(x) +

C

x
e−λ+ xI{x>0}(x),

where

C =
1

κ
and λ± =

√
θ2 + 2σ2

κ
± θ

σ2
.

Carr, Geman, Madan, Yor (CGMY) Process

The CGMY process is named after its creators, Carr et al [12]. It depends on four

parameters C,M,G, Y , with Lévy density

v(x) =
C

|x|1+Y
e−G |x|I{x<0}(x) +

C

x1+Y
e−M xI{x>0}(x),
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where C,M,G > 0 and Y < 2, but Y 6= 1. The behaviour of this process is controlled

by the stability parameter Y . If Y < 0, the paths have finite jumps in any finite

interval; that is, the process has finite activity. If Y ≥ 0, the process exhibits infinitely

many jumps in any finite time interval; that is, it has infinite activity. If Y = 0, the

CGMY reduces to the VG process. If Y ∈ (1, 2), the process is of infinite variation.

The CGMY process was built by Carr, Geman, Madan and Yor [12], by adding the

extra parameter Y into the VG process, which allows for finite or infinite activity,

and finite or infinite variation.

Tempered Stable Process (TS)

The Tempered stable process generalizes the CGMY process, and is obtained by

taking a 1–dimensional stable process and multiplying its Lévy measure by a decreasing

exponential on each half of the real axis. After this exponential softening, the small

jumps keep their initial stable–like behaviour, while the large jumps become much

less violent. It has Lévy density

vTS(x) =
C−
|x|1+α

e−λ− |x|I{x<0}(x) +
C+

x1+α
e−λ+ xI{x>0}(x),

where C± > 0, λ± > 0, and α < 2, where α /∈ {0, 1} is the stability parameter ( cf

Cont [16]).
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Chapter 3

Asymmetric Information in

Continuous Fads Models

in Lévy Markets

3.1 Introduction

We develop a theory of fads models under asymmetric information in a general

Lévy market X where the fads/mispricing are modeled by a continuous Ornstein–

Uhlenbeck process U . As in the purely continuous case reviewed in Chapter 2,

there are two investor classes consisting of informed and uninformed investors. The

informed investor indexed by i = 1, has knowledge of both the stock’s price and

its fundamental or true value. Consequently, the informed investor has knowledge of

the mispricing or fads in the stock price at each time t, in the investment period [0, T ].

The uninformed investor, indexed by i = 0, has knowledge of the stock price only.

Although this investor is aware of the existence of fads, they cannot be observed

directly. This investor therefore resorts to the use of technical analysis to assist in

trading. Parameters and other characteristics of informed and uninformed investors,
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are indexed by “1” and “0”, respectively.

The market is driven by a Brownian motion and a general pure jump Lévy process

with triple (γ, 0, v), where γ =
∫
|x|≤1

xv(dx). The market consist of two assets. A

bond B with price

Bt = exp

(∫ t

0

rs ds

)
, (3.1.1)

where rt is the continuously compounded risk–free interest rate, T is the investment

horizon and t ∈ [0, T ]. There is also a risky asset S called stock. The stock price

is viewed by investors in disjoint classes, populated by uninformed and informed

investors, and have individual dynamics relative to these investors. Investors have

filtrations Hi
t contained in F , defined in Chapter 2, where

H0
t ⊂ H1

t ⊂ F , t ∈ [0, T ].

All random objects are defined on a filtered probability space (Ω,F ,Hi,P).

We begin by developing the model for the informed investor.

3.2 The Model

Although each investor observes the same stock price S, its dynamic depends on the

filtration of the observer. For the informed investor the stock has log returns dynamic:

d(logSt) = (µt −
1

2
σ2
t )dt+ σtdYt + dXt, t ∈ [0, T ], (3.2.1)

Yt = pWt + q Ut, p
2 + q2 = 1, p ≥ 0, q ≥ 0, (3.2.2)

dUt = −λUt dt+ dBt, λ > 0, U0 = 0, (3.2.3)

Xt =

∫ t

0

∫
R

xN(ds, dx), (3.2.4)
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where W and B are independent standard Brownian motions independent of X, while

U = (Ut) is a mean–reverting Ornstein–Uhlenbeck process with rate λ, and X is a

pure jump Lévy process having a σ-finite Lévy measure v on B(R−{0}), with triple

(γ, 0, v) where γ =
∫
|x|<1

xv(dx). N is a Poisson random measure on R+×B(R−{0})

that is linked to the stock. It counts the jumps of X in the time interval (0, t).

The returns of the stock has three components; a continuous component µ∗t =

µt− 1
2
σ2
t , a diffusive component σtYt which is random, and a discontinuous component

dXt, which is also random. The continuous component of the stock’s return µ∗t and

the volatility σt, are assumed to be deterministic functions with

σ = lim
t→∞

σt = σ∞ > 0. (3.2.5)

In practice σt will be taken to be a constant and so (3.2.5) will hold. The process

Y = (Yt)t≥0, the continuous random component of excess return, and the mean–

reverting O–U process U = (Ut)t≥0 representing the fads, are defined exactly as in

Guasoni [21], where U satisfies the Langevin stochastic differential equation (3.2.3).

This admits a unique solution

Ut = U0 e
−λt +

∫ t

0

e−λ(t−s)dBs =

∫ t

0

e−λ(t−s)dBs, (3.2.6)

with

EUt = 0, and EU2
t = Var(Ut) =

1

2λ
(1− e−2λt). (3.2.7)

By the Lévy–Itô decomposition theorem (cf Theorem 2.14), if X has triple (γ, 0, v)
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with γ =
∫
|x|<1

x v(dx), it has a representation:

Xt = γt+

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx),

= γt− t
∫
|x|<1

xv(dx) +

∫
R

xN(t, dx),

= t

(
γ −

∫
|x|<1

xv(dx)

)
+

∫
R

xN(t, dx),

=

∫
R

xN(t, dx), (3.2.8)

whence dXt =
∫
R
xN(dt, dx), and equation (3.2.1) now becomes

d(logSt) = (µt −
1

2
σ2
t )dt+ σtdYt +

∫
R

xN(dt, dx), t ∈ [0, T ] (3.2.9)

Applying Itô’s formula (cf Theorem 2.14) to (3.2.9) yields percentage returns:

dSt
St

= µtdt+ σtdYt +

∫
R

(ex − 1)N(dt, dx), t ∈ [0, T ]. (3.2.10)

Under the compensated Poisson random measure Ñ(t, A)
4
= N(t, A)− tv(A),

A ∈ B(R− {0}), we get (3.2.10) in semi–martingale from:

dSt
St

= btdt+ σtdYt +

∫
R

(ex − 1)Ñ(dt, dx), t ∈ [0, T ], (3.2.11)

where

bt = µt +

∫
R

(ex − 1)v(dx) = µt +M1, (3.2.12)

is the total expected instantaneous returns of the stock, and x is the log jump

amplitude of the process X.
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3.2.1 Filtration of the Informed Investor

Recall that all random objects for the i–th investor live on a filtered space (Ω,F ,Hi,P).

For the informed investor, we take H1 = (H1
t )t≥0 to be the completed filtration

generated by W, B and X, augmented by the P–null sets of F . That is, the filtration

of the informed investor is

H1
t

4
= σ (Ws, Bs, Xs : s ≤ t) ∨ σ (N ) = F1

t ∨ σ(Xs : s ≤ t), (3.2.13)

where

N = {D ⊂ Ω : ∃A ∈ F , D ⊂ A,P(A) = 0}

and F1
t = σ (Ws, Bs : s ≤ t) ∨ σ (N ) is previously given in Chapter 2.

For the informed investor, H1
t is equal to σ(Su, Uu : u ≤ t) or σ(Ws, Bs, Xs : s ≤ t).

3.3 Asset Price Dynamic for the Informed Investor

Define a proces Z by the following prescription: for each t ∈ [0, T ], set

Zt =

∫ t

0

µsds+

∫ t

0

σsdYs +

∫ t

0

∫
R

(ex − 1)N(ds, dx). (3.3.1)

Then Z is a semi–martingale with

dZt = btdt+ σtdYt +

∫
R

(ex − 1)Ñ(dt, dx), (3.3.2)

where bt is the total expected returns on the stock. Equation (3.2.11) can now be

written as

dSt = St dZt, Z0 = 0. (3.3.3)

51



By Theorem 2.18, S is the Stochastic or Dolean–Dades Exponential of Z.

Explicitly, (cf Protter [41], Theorem 37, of Chapter II)

St = S0 exp

(
Zt −

1

2
[Zc, Zc]t

)
Π0≤s≤t(1 + ∆Zs)e

−∆Zs

= S0 exp

(
Zc
t −

1

2
[Zc, Zc]t

)
Π0≤s≤t(1 + ∆Zs), (3.3.4)

where

Zc
t =

∫ t

0

µsds+

∫ t

0

σsdYs (3.3.5)

is the continuous part of Z, having quadratic variation

[Zc, Zc]t =

∫ t

0

σ2
sd[Y, Y ]s, t ∈ [0, T ]. (3.3.6)

Define the martingale Jt by the prescription:

Jt
4
=

∫ t

0

∫
R

(ex − 1)Ñ(ds, dx). (3.3.7)

J is a pure jump process with EJt = 0, t ∈ [0, T ]. We have the following:

Lemma 3.1. Let Y and J be give by (3.2.2) and (3.3.7), respectively and

Zt =

∫ t

0

bsds+

∫ t

0

σsdYs + Jt, t ∈ [0, T ]. (3.3.8)

Then

[Zc, Zc]t =

∫ t

0

σ2
sds, t ∈ [0, T ] (3.3.9)

Proof.

[Zc , Zc]s =

∫ t

0

σ2
sd[Y, Y ]s,
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and for each s ∈ [0, T ], Bs,Ws and Us are independent. Thus

[Y , Y ]s = [pW + q U , pW + q U ]s

= [pW , pW ]s + [pW , qU ]s + [qU , pW ]s + [qU , qU ]s

= p2[W ,W ]s + pq[W ,U ]s + qp[U ,W ]s + q2[U ,U ]s

= p2s+ 0 + 0 + q2s

= (p2 + q2)s = s.

From the definition of Poisson random integrals (cf Applebaum [3]),

Jt
4
=

∫ t

0

∫
R

(ex − 1)Ñ(ds, dx)

=
∑

0≤s≤t

(e∆Xs − 1)− t
∫

R

(ex − 1)v(dx),

whence

∆Js = e∆Xs − 1 = ∆Zs, (3.3.10)

which ensures that

∆Jt ≥ −1, almost surely.

This is a necessary requirement to obtain non-negative stock prices. From (3.3.4) and

Lemma 3.1, we get

St = S0 exp

(∫ t

0

µsds+

∫ t

0

σsdYs −
1

2

∫ t

0

σ2
sds

)
Π0<s≤t(1 + ∆Js)

= S0 exp

(∫ t

0

µsds+

∫ t

0

σsdYs −
1

2

∫ t

0

σ2
sds

)
Π0<s≤t e

∆Xs

= S0 exp

(∫ t

0

(µs −
1

2
σ2
s)ds+

∫ t

0

σsdYs +Xt

)
, (3.3.11)

where X is the driving Lévy process in (3.2.1) and (3.2.8).
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We have the following result for the stock price from the perspective of the informed

investor:

Lemma 3.2. There exists a Brownian motion B1 = (B1
t )t≥0 adapted to H1, the

filtration of the informed investor, such that the stock S with dynamic (3.2.1), has

percentage returns dynamic given by

dSt
St

= µ1
tdt+ σtdB

1
t +

∫
R

(ex − 1)N(dt, dx), t ∈ [0, T ], (3.3.12)

and price

St = S0 exp

(∫ t

0

(µ1
s −

1

2
σ2
s)ds+

∫ t

0

σs dB
1
s +Xt

)
, (3.3.13)

where W and B are independent H1–adapted Brownian motions.

Proof. Set µ1
t = µt + υ1

t σt, υ
1
t = −λq Ut, B1

t

4
= pWt + q Bt, and p2 + q2 = 1.

For the informed investor Yt = pWt + q Ut and from (3.2.3)

dYt = p dWt + q dUt

= p dWt + q (−λdUtdt+ dBt)

= −λ pUtdt+ p dWt + q dBt

= −λ pUtdt+ d(pWt + q Bt),

whence

dYt = υ1
t dt+ dB1

t . (3.3.14)

Since W and B are F1–adapted, so is B1 = pW + q B. Since F1 ⊂ H1, then B1 is

H1–adapted. Moreover

[B1, B1]t = [pW + q B , pW + q B]t = p2 [W ,W ]t + 2p q [W ,B]t + q2 [B ,B]t
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= p2t+ 0 + q2t = (p2 + q2)t = t.

By the Lévy Characterization Theorem ( cf Applebaum[3] or Protter [41]), B1 is

Brownian motion. Imposing (3.3.14) on equation (3.3.11) yields

St = S0 exp

(∫ t

0

µsds+

∫ t

0

σs dYs −
1

2

∫ t

0

σ2
sds+Xt

)
= S0 exp

(∫ t

0

µsds−
1

2

∫ t

0

σ2
sds+

∫ t

0

σs(υ
1
s + dB1

s )ds+Xt

)
= S0 exp

(∫ t

0

(µs + υ1
sσs)ds−

1

2

∫ t

0

σ2
sds+

∫ t

0

σs dB
1
s +Xt

)
= S0 exp

(∫ t

0

µ1
sds−

1

2

∫ t

0

σ2
sds+

∫ t

0

σs dB
1
s +Xt

)
.

3.3.1 Portfolio and Wealth Processes of the Informed Investor

Recall that all random objects for the i–th investor live on a filtered space (Ω,F ,Hi,P).

Definition 3.1 (Portfolio Process). The process π ≡ π1 : [0, T ] −→ R is called

the portfolio process of the informed investor, if πt is H1
t–adapted for each ω ∈ Ω and

E
∫ T

0
(πtσt)

2dt <∞.

Note that πt is really πt(ω), ω ∈ Ω and hence, is a random process. π1
t is the proportion

of the wealth of the informed investor that is invested in the risky asset (the stock)

at time t ∈ [0, T ]. The remainder 1 − π1
t , is invested in the bond or money market.

Where it is clear, we drop the superscript “1” and simply use π for the portfolio

process.

The Wealth Process

The wealth process for the informed investor is V 1, π , x : [0, T ] −→ R where V 1, π, x
t

is the value of the portfolio consisting of the stock and bond at time t, when πt is

55



invested in the stock. The initial capital is x > 0. For brevity, we denote this process

by V 1, π = (V 1, π
t ) or simply V 1 = (V 1

t ), t ∈ [0, T ] when the context is clear.

Admissible Portfolio

π is called an admissible portfolio if V π
t > 0 almost surely, for all t ∈ [0, T ].

3.4 The Dynamic of the Wealth Process for the

Informed Investor

Let V 1
t be the wealth of the informed investor at time t resulting from the investment

of πt in the stock. Assume that the bond earns continuously compounded risk–free

interest rate rt. Let nt be the number of stocks in the portfolio at time t. Then

πt = ntSt−
V 1
t−

, where V 1
t− is the value of the portfolio just before time t. It follows that

dV 1
t = (1− πt)V 1

t− rt dt+ ntdSt (3.4.1)

= (1− πt)V 1
t− rt dt+ πt V

1
t−
dSt
St−

.

Therefore

dV 1
t

V 1
t−

= (1− πt) rt dt+ πt
dSt
St−

. (3.4.2)

We have the following result for the wealth dynamic of the informed investor.

Theorem 3.1. If the stock’s percentage returns dynamic for the informed investor is

dSt
St

= bt dt+ σt dYt + dJt, t ∈ [0, T ], . (3.4.3)
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wher J is given by (3.3.7), then the wealth process V 1 has dynamic

dV 1
t

V 1
t−

= (M1πt + πt σt θ
1
t + rt) dt+ πt σt dB

1
t + πtdJt, (3.4.4)

and discounted value Ṽ 1
t = V 1

t exp
(
−
∫ t

0
rsds

)
given by

Ṽ 1
t = V 1

0 exp

(∫ t

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
1
s

)
Π0≤s≤t(1 + πs∆Js), (3.4.5)

= V 1
0 exp

(∫ t

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
1
s

)
Π0≤s≤t(1 + πs(e

∆Xs − 1)).

Proof. From equations (3.2.11) and (3.3.7), we have

dSt
St

= bt dt+ σt dYt + dJt, t ∈ [0, T ]. (3.4.6)

Thus

dV 1
t

V 1
t−

= (1− πt)rtdt+ πt(btdt+ σtdYt + dJt)

= ((1− πt)rt + πtbt)dt+ πtσtdYt + πtdJt

= ((bt − rt)πt + rt)dt+ πtσtdYt + πtdJt. (3.4.7)

From (3.3.14), with bt = µt +
∫
R

(ex − 1)v(dx) = µt +M1, we get

dV 1
t

V 1
t−

= ((bt − rt)πt + rt)dt+ πtσt(dB
1
t − λ q Ut dt) + πtdJt

= ((bt − rt − λ q Utσt)πt + rt)dt+ πtσtdB
1
t + πtdJt

= ((M1 + µt − rt − λ q Utσt)πt + rt)dt+ πtσtdB
1
t + πtdJt

= ((M1 + µ1
t − rt)πt + rt)dt+ πtσtdB

1
t + πtdJt

= (M1πt + πtσtθ
1
t + rt)dt+ πtσtdB

1
t + πtdJt.
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By applying Theorem 2.18 on Stochastic/Doleans exponentials to the previously

established equation (3.4.4), we get (3.4.5).

From the foregoing, we may effectively set the interest rate r to be zero, and use the

discounted wealth process Ṽ 1 instead of the wealth process V 1, to analyse the utility

from terminal wealth. Thus VT is equivalent to the discounted terminal wealth ṼT .

Conseqently, we will maximize the utility from terminal wealth using the discounted

terminal wealth:

Ṽ 1
T = V 1

0 exp

(∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
1
s

)
Π0≤s≤T (1 + πs∆Js), (3.4.8)

where

∆Js = e∆Xs − 1 and ∆Xs =

∫
R

xN(ds, dx).

3.5 Maximization of Logarithmic Utility from

Terminal Wealth for the Informed Investor

To obtain tractable solutions, we assume that all investors have logarithmic utility

function u(x) = log x.

From (3.4.8), with V 1
0 = x and θ1 = µ1−r

σ
, we get

u(Ṽ 1
T ) ≡ log Ṽ 1

T

= log V 1
0 +

∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
1
s +

∑
0≤s≤T

log(1 + πs∆Js),

= log V 1
0 +

∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
1
s

+
∑

0≤s≤T

log(1 + πs(e
∆Xs − 1)), (3.5.1)
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where ∆Xs is the log jump amplitude at time s ≤ t, given by

∆Xs
4
= log(1 + ∆Js)⇔ ∆Js = e∆Xs − 1. (3.5.2)

Let

G(π) =

∫
R

log(1 + π(ex − 1))v(dx). (3.5.3)

We now have the following:

Theorem 3.2. The expected logarithmic utility from discounted terminal wealth Ṽ 1
T

for the informed investor is given by

Eu(Ṽ 1, π
T ) = log V0 +

1

2
E

∫ T

0

(θ1
t )

2dt+ E

∫ T

0

f 1(πt)dt, (3.5.4)

where

f 1(πt) = −1

2
(πt σt − θ1

t )
2 +G(πt). (3.5.5)

Proof. Let N(t, A) be the Poisson random measure on R+×B(R−{0}) that counts

the number of jumps of X up to time t in the lower bounded set A ∈ B(R − {0});

that is, 0 /∈ A (cf Applebaum [3]). Then

N(t, A) = #{0 < s ≤ t : ∆Xs ∈ A}, (3.5.6)

with Lévy measure v(A) = EN(1, A). By Definition 2.25, we have

∑
0≤s≤T

log(1+πs∆Js) =
∑

0≤s≤T

log(1+πs(e
∆Xs−1)) =

∫ T

0

∫
R

log(1+πs(e
x−1))N(ds, dx).

(3.5.7)

Since log(1 + πs(e
x − 1)) vanishes near x = 0, then by Theorem 2.13 we have

E

∫ T

0

∫
R

log(1 +πs(e
x−1))N(ds, dx) = E

∫ T

0

∫
R

log(1+πs(e
x−1))v(dx)ds. (3.5.8)
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Taking expectation of (3.5.1) yields,

Eu(Ṽ 1, π
T ) ≡ E log Ṽ 1, π

T

= log V 1
0 + E

∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+ E

∫ T

0

πsσsdB
1
s

+ E

∫ T

0

∫
R

log(1 + πs(e
x − 1))N(ds, dx),

= log V 1
0 + E

∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds

+ E

∫ T

0

∫
R

log(1 + πs(e
x − 1))v(dx)ds. (3.5.9)

Note that

(πtσtθ
1
t −

1

2
π2
t σ

2
t ) =

1

2
(θ1
t )

2 − 1

2
(πtσt − θ1

t )
2. (3.5.10)

Therefore, we have

Eu(Ṽ 1, π
T ) = log V 1

0 +
1

2
E

∫ T

0

(θ1
t )

2dt− 1

2
E

∫ T

0

(πtσt − θ1
t )

2dt+ E

∫ T

0

G(πt)dt.

Admissible Set for Informed Investor

Let V 1
0 = x. We seek a portfolio process π = (πt)t≥0 in an admissible set A1(x)

defined by

A1(x) = {π; Ṽ 1, π
t > 0, π isH1 − predictable, S − integrable}. (3.5.11)

π is predictable if it is measurable with respect to the predictable σ–algebra on

[0, T ]× Ω, which is the σ–algebra of all LCRL functions on [0, T ]× Ω.

The optimal portfolio for the informed investor is π∗ ∈ A1(x) such that

E(log Ṽ 1, π∗

T ) = max
π∈A1(x)

E log Ṽ 1, π
T . (3.5.12)
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That is,

π∗ = arg max
π∈A1(x)

E log Ṽ 1, π
T . (3.5.13)

Since θt ≡ θ1
t is independent of πt, we see from (3.5.4) that E log Ṽ 1, π

T is maximized

iff E
∫ T

0
f 1(π1

t )dt is maximized. That is, if f(π) is maximized on the admissible set

A1(x). This approach is similar to the optimization method used by Imkeller and

Amendinger [25], Imkeller and Ankirchner [26], Liu, Longstaff and Pan [34], and

yields the same optimal as the H-J-B approach.

Lemma 3.3. If G(·) is twice differentiable then f 1(π) is strictly concave on R, with

unique maximum at π∗, 1, such that for each t ∈ [0, T ]

π∗, 1t =
θ1
t

σt
+
G′(π∗, 1t )

σ2
t

. (3.5.14)

Proof. Let f ≡ f 1 and assume that G′′(π) exists on R. From (3.5.5),

f(πt) = −1

2
(πtσt − θt)2 +G(πt),

whence

f ′(πt) = −σt(πtσt − θt) +G′(πt) = −σ(πtσt − θt) +

∫
R

(ex − 1)v(dx)

1 + πt(ex − 1)

and

f ′′(πt) = −σ2
t +G′′(πt) = −σ2

t −
∫

R

(ex − 1)2v(dx)

(1 + πt(ex − 1))2
< 0.

Thus f is strictly concave on R, and therefore admits a unique maximum π∗t , where

f ′(π∗t ) = 0. Thus

π∗t σt − θt =
G′(π∗t )

σt
⇔ π∗t =

θt
σt

+
G′(π∗t )

σ2
t
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The result follows from the fact that, for each t ∈ [0, T ],

max
πt∈R

f(πt) = f(π∗t ).

Theorem 3.3. Assume that G(π) is twice differentiable with respect to π. For the

informed investor, the maximum expected logarithmic utility from terminal wealth is

given by

u1(x) ≡ max
π∈A1(x)

E log Ṽ 1, π
T

= log x+
1

2
E

∫ T

0

(θ1
t )

2dt+ E

∫ T

0

f 1(π∗, 1t )dt, (3.5.15)

provided

π∗, 1t =
θ1
t

σt
+
G′(π∗, 1t )

σ2
t

∈ A1(x). (3.5.16)

Proof. Since G′′(π) exists, then by Lemma 3.3 we have an optimal portfolio π∗ given

by

π∗, 1t =
θ1
t

σt
+
G′(π∗, 1t )

σ2
t

,

and

maxπt∈Rf
1(π) = f 1(π∗, 1t ).

Assume that π∗, 1 ∈ A1(x). Then E
∫ T

0
f 1(πt)dt ≤ E

∫ T
0
f 1(π∗, 1t )dt, whence

maxπt∈A1(x) E

∫ T

0

f 1(πt)dt = E

∫ T

0

f 1(π∗, 1t )dt.
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Therefore by Theorem 3.2 with V 1
0 = x, we get

u1(x) ≡ max
π∈A1(x)

E log Ṽ 1, π
T

= log x+
1

2
E

∫ T

0

(θ1
t )

2dt+maxπE

∫ T

0

f 1(π1
t )dt,

= log x+
1

2
E

∫ T

0

(θ1
t )

2dt+ E

∫ T

0

f 1(π∗, 1t )dt.

Remark 3.1. We achieve optimality if G is twice differentiable. That is if (ex−1)2

(1+π(ex−1))2

is v–integrable. Under what condition(s) is

G′′(π) = −
∫

R

(ex − 1)2v(dx)

(1 + π(ex − 1))2
< ∞ ?

If we restrict π to the interval [0, 1), then G′′(π) <∞ whenever
∫
R

(ex−1)2v(dx) <∞.

If π = 1, then G′′(π) exists if
∫
R

(e−x − 1)2v(dx) <∞. Therefore, if no short–selling

(π < 0) or borrowing (π > 1) from the bank account is allowed, and (e±x − 1)2 is

v-integrable, then Lemma 3.3 and Theorem 3.3 hold.

3.6 Asset Price Dynamic for Uninformed Investor

The uninformed investor observes only the the stock price S and does not have any

information on the mispricing process U , although the investor may be aware that fads

exist. Uninformed investors and all characteristics related thereto, are represented

by the index i = 0. These investors have filtration H0 = (H0
t )t≥0 defined below. Let

X = (Xt)t≥0 be the pure jump Lévy process that drives the stock price. Define the

process Y on (Ω,F ,H0,P) by the prescription:

Yt = pWt + q Ut

(3.6.1)
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where W,U, Y,X are defined by equations(3.2.2)–(3.2.4). X and Y are independent,

since X,W,U are independent. We take the filtration of the uninformed investor as

H0
t = F0

t ∨ σ(Xu : u ≤ t), t ∈ [0, T ], (3.6.2)

where F0
t = σ(Ys : s ≤ t) is given by Guasoni [21], Theorem 2.1. Clearly,

F0
t ⊂ H0

t ⊂ H1
t ⊂ F . (3.6.3)

As in the case of the informed investor, the uninformed investor has stock price

dynamic (cf equations (3.2.1),(3.2.11) and (3.2.12)), given by

dSt
St

= bt dt+ σt dYt + dJt, t ∈ [0, T ], (3.6.4)

where

Jt =

∫ t

0

∫
R

(ex − 1)Ñ(ds, dx).

Lemma 3.4. There exist an H0–Brownian motion B0 and a process φ0
t adapted to

H0
t , such that for each t ∈ [0, T ]

B0
t = Yt +

∫ t

0

φ0
sds, (3.6.5)

φ0
s = −υ0

s = λ

∫ s

0

e−λ(s−u)(1 + γ(u))dB0
u, (3.6.6)

where λ is the mean reversion rate of the O–U process U .

Proof. Yt = pWt + q Ut is a Gaussian process which is adapted to F0
t , and hence

adapted to H0
t , since it is contained therein. By Guasoni [21] Theorem 2.1.1, using

Hitsuda [24] representation of Gaussian processes, there exists an F0–adapted and

hence, H0–adapted Brownian motion B0 and process φ0, given by (3.6.5) and (3.6.6).

64



Equivalently,

Yt = B0
t −

∫ t

0

φ0
sds = B0

t +

∫ t

0

υ0
sds, (3.6.7)

whence

dYt = dB0
t + υ0

t dt. (3.6.8)

Under this transformation, the stock price dynamic (3.6.4) becomes

dSt
St

= bt dt+ σt (dB0
t + υ0

t dt) + dJt

= (bt + σt υ
0
t )dt+ σt dB

0
t + dJt

= b0
tdt+ σt dB

0
t + dJt

= b0
tdt+ σtdB

0
t +

∫
R

(ex − 1)Ñ(dt, dx)

= (µ0
t +M1)dt+ σtdB

0
t +

∫
R

(ex − 1)Ñ(dt, dx).

We summarize this result in the following theorem.

Theorem 3.4. The percentage returns dynamic of the uninformed investor is

dSt
St

= b0
t dt+ σt dB

0
t +

∫
R

(ex − 1)Ñ(dt, dx), (3.6.9)

with price

St = S0 exp

(∫ t

0

µ0
sds−

1

2

∫ t

0

σ2
sds+

∫ t

0

σsdB
0
s +Xt

)
, (3.6.10)

where b0
t = bt + σtυ

0
t , µ0

t = µt + σtυ
0
t , bt = µt +M1, and M1 =

∫
R

(ex − 1)v(dx).

Proof. Equation (3.6.10) follows directly from (3.6.9) by the application of Theorem
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2.18 on stochastic exponentials.

Remark 3.2. We see from the last result and Lemma 3.2, that relative to the filtration

Hi, i = 0, 1, the stock price is

St = S0 exp

(∫ t

0

µisds−
1

2

∫ t

0

σ2
sds+

∫ t

0

σsdB
i
s +Xt

)
, (3.6.11)

where Xt =
∫
R
xN(t, dx) and µit = µt + σtυ

i
t, i = 0, 1, and υi and Bi are previously

defined.

3.6.1 The Wealth Process for the Uninformed Investor

The wealth process for the uninformed investor is V 0, π, x : R+ × Ω −→ R, where

V 0, π, x
t is the value of the portfolio (of stock and bond) at time t. πt is the proportion

of wealth invested in the stock. x > 0 is the initial capital, i.e., V 0
0 = x. For brevity,

we will denote this process by V 0 = (V 0, π, x
t )t≥0.

Admissible Set for Uninformed Investor

The admissible set for the uninformed investor is denoted by A0(x) where

A0(x) = {π0 : V 0, π0, x
t > 0; π0 isH0 − predictable, S − integrable }

= {π0 : Ṽ 0, π0, x
t > 0; π0 isH0 − predictable, S − integrable }.(3.6.12)

A process π = π0 is called admissible if it is a member of A0(x). Here Ṽ 0 is the

discounted wealth process of V 0, and π is predictable if it is measurable with respect

to the predictable sigma–algebra on [0, T ] × Ω, the sigma–algebra of LCRL (left

continuous with right limits) functions on [0, T ]× Ω.
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Dynamics of the Wealth Process for the Uninformed Investor

Let Vt ≡ V 0
t be the wealth process of the uninformed investor at time t as a result

of investing πt ≡ π0
t in the stock. Assume that the bond earns the same continuously

compounded deterministic risk–free interest rate rt, as the informed investor. Let n0
t

be the number of stocks in the portfolio at the time t. Then π0
t =

n0
tSt−
V 0
t−

, where V 0
t− is

the value of the portfolio just before time t.

We have the following result for the wealth dynamic of the uninformed investor.

Theorem 3.5. If the stock’s percentage return dynamic for the informed investor is

dSt
St

= b0
t dt+ σt dYt + dJt, t ∈ [0, T ], (3.6.13)

where J is given by (3.3.7), then the wealth process V 0 has dynamic

dV 0
t

V 0
t−

= (kπt + πt σt θ
0
t + rt)dt+ πt σt dB

0
t + πt dJt, (3.6.14)

and discounted value Ṽ 0
t = V 0

t exp
(
−
∫ t

0
rsds

)
, given by

Ṽ 0
t = V 0

0 exp

(∫ t

0

(πsσsθ
0
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
0
s

)
Π0≤s≤t(1 + πs∆Js),(3.6.15)

where B0 and υ0 are given by Lemma 3.4 and Theorem 3.4.

Proof. Since all portfolios are assume to be self–financing, then

dV 0
t = (1− πt)V 0

t− rt dt+ n0
t dSt, (3.6.16)

= (1− πt)V 0
t− rt dt+ πt V

0
t−
dSt
St−

.
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Therefore

dV 0
t

V 0
t−

= (1− πt) rt dt+ πt
dSt
St−

. (3.6.17)

From Theorem 3.4, with Jt =
∫ t

0

∫
R

(ex − 1)Ñ(dt, dx), we have percentage returns

dSt
St

= b0
t dt+ σt dB

0
t + dJt, t ∈ [0, T ]. (3.6.18)

Using the fact that b0
t = µ0

t +
∫
R

(ex − 1)v(dx) = µ0
t +M1, we get

dV 0
t

V 0
t−

= (1− πt) rtdt+ πt (b0
t dt+ σt dB

0
t + dJt)

= ((1− πt) rt + πt b
0
t ) dt+ πt σt dB

0
t + πt dJt

= ((b0
t − rt)πt + rt) dt+ πt σt dB

0
t + πt dJt

= (M1πt + πt σt θ
0
t + rt)dt+ πt σt dB

0
t + πt dJt, (3.6.19)

where the stock’s Sharpe ratio or market price of risk is θ0
t . Equation (3.6.14)

was established above, and applying Theorem 2.18 on stochastic exponentials yields

(3.6.15).

Remark 3.3. As with the model for the informed investor, we may effectively set the

interest rate rt to be zero, by using the discounted wealth process Ṽ 0 in the sequel. In

this case, the terminal wealth V 0
T is equivalent to the discounted terminal wealth Ṽ 0

T .

3.7 Maximization of Logarithmic Utility from

Terminal Wealth for the Uninformed Investor

We proceed almost identically to the approcah used for the informed investor. We

assume that all uninformed investors have logarithmic utility function u(x) = log x.
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Let

G(π) =

∫
R

log(1 + π(ex − 1))v(dx).

Theorem 3.6. The expected logarithmic utility from terminal wealth Ṽ 0
T for the

uninformed investor is given by

Eu(Ṽ 0
T ) = log V 0

0 +
1

2
E

∫ T

0

(θ0
t )

2dt+ E

∫ T

0

f 0(π0
t )dt, (3.7.1)

where

f 0(π0
t ) = −1

2
(π0

t σt − θ0
t )

2 +G(π0
t ). (3.7.2)

Proof. For convenience, we let πt = π0
t . From (3.6.15), with V 0

0 = x we get

u(Ṽ 0
T ) ≡ log Ṽ 0

T

= log V 0
0 +

∫ T

0

(πsσsθ
0
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
0
s +

∑
0≤s≤T

log(1 + πs∆Js),

= log V 0
0 +

∫ T

0

(πsσsθ
0
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
0
s

+
∑

0≤s≤T

log(1 + πs(e
∆Xs − 1)), (3.7.3)

where ∆Xs is the log jump amplitude at time s ≤ t, given by

∆Xs
4
= log(1 + ∆Js)⇔ ∆Js = e∆Xs − 1. (3.7.4)

By Theorem 2.13, we have

∑
0≤s≤T

log(1+πs∆Js) =
∑

0≤s≤T

log(1+πs(e
∆Xs−1)) =

∫ T

0

∫
R

log(1+πs(e
x−1))N(ds, dx),
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and

E

∫ T

0

∫
R

log(1 + πs(e
x − 1))N(ds, dx) = E

∫ T

0

∫
R

log(1 + πs(e
x − 1))v(dx)ds.

Taking expectation of (3.7.3) yields,

Eu(Ṽ 0
T ) ≡ E log Ṽ 0

T

= log V 0
0 + E

∫ T

0

(πsσsθ
0
s −

1

2
π2
sσ

2
s)ds+ E

∫ T

0

πsσsdB
0
s

+ E

∫ T

0

∫
R

log(1 + πs(e
x − 1))N(ds, dx),

= log V 0
0 + E

∫ T

0

(πsσsθ
0
s −

1

2
π2
sσ

2
s)ds

+ E

∫ T

0

∫
R

log(1 + πs(e
x − 1))v(dx)ds. (3.7.5)

Now

(πtσtθ
0
t −

1

2
π2
t σ

2
t ) =

1

2
(θ0
t )

2 − 1

2
(πtσt − θ0

t )
2. (3.7.6)

By adding the superscript “0”, equations (3.7.2) and (3.7.6) yield

Eu(Ṽ 0
T ) = log V 0

0 +
1

2
E

∫ T

0

(θ0
t )

2dt+ E

∫ T

0

f 0(π0
t )dt.

3.8 Optimal Portfolio for the Uninformed Investor

The optimal portfolio for the informed investor is π ≡ π∗ ∈ A0(x) such that

E(log Ṽ 0, π0, ∗

T ) = max
π∈A0(x)

E log Ṽ 0, π
T . (3.8.1)
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That is,

π0, ∗ = arg max
π∈A0(x)

E log Ṽ 0, π
T . (3.8.2)

Since θ0
t ≡ θt is independent of πt we see that E(log Ṽ 0,π0, ∗

T ) is maximized iff

E
∫ T

0
f 0(π0

t )dt is maximized. That is, if f 0(π) is maximized on the admissible set

A0(x). Since this is the same procedure used for the informed investor, we have the

following:

Lemma 3.5. If G is twice differentiable then f 0(π) is strictly concave on R, and for

each t ∈ [0, T ], there is an unique optimal π0, ∗
t , where

π0, ∗
t =

θ0
t

σt
+
G′(π0, ∗

t )

σ2
t

. (3.8.3)

Proof. The proof is essentially the same as that of Lemma 3.3 with i = 0, and is

omitted.

We have the following major result as a consequence of the foregoing.

Theorem 3.7. Assume that G(π) is twice differentiable. For the uninformed investor

with initial wealth x > 0, the maximum expected logarithmic utility from terminal

wealth is given by u0(x) where

u0(x) ≡ max
π∈A0(x)

E log Ṽ 0,π
T = log x+

1

2
E

∫ T

0

(θ0
t )

2dt+ E

∫ T

0

f 0(π0, ∗
t )dt,(3.8.4)

provided

π0, ∗
t =

θ0
t

σt
+
G′(π0, ∗

t )

σ2
t

∈ A0(x). (3.8.5)

Proof. Since G′′(π) exists, then by Lemma 3.5 we have an optimal portfolio π∗ given

by

π0, ∗
t =

θ0
t

σt
+
G′(π0, ∗

t )

σ2
t
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and

maxπt∈Rf
0(π) = f 0(π∗t ).

Assume that π0, ∗ ∈ A0(x). Then

E

∫ T

0

f 0(πt)dt ≤ E

∫ T

0

f 0(π∗t )dt,

whence

maxπt∈A0(x)E

∫ T

0

f 0(πt)dt = E

∫ T

0

f 0(π∗t )dt.

Therefore, by Theorem 3.6 with V 0
0 = x, we get

u0(x) ≡ max
π∈A0(x)

E log Ṽ 0, π
T

= log x+
1

2
E

∫ T

0

(θ0
t )

2dt+maxπ∈A1(x)E

∫ T

0

f 0(πt)dt,

= log x+
1

2
E

∫ T

0

(θ0
t )

2dt+ E

∫ T

0

f 0(π0, ∗
t )dt,

provided

π0, ∗
t =

θ0
t

σt
+
G′(π0, ∗

t )

σ2
t

∈ A0(x).

Note that the above proof was obtained from the proof of Theorem 3.3 by replacing

the superscript “1”, by “0”.

Remark 3.4. As in the case of the informed investor, we achieve optimality if G is

twice differentiable. That is if (e±x − 1)2 is v–integrable.

Remark 3.5. In the sequel, we assume that π ∈ [0, 1] and
∫
R

(e±x − 1)2v(dx) < ∞

unless G(π) =
∫
R

log(1 + π(ex − 1))v(dx) can be explicitly computed. This special

case holds when the jumps are driven by linear combinations of Poisson processes,

in which case the restriction π ∈ [0, 1], is relaxed. For most cases, however, such
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as markets driven by Variance Gamma, CGMY, Merton and Kou Jump–diffusion

processes, we resort to this restriction to ensure optimality of portfolio processes for

both informed and uninformed investors.

We now combine the results for both investors in one general theorem.

Theorem 3.8. Let π ∈ [0, 1]. If
∫
R

(e±x − 1)2v(dx) <∞, then

(1) G′′(π) < 0.

(2) Let i ∈ {0, 1}. For the i–th investor, there is an unique optimal portfolio πi,∗ ∈

[0, 1] for the stock with dynamic (3.2.1), given by

πi, ∗t =
θit
σt

+
G′(πi, ∗t )

σ2
t

,

provided πi, ∗ ∈ [0, 1] ⊂ Ai(x).

(3) The maximum expected logarithmic utility from terminal wealth for the i–th investor,

having x > 0 of initial capital, is

ui(x) = log x+
1

2
E

∫ T

0

(θit)
2dt+ E

∫ T

0

f i(πi, ∗t )dt,

where f i(π) is given by (3.5.5) and (3.7.2).

We now break down this result in terms of continuous and discrete parts, in line

with the Merton’s GBM model. The Merton [36] optimal portfolio π∗Mer for a stock

with GBM dynamic

dSt
St

= µtdt+ σtdBt,

is

π∗Mer(t) =
θt
σt

=
µt − rt
σt

.

We introduce some useful objects in the following definition.
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Definition 3.2. Let t ∈ [0, T ]. Define the following objects by the prescriptions:

πit, c
4
=

θi

σt
=
µit − rt
σt

= πiMer(t). (3.8.6)

πit, d
4
=

G′(πit)

σ2
t

. (3.8.7)

uiT, c(x)
4
= log x+

1

2
E

∫ T

0

(θit)
2dt. (3.8.8)

uiT, d(x)
4
= E

∫ T

0

f i(πit)dt. (3.8.9)

Remark 3.6. πit, c and πit, d are the continuous and discrete components, respectively,

of the portfolio πt.

Similarly, uiT, c and uiT, d are the continuous and discrete components of the maximum

expected logarithmic utility based on an optimal portfolio π wit investment horizon T .

The processes πit, c and πit, d are assumed to be adapted to their filtrations Hi, i ∈ {0, 1}.

In the sequel, we fix the interest rate r = 0. In this case, the discounted wealth process

and the wealth process are identical.

We now restate Theorem 3.8 in an equivalent form:

Theorem 3.9. Let π ∈ [0, 1] and
∫
R

(e±x − 1)2v(dx) <∞. Let ∈ {0, 1}.

(1) For both the informed and uninformed investors, there is an unique optimal

portfolio π∗, i ∈ Ai(x), such that

π∗, it = π∗, it, c + π∗, it, d ≡ π∗, iMer + π∗, it, d. (3.8.10)

That is,

π∗, i = π∗, ic + π∗, id ≡ π∗, iMer + π∗, id , (3.8.11)

where π∗c is the Merton optimal and π∗d is the excess stock holding resulting from the

jumps.

(2) The maximum expected logarithmic utility from terminal wealth for each
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investor, having x > 0 in initial wealth, is given by

ui(x) ≡ uiT (x) = uiT, c(x) + uiT, d(x). (3.8.12)

That is,

u(x) ≡ uT (x) = uT, c(x) + uT, d(x), (3.8.13)

where uT, c(x) is the maximum expected logarithmic utility from terminal wealth for

the purely continuous Merton case, with optimal portfolio π∗c . uT, d(x) is the excess

utility resulting from the jumps.

Proof. This follows directly from definition 3.2 and Theorem 3.8.

3.8.1 Asymptotic Utilities of Investors

Let uiT (x) be the maximum expected logarithmic utility of the i–th investor resulting

from an optimal portfolio π∗, i. Assume that the risk–free interest rate r = 0. Then

the stock’s Sharpe ratio for the i–th investor is

θi =
µi

σ
=
µ+ υiσ

σ
=
µ

σ
+ υi. (3.8.14)

We now restate Theorem 1.4, in Guasoni [21] using the new notations above.

Theorem 3.10. Let x > 0 be the initial wealth of the investors and let i ∈ {0, 1}.

(1) The optimal portfolio and maximum expected logarithmic utility from terminal

wealth for the i–th investor in the purely continuous Merton market are given by:

π∗, ic ≡ π∗, iMer =
θi

σ
=

µ

σ2
+
υi

σ
, (3.8.15)
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and

uiT, c(x) = log x+
1

2
E

∫ T

0

(θit)
2dt

= log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
1

2

∫ T

0

E(υit)
2dt. (3.8.16)

(2) As T −→∞, we have asymptotic utilities:

ui∞, c(x) ∼ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
λT

4
(1− p)(1 + (−1)i+1p), p ∈ [0, 1]. (3.8.17)

Proof. See Theorem 1.4 in Guasoni [21].

We now have asymptotic results for the jump case.

Theorem 3.11. As T −→∞, the maximal expected logarithmic utilities from terminal

wealth for the i–th investor i = 0, 1, is ui∞(x) given by

ui∞(x) = ui∞, c(x) + ui∞, d(x), (3.8.18)

where p ∈ [0, 1], and

ui∞, c(x) ∼ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
λT

4
(1− p)(1 + (−1)i+1p), (3.8.19)

ui∞, d(x) ∼ T φπ∗, i(i), and φπ∗, i(i) ∼ lim
t→∞

Ef i(π∗, it ). (3.8.20)

Proof. Let i ∈ {0, 1} and T −→∞. From Theorem 3.10 we have

uiT, c → ui∞, c(x) = log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
λT

4
(1− p)(1 + (−1)i+1p).
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Since f i(π) is continuous, then by L’Hospital’s rule

lim
T→∞

uiT, d(x)

T
= lim

T→∞

1

T
E

∫ T

0

f i(π∗, it )dt = lim
t→∞

Ef i(π∗, it ) = φπ∗, i(i).

Thus uiT, d(x) ∼ ui∞ d(x) = T φπ∗, i(i), which completes the proof.

Corollary 3.1.

(1) Let x > 0 be the initial capital of the investors and i = 0, 1. As T −→ ∞, the

maximal expected logarithmic utilities from terminal wealth for the i–th investor, is

ui∞(x) ∼ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
λT

4
(1− p)(1 + (−1)i+1p) + T φπ∗, i(i). (3.8.21)

(2) Moreover, the asymptotic excess utility of the informed investor is

u1
∞(x)− u0

∞(x) ∼ λT

2
p (1− p) + T (φπ∗, 1t

(1)− φπ∗, 0t
(0)). (3.8.22)

Proof. Part (1) follows directly from Theorem 3.11, while Part(2) follows from Part(1)

by subtraction.

Remark 3.7. Clearly, if there are no jumps G ≡ 0 because the Lévy measure v ≡ 0,

and we revert to the purely continuous GBM case studied by Guasoni [21].

In the sequel, we give an explicit formula for φπ∗, it
(i) after studying the excess stock

holdings of the investors.

3.8.2 Excess Stock Holdings of Investors

Let G(π) =
∫
R

log(1 + π(ex − 1))v(dx) with π ∈ [0, 1] and
∫
R

(e±x − 1)2v(dx) < ∞.

Then G′′(π) < 0. Let i ∈ {0, 1}. Define the Merton optimal for each investor by:

αi
4
=

θit
σt
≡ π∗, it, c ≡ π∗, iMer(t). (3.8.23)
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The following important result is presented without the superscript “i”.

Theorem 3.12. Assume that π ∈ [0, 1] and
∫
R

(e±x − 1)2v(dx) <∞. Let

α
4
=

θ

σ
≡ π∗c ≡ π∗Mer

be the Merton optimal for each investor, where θ is the stock’s Sharpe ratio. There

exists ψα ∈ (α, 1) such that the optimal portfolio π∗ that maximizes the expected

logarithmic utility from terminal wealth is

π∗ = α +
G′(α)

σ2 + |G′′(ψα)|
. (3.8.24)

Proof. Set α = θ
σ
. Dropping the superscript “i”, and subscript “t”, the optimal

portfolio π∗ for any investor is given by Theorem 3.8, as

π∗ =
θ

σ
+
G′(π∗)
σ2

= α +
G′(π∗)
σ2

.

By the Mean Value Theorem there exists ψα between π∗ and α, such that

G′(π∗) = G′(α) + (π∗ − α)G′′(ψα).

Thus

π∗ − α =
G′(π∗)
σ2

=
1

σ2
(G′(α) + (π∗ − α)G′′(ψα).

Rearranging yields

π∗ = α +
G′(α)

σ2 −G′′(ψα)
= α +

G′(α)

σ2 + |G′′(ψα)|
. (3.8.25)
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An immediate consequence of the last result is

Corollary 3.2. For each investor, the excess stock holding over the Merton optimal

α = θ
σ

, is

π∗d =
G′(α)

σ2 + |G′′(ψα)|
. (3.8.26)

Remark 3.8. Observe that we have a positive or negative excess over the Merton

optimal in lock-step with the sign of G′(α).

3.9 Optimal Portfolios and Utilities Under

Quadratic Approximation of G(α)

In this section, we derive some useful formulas based on the assumption that G(α)

is approximated by a Taylor expansion built from the constants M1 and M2, defined

below. While this is a crude approximation, it leads to very nice consequences. In

Chapter 5, we will turn to higher degree polynomial approximations of G, using higher

order moments. In Chapter 6, we approximate G(·) using two infinite series expanded

about π = 0 and π = 1, respectively.

Let v(·) be the Lévy measure of the jump process, and for each α ∈ [0, 1], set

G(α) =

∫
R

log(1 + α(ex − 1))v(dx).

Standing Assumption:

There exists k ≥ 3, such that
∫
R

(e±x− 1)kv(dx) <∞. This ensures that G(k)(α), the

k–th derivative of G(α), exists on [0, 1]. In particular, G′′(π) < 0.

Instantaneous Centralized Moments of Returns
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We introduce some extremely useful objects linked to the Lévy measure that will be

instrumental in computing approximations.

Definition 3.3. Let j ∈ {1, 2, . . . , k}. Define the j–th instantaneous centralized

moment of returns for the stock with dynamic (3.2.1) by the prescription:

Mj
4
=

∫
R

(ex − 1)jv(dx). (3.9.1)

Mj is well defined because
∫
R

(e±x − 1)jv(dx) <∞, and

G(j)(0) = (−1)j−1(j − 1)!

∫
R

(ex − 1)jv(dx) = (−1)j−1(j − 1)!Mj, (3.9.2)

whence

Mj = (−1)j−1 G
(j)(0)

(j − 1)!
. (3.9.3)

We now assume that k = 3, whence
∫
R

(e±x− 1)3v(dx) <∞, and so G′′′(α) exists on

[0,1]. Expanding G(α) about α = 0, yields

G(α) = G(0) + αG′(0) +
1

2
α2G′′(0) +

1

3
α3G′′′(ψα), ψα ∈ (0, α). (3.9.4)

With error term R3(α) = 1
3
α3G′′′(ψα), we have quadratic approximation of G(α)

given by

G(α) = αG′(0) +
1

2
α2G′′(0) +R3(α) (3.9.5)

= M1α−
1

2
M2α

2 +R3(α).

Thus

G(α) ≈M1α−
1

2
M2α

2, (3.9.6)
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whence

G′(α) ≈M1 −M2α and G′′(α) ≈ −M2. (3.9.7)

Thus for all α ∈ (0, 1) the optimal portfolio becomes (cf Theorem 3.12)

π∗ − α =
G′(α)

σ2 −G′′(ψα)
≈ M1 −M2α

σ2 +M2

. (3.9.8)

Expanding G(π∗) about α, there exists ηα ∈ (α, 1) such that

G(π∗) = G(α)+(π∗−α)G′(α)+
1

2
(π∗−α)2G′′(ηα) ≈ G(α)+(π∗−α)G′(α)−1

2
M2(π∗−α)2.

Thus

π∗d = π∗ − α =
G′(α)

σ2 −G′′(ψα)
≈ M1 −M2α

σ2 +M2

.

We now compute the integrand f(π∗) in the excess utility formula E
∫ T

0
f(π∗t )dt,

which is define by equation (3.5.5) or (3.7.2). Under quadratic approximation

f(π∗) = G(π∗)− 1

2
σ2(π∗ − α)2

≈ G(α) +G′(α)π∗d −
1

2
M2(π∗d)

2 − 1

2
σ2(π∗d)

2

= G(α) + (π∗d)
2(σ2 +M2) +

1

2
((−M2 − σ2))(π∗d)

2

= G(α) +
1

2
(π∗d)

2(σ2 +M2),

whence
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f(π∗) = M1α−
1

2
M2α

2 +
1

2

(M1 −M2α)2

(σ2 +M2)

=
(2M1α−M2α

2)(σ2 +M2) + (M1 −M2α)2

2(σ2 +M2)

=
2M1ασ

2 −M2α
2σ2 + 2M2M1α−M2

2α
2 +M2

1 − 2M1M2α +M2
2σ

2

2(σ2 +M2)

=
−M2α

2σ2 + 2M1ασ
2 +M2

1

2(σ2 +M2)

=
−M2θ

2 + 2M1θσ +M2
1

2(σ2 +M2)
, α =

θ

σ
.

Define the functions A, B, C of t, σ, M1, M2, by the prescriptions:

A
4
=

−M2

2(σ2 +M2)
(3.9.9)

B
4
=

2M1σ

2(σ2 +M2)
(3.9.10)

C
4
=

M2
1

2(σ2 +M2)
. (3.9.11)

Then

f(π∗) =
−M2θ

2 + 2M1θσ +M2
1

2(σ2 +M2)
,

= Aθ2 +Bθ + C,

4
= Q(θ) ≡ Q(θ : σ, M1, M2). (3.9.12)

The foregoing leads to the following important result.

Theorem 3.13. Let G(α) be defined on [0, 1]. The jump component of the maximum

expected utility for the i–th investor resulting from quadratic approximation of G is

uiT, d(x) ≈ E

∫ T

0

Q
(
θit : σt, M1, M2

)
dt, i ∈ {0, 1}, (3.9.13)
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where θ is the stock’s Sharpe ratio, A,B,C given by (3.9.9) and Q(θ) = Aθ2 +Bθ+C.

The optimal portfolio for each investor is

π∗ ≈ α +
M1 −M2α

σ2 +M2

. (3.9.14)

Corollary 3.3. Let i ∈ {0, 1}. Under quadratic approximation of G(·), the jump

component of the maximum expected utility from terminal wealth for the i–th investor

is given by

uiT, d(x) ≈ E

∫ T

0

Q

(
µt
σt

: σt, M1, M2

)
dt+

∫ T

0

At E(υit)
2dt, (3.9.15)

where υi is defined in Lemma 3.4 and Theorem 3.4.

Proof. By Theorem 3.13, the excess optimal utility due to the jumps for the i–th

investor, where i ∈ {0, 1}, is given by

uiT, d(x)
4
= E

∫ T

0

f i(πit)dt ≈ E

∫ T

0

Q
(
θit;σt,M1,M2

)
dt

= E

∫ T

0

(
At(θ

i
t)

2 +Btθ
i
t + Ct

)
dt

=

∫ T

0

(
AtE(θit)

2 +BtEθ
i
t + Ct

)
dt. (3.9.16)

Since

θit =
µt
σt

=
µt + υitσt

σt
=
µt
σt

+ υit,

and with E(υit) = 0, from Theorem 1.2, then E(θit) = µt
σt
. Therefore

E(θit)
2 =

(
µt
σt

)2

+ 2
µt
σt

E(υit) + E(υit)
2 =

(
µt
σt

)2

+ E(υit)
2. (3.9.17)
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So by (3.9.16), we have

uiT, d(x) ≈
∫ T

0

(
At

[(
µt
σt

)2

+ E(υit)
2

]
+Bt

(
µt
σt

)
+ Ct

)
dt

=

∫ T

0

(
At

(
µt
σt

)2

+Bt

(
µt
σt

)
+ Ct

)
dt+

∫ T

0

AtE

(
µt
σt

)2

=

∫ T

0

Q

(
µt
σt

: σt, M1, M2

)
dt+

∫ T

0

At E

(
µt
σt

)2

dt.

With Corollary 3.3 in hand, we now have a major result for asymptotic optimal

utilities due to jumps.

Theorem 3.14. Assume that
∫
R

(e±x − 1)kv(dx) < ∞, k ≥ 3, and G is restricted

to [0, 1]. Let x > 0 be the initial wealth of the investors and i ∈ {0, 1}.

(1) As T →∞, the asymptotic optimal utility for the i–th investor is

ui∞, d(x) ∼
∫ T

0

Q

(
µt
σt

: σt,M1,M2

)
dt+

λ

2
A∞(1− p)(1 + (−1)i+1p)T, (3.9.18)

where Q(θ) is given by (3.9.12) and

A∞ = − M2

2(σ2 +M2)
, σ = lim

t→T
σt. (3.9.19)

(2) The excess asymptotic optimal utility of the informed investor over the uninformed

investor, due to jumps is:

u1
∞, d(x)− u0

∞, d(x) ∼ λA∞ p (1− p)T. (3.9.20)

Proof. Assume that
∫
R

(e±x− 1)2v(dx) <∞, and G is restricted to [0, 1]. By Lemma
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2.4, as t→∞,

E(υit)
2 −→ λ

2
(1− p) (1 + (−1)i+1p), i ∈ {0, 1}.

By Corollary 3.3, as T →∞, we have uiT, d(x) ∼

E

∫ T

0

Q

(
µt
σt

: σt, M1, M2

)
dt+

∫ T

0

AtE(υit)
2dt = E

∫ T

0

Q

(
µt
σt

)
dt+T lim

t→∞
AtE(υit)

2

= E

∫ T

0

Q

(
µt
σt

)
dt+T A∞ lim

t→∞
E(υit)

2 = E

∫ T

0

Q

(
µt
σt

)
dt+

λ

2
A∞(1−p)(1+(−1)i+1p)T,

where

A∞ = lim
t→T

At = lim
t→∞
− M2

2(σ2
t +M2)

= − M2

2(σ2
∞ +M2)

= − M2

2(σ2 +M2)
.

From part(1), it follows that the excess optimal utility of the informed investor due

to the jumps is

u1
∞, d(x)− u0

∞, d(x) =
λ

2
A∞(1− p)(1 + p)T − λ

2
A∞(1− p)(1− p)T = λA∞ p (1− p)T.

We are now positioned to give the main theorem.

Theorem 3.15 (Main). Let p ∈ [0, 1]. Under quadratic approximation, the total

asymptotic excess optimal utility of the informed investor is

u1
∞(x)− u0

∞(x) ∼ λ̃

2
p (1− p)T, (3.9.21)
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where x > 0 is the initial wealth of investors, σ = limt→∞ σt and

λ̃
4
= λ

σ2

σ2 +M2

, (3.9.22)

is the adjusted mean–reversion rate.

Proof. Let p ∈ [0, 1] and i ∈ {0, 1}. From Theorem 3.11, the total optimal asymptotic

utility of the i–th investor is :

ui∞(x) = ui∞, c(x) + ui∞, d(x).

By Theorems 3.10 and 3.14, respectively

ui∞, c(x) = log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
λT

4
(1− p)(1 + (−1)i+1p) (3.9.23)

ui∞, d(x) =

∫ T

0

Q

(
µt
σt

)
dt+

λ

2
A∞(1− p)(1 + (−1)i+1p)T (3.9.24)

The excess asymptotic optimal logarithmic utility of the informed investor is

u1
∞(x)− u0

∞(x) = (u1
∞, c(x)− u0

∞, c(x)) + (u1
∞, d(x)− u0

∞, d(x))

=
λ

2
p (1− p)T + λA∞ p (1− p)T =

λ

2
p (1− p)T (1 + 2A∞)

=
λ

2
p (1− p)T

(
1− M2

σ2
∞ +M2

)
=
λ

2

(
M2

σ2
∞ +M2

)
p (1− p)T

=
λ

2

(
M2

σ2 +M2

)
p (1− p)T =

λ̃

2
p (1− p)T,

where λ̃ = λ M2

(σ2+M2)
is the adjusted mean–reversion rate and σ = limt→∞ σt.

Remark 3.9. Note that Theorem 3.15 is analogous to Guasoni’s major result for

excess asymptotic utility (cf Thm 1.4, part 4), given by λ
2
p (1 − p)T, where λ is the

mean–reversion rate for the Ornstein–Uhlenbeck process. However in this case, the
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mean–reversion rate for the O–U process is reduced to λ̃
4
= λ σ2

∞
σ2
∞+M2

, instead of λ as

in the purely continuous GBM market. Here σ = σ∞ is the long–run volatility. For

constant volatility models, σ∞ = σ, which is usually the case. Note also, that we have

maximum excess utility when p = 1
2
.

We now give the asymptotic optimal utilities of each investor, under quadratic

approximation of G.

Theorem 3.16. Let p ∈ [0, 1] and i ∈ {0, 1}. As T −→ ∞, the maximum expected

logarithmic utility from terminal wealth for the i–th investor with x > 0 in initial

wealth, is

ui∞(x) ∼ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+

∫ T

0

Q

(
µt
σt

)
dt+

λ̃

4
(1−p)(1+(−1)i+1p)T, (3.9.25)

where λ̃ is the adjusted mean–reversion rate of the driving O–U process.

Proof. This follows easily by adding (3.9.23) and (3.9.24), with A∞ = − M2

2(σ2
∞+M2)

.

We now give an explicit formula for φπ∗(i) of Theorem 3.11.

Corollary 3.4. For each i ∈ {0, 1}, we have

φπ∗(i)
4
= lim

t→∞
Ef i(π∗t ) =

1

T

∫ T

0

Q

(
µt
σt

)
dt+

λ

2
A∞ (1− p)(1 + (−1)i+1p). (3.9.26)

Proof. From corollary 3.1, as T →∞, we have

ui∞(x) ∼ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+
λT

4
(1− p)(1 + (−1)i+1p) + Tφπ∗(i).

By Theorem 3.16,

ui∞(x) ∼ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+

∫ T

0

Q

(
µt
σt

)
dt+

λ̃

4
(1− p)(1 + (−1)i+1p)T.
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Thus by (3.9.23) and (3.9.24),

Tφπ∗(i) ∼
∫ T

0

Q

(
µt
σt

)
dt+

λ̃

4
(1− p)(1 + (−1)i+1p)T − λ

4
(1− p)(1 + (−1)i+1p)T

=

∫ T

0

Q

(
µt
σt

)
dt+

(λ̃− λ)

4
(1− p)(1 + (−1)i+1p)T

=

∫ T

0

Q

(
µt
σt

)
dt+

−M2

2(σ2 +M2)
(1− p)(1 + (−1)i+1p)T

=

∫ T

0

Q

(
µt
σt

)
dt+

λ

2
A∞ (1− p)(1 + (−1)i+1p)T,

from which the result follows.

3.10 The Link Between the Asymmetric and

Symmetric Optimal Portfolios

Consider the situation of a symmetric Lévy market, where both investors have equal

information, and the stock S has percentage returns dynamic:

dSt
St

= µtdt+ σt dBt +

∫
R

(ex − 1)N(dt, dx). (3.10.1)

By Theorem 3.8, it has unique optimal portfolio

π∗t =
µt − rt +G′(π∗t )

σ2
t

, (3.10.2)

where N is the Poisson random measure that counts the jumps of Xt =
∫
R
xN(t, dx),

in (0, t) and as usual, v(dx) = EN(1, dx) is the Levy measure with G(π) =
∫
R

log(1+

π(ex−1))v(dx). Let i ∈ {0, 1}. Under asymmetric information, the percentage returns
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dynamic for the i–th investor is

dSt
St

= µitdt+ σt dB
i
t +

∫
R

(ex − 1)N(dt, dx), (3.10.3)

where B, Bi are Hi–adapted standard Brownian motions, and

µit = µt + υitσt, .

υ0
t = −λ

∫ t

0

e−λ(t−u)(1 + γ(u))dB0
u.

υ1
t = −λ qUt = −λ q

∫ t

0

e−λ(t−u)dBu.

Theorem 3.8 give the optimal portfolio π∗, it for each investor as

π∗, it =
µit − rt +G′(π∗, it )

σ2
t

. (3.10.4)

We now link π∗, the deterministic optimal portfolio in the symmetric market, to π∗, i,

the random optimal portfolio in the asymmetric market.

Theorem 3.17. Let i ∈ {0, 1} and T > 0, be the the investment horizon. Assume

that G is restricted to [0, 1] and
∫
R

(e±x − 1)kv(dx) <∞ for some integer k ≥ 3.

(1) There exists ηi between π∗ and π∗, i, such that for all t ∈ [0, T ]

π∗, it = π∗t +
υit σt

σ2
t + |G′′(ηit)|

. (3.10.5)

That is,

π∗, it = π∗t + noiseit.

(2) Under quadratic approximation of G

π∗, it = π∗t +
υit σt

σ2
t +M2

. (3.10.6)
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Proof. If
∫
R

(e±x − 1)2v(dx) < ∞, then G′′(π) exists for all π ∈ [0, 1], and by

Theorem 3.8, optimal portfolios exist for both asymmetric and symmetric markets,

given respectively by

π∗t =
µt − rt +G′(π∗t )

σ2
t

=
µt − rt
σ2
t

+
G′(π∗t )

σ2
t

,

and

π∗, it =
µit − rt +G′(π∗, it )

σ2
t

=
µt + υit σt − rt +G′(π∗, it )

σ2
t

=
υit
σt

+
µt − rt
σ2
t

+
G′(π∗, it )

σ2
t

.

Define the portfolios β∗, i, by the prescription:

β∗, it
4
= π∗t +

υit
σt

(3.10.7)

=
µt − rt
σ2
t

+
G′(π∗t )

σ2
t

+
υit
σt
.

By the Mean Value Theorem, there exists ηi between π∗ and π∗, i such that for all

t ∈ [0, T ],

π∗, it − β
∗, i
t =

G′(π∗, it )−G′(π∗t )
σ2
t

=
(π∗, it − π∗t )G′′(ηit)

σ2
t

.

Since G′′(π) < 0 for all π, then

π∗, it − (π∗t +
υit
σt

) = −(π∗, it − π∗t )|G′′(ηit)|
σ2
t

.

Rearranging, we get

π∗, it

(
σ2
t + |G′′(ηit)|

)
= υitσt + π∗t

(
σ2
t + |G′′(ηit)|

)
,
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whence,

π∗, it = π∗t +
υit σt

σ2
t + |G′′(ηit)|

.

Part(2) follows from part(1), using the fact that under quadratic approximation of

G, G′′(π) = −M2.

We restate the last theorem as follows.

Theorem 3.18. Let i ∈ {0, 1} and T > 0, be the the investment horizon. Assume

that G is restricted to [0, 1] and
∫
R

(e±x − 1)kv(dx) <∞ for some integer k ≥ 3.

There exists an adjusted diffusive coefficient 0 < σ̃it <
1
σt

, such that, for all t ∈ [0, T ],

π∗, it = π∗t + υit σ̃
i
t, (3.10.8)

where

σ̃it
4
=

σt
σ2
t + |G′′(ηit)|

, (3.10.9)

and ηi is a process between π∗ and π∗, i.

Proof. This result follows from Theorem 3.17, with

σ̃it =
σt

σ2
t + |G′′(ηit)|

<
1

σt
.

We now compute an upper bound on the expected squared deviation of the

asymmetric optimal portfolio and the symmetric optimal portfolio for each investor.

Theorem 3.19. Let i ∈ {0, 1}, p ∈ [0, 1] and T > 0 be the the investment horizon.

Assume that G is restricted to [0, 1] and
∫
R

(e±x − 1)kv(dx)v(dx) < ∞ for some

integer k ≥ 3. Then for each t ∈ [0, T ],
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E[π∗, it − π∗t ]2 ≤
λ

2σ2
t

(1 + p)(1 + (−1)ip)(1− e−2λt), (3.10.10)

where λ is the mean–reversion rate of the fads process.

Proof. By Theorem 3.17,

π∗, it = π∗t +
υit σt

σ2
t + |G′′(ηit)|

.

The expected squared deviation of π∗, it from the symmetric optimal portfolio is

E[π∗, it − π∗t ]2 = E

[
υit σt

σ2
t + |G′′(ηit)|

]2

≤ E[υit]
2

σ2
t

.

When i = 1, it was proven in Chapter 2 that

E[υ1
t ]

2 =
λ

2
(1− p2)(1− e−2λt) =

λ

2
(1 + p)(1− p)(1− e−2λt).

When i = 0, υ0
t = −λ

∫ t
0
e−λ(t−u)(1 + γ(u))dB0

u, and by Itô–Isometry,

E[υ0
t ]

2 = λ2

∫ t

0

e−2λ(t−u)(1 + γ(u))2du. (3.10.11)

But

1 + γ(u) =
1− p2

1 + p tanh (pλu)
,

where tanh(u) ∈ (−1, 1), for each p ∈ [0, 1]. Therefore 0 ≤ 1 + γ(u) ≤ 1−p2
1−p = 1 + p,

whence (1 + γ(u))2 ≤ (1 + p)2, and by (3.10.11)

E[υ0
t ]

2 ≤ λ2

∫ t

0

e−2λ(t−u)(1 + p)2du = λ2(1 + p)2e−2λt

∫ t

0

e2λudu

= λ2(1 + p)2e−2λt (e
2λt − 1)

2λ
=
λ

2
(1 + p)2(1− e−2λt) =

λ

2
(1 + p)(1 + (−1)0p)(1− e−2λt).
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Therefore, for i ∈ {0, 1}

E[υit]
2 ≤ λ

2
(1 + p)(1 + (−1)ip)(1− e−2λt), (3.10.12)

and so

E[π∗, it − π∗t ]2 ≤
λ

2σ2
t

(1 + p)(1 + (−1)ip)(1− e−2λt). (3.10.13)

It will prove convenient to isolate equation 3.10.12 as a separate result.

Corollary 3.5. For each i ∈ {0, 1} and p ∈ [0, 1],

E[υit]
2 ≤ λ

2
(1 + p)(1 + (−1)ip)(1− e−2λt). (3.10.14)

We now compute the expectation and give an upper bound on the variance of the

asymmetric portfolio for each investor under quadratic approximation. It turns out

that we expect the random asymmetric optimal portfolios to be equal to the pure

deterministic symmetric optimal portfolio.

Theorem 3.20. Let i ∈ {0, 1}, p ∈ [0, 1] and T > 0, be the the investment horizon.

Assume that G is restricted to [0, 1] and
∫
R

(e±x − 1)kv(dx)v(dx) < ∞ for some

integer k ≥ 3. Under quadratic approximation, for each t ∈ [0, T ],

E[π∗, it ] = π∗t , (3.10.15)

and

Var[π∗, it ] ≤ λ

2σ2
t

(1 + p)(1 + (−1)ip)(1− e−2λt), (3.10.16)

where λ is the mean–reversion rate of the fads process.

93



Proof. Under quadratic approximation G′′(η) = −M2. By Theorem 3.17,

E[π∗, it ] = π∗t + E

(
υit σt

σ2
t + |G′′(ηit)|

)
= π∗t + σt

E(υit)

σ2
t +M2

= π∗t .

By Theorem 3.19, the variance of the asymmetric optimal portfolio, is

Var[π∗, it ] = E[π∗, it − π∗t ]2 ≤
λ

2σ2
t

(1 + p)(1 + (−1)ip)(1− e−2λt).

3.11 The Pure Jump Lévy Market

We study markets that have no diffusive component in his section. They are called

Pure Jump Lévy Markets. In this case, the market is driven only by a pure jump

Lévy process X and no Brownian process is involved. As usual, our market has two

assets. There is a bond B earning risk–free compounded interest rate r with price

given by (3.1.1). There is also a single stock S with log returns dynamic for the i–th

investor, i ∈ {0, 1}, being:

d(logSt) = µit dt+

∫
R

xN(dt, dx), (3.11.1)

where µit is the continuous returns on the stock for the i–th investor. The stock has

percentage returns:

dSt
St

= µit dt+

∫
R

(ex − 1)N(dt, dx), (3.11.2)

where X has Lévy triple (γ, 0, v), with γ =
∫

[−1,1]
x v(dx). µit is the continuous

component of the total stock appreciation rate b = µi+M1. Note that the percentage

returns has two components: one continuous and locally deterministic (µit); one is

discontinuous and driven by the Poisson random measure N on [0, T ]× (R− {0}).
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All processes live on a filtered complete probability space (Ω,F , (Ft),P).

What are Pure Jump Models?

Consider the asymmetric diffusion market:

d(logSt) = (µit −
1

2
σ2
t )dt+ σtdBt +

∫
R

xN(dt, dx), (3.11.3)

with percentage returns dynamic

dSt
St

= µit dt+ σt dBt +

∫
R

(ex − 1)N(dt, dx). (3.11.4)

Pure jump models result from diffusion models when the contribution from the

diffusive component σt is negligible relative to the total votatility σTot =
√
σ2
t +M2;

that is, when σt ≈ 0. Thus a Pure Jump Market (PJM) is a diffusive market with

σt = 0 for all t. Explicitly,

d(logSt) = µit dt+

∫
R

xN(dt, dx) = lim
σt→0

(
(µit −

1

2
σ2
t )dt+ σt dBt +

∫
R

xN(dt, dx)

)
,

(3.11.5)

and

µit = µt + vitσt = µt + vit σt −→ µt. (3.11.6)

The optimal portfolio for the stock with dynamic of (3.11.1) is therefore the limiting

optimal portfolio of the stock with dynamic (3.11.3) as σt → 0. Since µit −→ µt as

σt −→ 0, then the dynamic for both investors is

d(logSt) = µt dt+

∫
R

xN(dt, dx) = lim
σt→0

(
(µt dt+ σt dBt +

∫
R

xN(dt, dx))

)
.

(3.11.7)

We have the following result.
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Theorem 3.21. For the Pure Lévy Market (3.11.1), the optimal portfolio that maximizes

the expected logarithmic utility from terminal wealth is the same for both informed and

uninformed investors. It is given by the deterministic function πt where

G′(πt) = rt − µt, t ∈ [0, T ]. (3.11.8)

The maximum expected utility for each investor is equal, and given by:

u(x) = log(x) +

∫ T

0

(
πt(µt − rt) +

∫
R

log(1 + π(ex − 1))v(dx)

)
dt, (3.11.9)

and the informed investor has no excess utility.

Proof. By Theorem 3.8, (3.11.7) yields optimal portfolio π given by

σ2
t π = µt − rt +G′(π). (3.11.10)

Letting σt → 0 we get

0 = µt − rt +G′(π).

Thus the optimal portfolio for both investors is the deterministic portfolio

πit = πt, (3.11.11)

where

G′(πt) = rt − µt. (3.11.12)

Since both optimal portfolios are equal, there is no excess utility involved.

We also have the following:
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Theorem 3.22. There exists ηt between 0 and πt such that

πt =
µt − rt +M1

|G′′(ηt)|
=

bt − rt
|G′′(ηt)|

, (3.11.13)

where the total returns on the stock is bt = µt +M1, and M1 =
∫
R

(ex− 1)v(dx) is the

returns due to the jumps.

Moreover, under quadratic approximation of G(·)

πt =
µt − rt +M1

M2

=
bt − rt
M2

. (3.11.14)

Proof. Let G(π) =
∫
R

log(1 + π (ex − 1)) v(dx). Then M1 =
∫
R

(ex − 1) v(dx). Since

π is optimal, it obeys the equation

G′(πt) = rt − µt.

By the Mean Value theorem, there exists ηt ∈ (0, πt) such that

πtG
′′(ηt) = G′(πt)−G′(0) = rt − µt −M1.

Since G′′(π) < 0 for all π, then

πt =
µt − rt +M1

−G′′(ηt)
=
µt − rt +M1

|G′′(ηt)|
=

bt − rt
|G′′(ηt)|

.

Under quadratic approximation of G, G′′(π) = G′′(0) = −M2, and the result follows.
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3.11.1 An Example of a Pure Jump Market

We now give an example of a Pure Jump Market driven by two independently linked

Poisson processes.

The Double Poisson Market

Consider a stock that has price dynamic:

d(logSt) = µt dt+ dXt, t ∈ [0, T ], (3.11.15)

where

Xt = αuN
u(t) + αdN

d(t), (3.11.16)

with

αu ∈ (0, log 2), αd = log(2− eαu).

X is called the Double Poisson Lévy process with parameters αu, αd, λu, λd where Nu

and Nd are independent Poisson processes with intensities λu and λd, respectively.

In this model, Nu controls the upward jumps which have log amplitude αu, while Nd

controls the downward jumps, which have log amplitude αd. As in the other models,

µ is the continuous component of total returns. We denote a Double Poisson process

by Π(1, 2). The Lévy measure for the Double Poisson process is:

v(dx) ≡ vΠ(1,2)(dx) = λu δαu(dx) + λd δαd(dx), (3.11.17)

where

0 < λd ≤ λu < 1.

δa(·) is the Dirac measure on B(R−{0}) where δa(A) = 1, if a ∈ A, and 0 otherwise.

Let N(t, A) be the Poisson random measure that counts the jumps of X in the set

A ∈ B(R− {0}) in the time interval (0, t).
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3.11.2 Maximization of Expected Logarithmic

Utility From Terminal Wealth

Let V π = (V π
t ) ≡ V be the wealth process corresponding to the portfolio process

π = (πt)t∈[0, T ], which is Ht–adapted, S–integrable, with V π
t > 0, where V 0

0 = x > 0,

is the initial capital investment or wealth. The Admissible Set is:

Ax = {π: π is S–integrable, predictable, Ht–adapted, V π
t > 0 }.

The wealth process V ≡ V π satisfies the dynamic:

dVt = (1− πt) rt Vt dt+
πt Vt
St

dt. (3.11.18)

Setting Jt =
∫
R

(ex − 1)N(dt, dx) we get

dVt
Vt

= (1− πt) rt dt+
πt dSt
St

= (1− πt) rt dt+ πt (µt dt+ dJt)

= (πt (µt − rt) + rt) dt+ πt dJt

= (rt + πt (µt − rt)) dt+

∫
R

πt (ex − 1)N(dt, dx),

which has solution (cf. Protter [41], p. 84)

Vt = V0 exp

(∫ t

0

rs ds+

∫ t

0

πs (µs − rs) ds
)

Π0≤s≤t(1 + πs (e∆Xs − 1)). (3.11.19)

Let the discounted wealth process be Ṽt
4
= Vt exp(−

∫ t
0
rs ds). Then

Ṽt = V0 exp

(∫ t

0

πs (µs − rs) ds
)

Π0≤s≤t(1 + πs(e
∆Xs − 1)). (3.11.20)
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The logarithmic utility of terminal wealth is

u(ṼT ) = log ṼT

= log x+

∫ T

0

πs (µs − rs) ds+
∑

0≤s≤T

log(1 + πs(e
∆Xs − 1))

= log x+

∫ T

0

πt (µt − rt) dt+

∫ T

0

∫
R

log(1 + πt (ex − 1))N(dt, dx).

The expected logarithmic utility from terminal wealth is

E(log ṼT ) = log x+ E

∫ T

0

πt (µt − rt) dt+ E

∫ T

0

∫
R

log(1 + πt (ex − 1))v(dx)dt

= log x+

∫ T

0

[
πt (µt − rt) +

∫
R

log(1 + πt (ex − 1)) v(dx)

]
dt,(3.11.21)

since all market coefficients are deterministic.

Define a function f : Ax → R by the pescription

f(π) = π (µ− r) +

∫
R

log(1 + π (ex − 1)) v(dx)

= π(µ− r) +G(π). (3.11.22)

Then

E(log ṼT ) = log x+

∫ T

0

∫
R

f(πs) ds, (3.11.23)

u(x) = max
πs∈Ax

E(log ṼT )

= log x+ max
π∈Ax

∫ T

0

∫
R

f(πs) ds

= log x+

∫ T

0

∫
R

max
πs∈Ax

f(πs) ds, (3.11.24)
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where π maximizes f(π), the objective function. Thus

f(π) = π (µ− r) +G(π)

= π (µ− r) +

∫
R

log(1 + π (ex − 1)) v(dx)

= π(µ− r) +

∫
R

log(1 + π(ex − 1))(λu δαu(dx) + λd δαd(dx))

= π(µ− r) + λu log(1 + π(eαu − 1)) + λd log(1 + π(eαd − 1))

= π(µ− r) + λu log(1 + π(eαu − 1)) + λd log(1 + π(1− eαu)).

π falls in the admissible set Ax, if G(π) is well–defined. We therefore insist that

1 + π (eαu − 1) > 0, 1 + π (1− eαu) > 0.

Thus, setting 0 < Au = eαu − 1 < 1 and a = 1
Au

, we have −a < π < a. That is,

π ∈ (−a , a), a > 1

We can take the admissible set as (−a , a), and optimize f(π) over this set, which

clearly contains [-1 , 1]. Since f is strictly concave , it admits a unique maximum π,

where f ′(π) = 0. Now

f ′(π) = µ− r +
λu (eαu − 1)

1 + π (eαu − 1)
+

λd (1− eαu)

1 + π(1− eαu)
= 0,

is equivalent to the quadratic equation

f ′(π) = µ− r +
λu

a+ π
− λd
a− π

= 0. (3.11.25)
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This has solution:

π = π± = −
(
λu + λd
2(µ− r)

)
±

√(
λu + λd
2(µ− r)

)2

+
(λu − λd)a
µ− r

+ a2, (3.11.26)

provided π ∈ Ax; a = (eαu − 1)−1. Specifically, we have

π =


π+ if µ > r

λu−λd
λu+λd

a if µ = r

π− if µ < r.

The maximum expected logarithmic utility is

u(x) = log x+

∫ T

0

f(πt) dt = log(x) +

∫ T

0

(πt (µt − rt) +G(πt)) dt

= log(x) +

∫ T

0

[
πt(µt − rt) + λd log

(
1 +

π

a

)
+ λu log

(
1− π

a

)]
dt.

Remark 3.10. If λd = 0, we have no downward jumps, and G(π) is well defined if

π > −a = (eλu − 1)−1. The Admissible set Ax, may be as large as (−a, ∞). The

objective function reduces to

f(π) = π(µ− r) + λu log(1 + π (eαu − 1)),

with

f ′(π) = µ− r +
λu

a+ π
= 0 iff

λu
a+ π

= r − µ.

This has a solution only if r − µ > 0, since a + π is positive. In this case, if r ≤ µ,

we have no optimal. If r − µ > 0, we have an optimal

π = −a+
λu
r − µ

,
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with maximum expected utility

u(x) = log x+

[
a(r − µ)− λu + λu log

(
λu

a(r − µ)

)]
T,

if the market coefficients µt, rt are constants.

3.12 Conclusion

We successfully extended the theory of fads models under asymmetric information

to the jump case, where analogous results were obtained. Our more general model

reduces to the Guasoni [21] model, if no jumps are present. We obtained explicit

formulas for the optimal portfolios and expected logarithmic utilities for both investors,

under reasonable assumptions. We showed that the asymptotic excess maximal

expected utility from terminal wealth of the informed investor, is λ̃
2
p (1− p)T , which

is similar to Guasoni’s. In the jump case, the mean–reversion rate λ, is replaced by

a smaller adjusted mean–reversion rate λ̃.

We also link the random optimal portfolio under asymmetric information to

the entirely deterministic optimal portfolio of the symmetric market. It turns out

that under asymmetric information, the optimal portfolio is equal to the

deterministic optimal portfolio plus noise. Our model depends on parameters–

the instantaneous centralized moments of returns Mj–calculated or approximated

from exponential functions having Lévy measure integrators. We obtained tractable

results under quadratic approximation of the portfolio estimating function

G(π) =
∫
R

log(1 + π(ex − 1))v(dx).

We also study the pure jump Lévy process and show that the informed investor

has no excess utility in this market. We give explicit formulas for optimal portfolio
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and utility for the Double Poisson market.

104



Chapter 4

Asymmetric Information in

Discontinuous Fads Models

in Lévy Markets

In this chapter we generalize the theory developed in Chapter 3 to include the

situation where the fads/mispricing jump, in addition to the jumps in the stock price.

We model the jumps in the mispricing by a pure jump Lévy process Z = (Zt)t≥0 with

E(Zt) = 0 and E(Z2
t ) <∞ for all t ∈ [0, T ] where T > 0, is the investment horizon.

The market consist of a bond B with price given by (3.1.1). There is also a risky

asset S called stock. The stock is viewed by investors in disjoint classes populated

by uninformed and informed investors, indexed by i = 0 and i = 1, respectively.

Investors have filtrations Kit with

K0
t ⊂ K1

t ⊂ F , t ∈ [0, T ].

All random objects are defined on a filtered probability space (Ω,F ,Ki,P).

105



4.1 The Discontinuous Fads Model

The stock S has log returns dynamic

d(logSt) = (µt −
1

2
σ2
t ) dt+ σt dYt + dXt, t ∈ [0, T ] (4.1.1)

Yt = pWt + q Ut, p
2 + q2 = 1, p ≥ 0, q ≥ 0, (4.1.2)

dUt = −λUt dt+ dLt, λ > 0, U0 = 0, (4.1.3)

Lt = Bt + Zt, (4.1.4)

Xt =

∫ t

0

∫
R

xNS(dt, dx), (4.1.5)

Zt =

∫ t

0

∫
R

x ÑU(dt, dx), E(Zt) = 0, E(Z2
t ) <∞. (4.1.6)

W and B are independent standard Brownian motions. U = (Ut) is a mean–

reverting Ornstein–Uhlenbeck process with rate λ. NS and NU are Poisson random

measures on R+ × B(R − {0}) that are linked to the stock and fads/mispricing,

respectively. They count the jumps of X and Z, respectively, in the time interval

(0, t). The respective Lévy measures are

vS(dx) = ENS(1, dx), (4.1.7)

and

vU(dx) = ENU(1, dx). (4.1.8)

Standing Assumption

We assume that NS and NU are independent random measures if NS 6= NU . That is,

X and Z are independent pure jump Lévy processes with E(Zt) = 0 for all t ∈ [0, T ].

Thus ∫
R

xvU(dx) <∞.
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From (4.1.5),

Zt =

∫ t

0

∫
R

xÑU(ds, dx)

=

∫ t

0

∫
R

x(NU(ds, dx)− vU(dx)ds)

=

∫ t

0

∫
R

xNU(ds, dx)− t
∫

R

xvU(dx), (4.1.9)

where

ÑU(dt, dx)
4
= NU(dt, dx)− vU(dx)dt

is the compensated Poisson measure. Clearly Z = (Zt) is a martingale, along with

W . Equation (4.1.9) proves that we may take Z to be a martingale provided∫
R
xvU(dx) <∞. Consequently, we set

Zt
4
=

∫ t

0

∫
R

xÑU(dt, dx) =

∫ t

0

∫
R

xNU(ds, dx)− t
∫

R

xvU(dx). (4.1.10)

From equations (4.1.3) and (4.1.4), we get the dynamic

dUt = −λUtdt+ dBt + dZt, (4.1.11)

which admits the unique solution:

Ut =

∫ t

0

e−λ(t−s)dBs +

∫ t

0

e−λ(t−s)dZs

4
= UB

t + UZ
t , (4.1.12)

where

dUB
t = −λUB

t dt+ dBt, UB
0 = 0, λ > 0, (4.1.13)
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and

dUZ
t = −λUZ

t dt+ dZt, UZ
0 = 0, λ > 0. (4.1.14)

Explicitly,

UB
t =

∫ t

0

e−λ(t−s)dBs (4.1.15)

and

UZ
t =

∫ t

0

e−λ(t−s)dZs. (4.1.16)

Note that in this case the mispricing is the O–U process U , consisting of a linear

combination of two independent O–U processes: a continuous component UB driven

by Brownian motion B, which is identical to the fads process used by Guasoni [21]

in Chapter 3, and a jump component UZ driven by the martingale Z. We showed in

Chapter 2 that for all t ∈ [0, T ]

E(UB
t ) = 0, E(UB

t )2 =
1− e−2λ t

2λ
.

We have a similar result for the process UZ .

Proposition 4.1. For each t ∈ [0, T ]

E(UZ
t ) = 0,

Var(UZ
t ) =

1− e−2λ t

2λ

∫
R

x2 vU(dx),

lim
t→∞

E(UZ
t )2 =

1

2λ

∫
R

x2 vU(dx).

Proof. By the martingale property of Z,

E(UZ
t ) = E

∫ t

0

e−λ(t−s)dZs = e−λ tE

∫ t

0

eλ sdZs = 0.

108



By Itô-Isometry and the fact that t
∫
R
x2 vU(dx) = E(Z2

t ) <∞, we have

Var(UZ
t ) = E(UZ

t )2 = E

(∫ t

0

e−λ(t−s)dZs

)2

= E

∫ t

0

e−2λ(t−s)d[Z, Z]s

=

∫ t

0

e−2λ(t−s)
∫

R

x2 vU(dx)ds =

∫ t

0

e−2λ(t−s)ds

∫
R

x2 vU(dx) =
1− e−2λ t

2λ

∫
R

x2 vU(dx).

The last result follows directly by letting t→∞.

We have a similar result for the mean–reverting mispricing process U .

Proposition 4.2. For each t ∈ [0, T ]

E(Ut) = 0,

Var(Ut) =

(
1− e−2λ t

2λ

) (
1 +

∫
R

x2 vU(dx)

)
,

lim
t→∞

E(Ut)
2 =

1

2λ

(
1 +

∫
R

x2 vU(dx)

)
.

Proof. By equation (4.1.12),

Ut
4
= UB

t + UZ
t ,

whence

E(Ut) = E(UB
t ) + E(UZ

t ) = 0.

Since UB and UZ are independent processes, then it follows from Proposition 4.1 that

E(U2
t ) = Var(Ut) = Var(UB

t ) + Var(UZ
t ) =

1− e−2λ t

2λ
+

(
1− e−2λ t

2λ

) ∫
R

x2 vU(dx)

=

(
1− e−2λ t

2λ

) (
1 +

∫
R

x2 vU(dx)

)
.

The last result follows directly by letting t→∞.
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It now follows from (4.1.2) and equation (4.1.12) that

Yt = pWt + q Ut

= pWt + q

∫ t

0

e−λ(t−s)dBs + q

∫ t

0

e−λ(t−s)dZs, (4.1.17)

is a martingale consisting of three independent components:–two are continuous, while

one is a pure jump Lévy process. Taking differentials, and importing equation (4.1.11)

yield

dYt = p dWt + q dUt

= p dWt + q(−λUtdt+ dBt + dZt)

= p dWt + q dBt − λqUtdt+ q dZt

= p dWt + q dBt − λqUB
t dt− λUZ

t dt+ q dZt

= dB1
t + υ1,B

t dt+ υZt dt+ q dZt,

= dB1
t + υ1

t dt+ q dZt, (4.1.18)

where

B1
t = pWt + q Bt, (4.1.19)

υ1
t = −λq UB

t − λq UZ
t , (4.1.20)

4
= υ1,B

t + υZt , (4.1.21)

and

υ1,B
t

4
= −λ q UB

t , (4.1.22)

υZt
4
= −λ q UZ

t . (4.1.23)
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We have a useful result for the process υ1, which is a generalization of the process

used in Chapter 3.

Proposition 4.3. Let t ∈ [0, T ] and i = 1. Then for p, q ∈ [0, 1] with p2 + q2 = 1,

E[υit] = 0,

E[υit]
2 = Var[υit] =

λ

2
(1− e−2λ t)(1− p)(1 + (−1)i+1p)

(
1 +

∫
R

x2 vU(dx)

)
=

λ

2
(1− e−2λ t)(1 + p)(1 + (−1)ip)

(
1 +

∫
R

x2 vU(dx)

)
. (4.1.24)

Moreover

lim
t→∞

E[υit]
2 =

λ

2
(1− p)(1 + (−1)i+1p)

(
1 +

∫
R

x2 vU(dx)

)
.

Proof. We prove the case for i = 1. From equation (4.2.1),

E(υ1
t ) = E(υ1,B

t ) + E(υZt ) = −λ qE(UB
t )− λ qE(UZ

t ) = 0.

Since UB and UZ are independent O–U processes, then from Lemma 2.2

with q2 = 1− p2, we have

Var(υit) = Var(υi,Bt ) + Var(υZt ) = λ2q2 Var(UB
t ) + λ2 q2 Var(UZ

t )

= λ2q2

(
1− e−2λ t

2λ

)
+ λ2 q2

(
1− e−2λ t

2λ

)∫
R

x2 vU(dx)

=
λ

2
(1− e−2λ t) q2

(
1 +

∫
R

x2 vU(dx)

)
=

λ

2
(1− e−2λ t) (1− p)(1 + (−1)i+1p)

(
1 +

∫
R

x2 vU(dx)

)
=

λ

2
(1− e−2λ t) (1 + p)(1 + (−1)ip)

(
1 +

∫
R

x2 vU(dx)

)
.
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The last result follows immediately when t→∞.

4.2 Asset Price Dynamic for the Informed Investor

Define

µ∗t
4
= µt −

1

2
σ2
t . (4.2.1)

The dynamic for the stock is given by (4.1.1) as

d(logSt) = µ∗t dt+ σt dYt + dXt, t ∈ [0, T ].

Imposing (4.1.2), (4.1.3), and (4.1.18), yield

d(logSt) = µ∗tdt+ σt(dB
1
t + υ1

t dt+ q dZt) + dXt

= µ∗tdt+ υ1
t σtdt+ σtdB

1
t + q σtdZt + dXt

= (µ∗t − qσt
∫

R

xυU(dx) + υ1
t σt)dt+ σtdB

1
t

+

∫
R

q σtxNU(dt, dx) +

∫
R

xNS(dt, dx)

= µ∗,1t dt+ σtdB
1
t +

∫
R

x(q σtNU(dt, dx) +NS(dt, dx)), (4.2.2)

where

µ∗,1t = µ∗t − qσt
∫

R

xυU(dx) + υ1
t σt = µt + υ1

t σt − qσt
∫

R

xυU(dx)− 1

2
σ2
t . (4.2.3)

Remark 4.1. If NS = NU = N then v = vU = vS, and (4.2.2) becomes

µ∗,1t dt+ σt dB
1
t +

∫
R

x (qσt + 1)N(dt, dx). (4.2.4)

We now quote a very useful result in Applebaum page 47.
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Lemma 4.1 (Proposition 1.3.12, Applebaum [3]).

If (N1(t), t ≥ 0) and (N2(t), t ≥ 0) are two independent Poisson processes defined on

the same probability space (Ω,F ,P) with arrival times (T
(j)
n , n ∈ N), for j = 1, 2,

respectively, then P(T
(1)
m = T

(2)
n for some m,n ∈ N)=0.

This result means that independent Poisson processes do not jump at the

same time. Thus for random measures NU and NS and Borel set A ∈ B(R− {0}),

NU(t, A) and NS(t, A) are independent Poisson processes, and so, by the last result,

do not jump together.

We have the following important result.

Theorem 4.1. For the informed investor the log returns dynamic (4.1.1) is

d(logSt) = µ∗, 1t dt+ σtdB
1
t +

∫
R

qσt xNU(dt, dx) +

∫
R

xNS(dt, dx), (4.2.5)

and its percentage returns dynamic is

dSt
St

= µ1
tdt+ σtdB

1
t +

∫
R

(eqσt x − 1)NU(dt, dx) +

∫
R

(ex − 1)NS(dt, dx), (4.2.6)

where NU and NS are defined by (4.1.5)and (4.1.6) and

µ∗, 1t
4
= µ1

t −
1

2
σ2
t ,

µ1
t

4
= µt + υ1

t σt − qσt
∫

R

xυU(dx).

Proof. By equation (4.2.2), the dynamic for the informed investor is equivalently

given by

d(I(t)) = (µ∗,1t dt+ σt dB
1
t +

∫
R

qσtxNU(dt, dx) +

∫
R

xNS(dt, dx), (4.2.7)
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where

I(t) = log St ⇐⇒ St = elogSt = eI(t).

Let f(x) = ex. Then f ∈ C2(R), and by Itô’s formula (cf Thm 4.4.7, Applebaum

[3]), we have from (4.2.7), that

d(f(Xt)) =
df

dx
(Xt−) +

1

2

d2f

dx2
(Xt−)d[Xc, Xc]t

+

∫
R

(f(Xt− + q x σt)− f(Xt−))NU(dt, dx)

+

∫
R

(f(Xt− + x)− f(Xt−))NS(dt, dx)

= eXt−
[
µ∗,1t dt+ σt dB

1
t +

1

2
σ2
t dt

]
+

∫
R

eXt−(eqσtx − 1)NU(dt, dx)

+

∫
R

eXt−(ex − 1)NS(dt, dx)

= eXt−
[
µ1
tdt+ σtdB

1
t +

∫
R

(eqσtx − 1)NU(dt, dx) +

∫
R

(ex − 1)NS(dt, dx)

]
.

Thus, with Xt = I(t) = log St

d(elogSt) = St−

[
µ1
tdt+ σtdB

1
t +

∫
R

(eqσt x − 1)NU(dt, dx) +

∫
R

(ex − 1)NS(dt, dx)

]

which is equivalent to the percentage returns equation:

dSt
St−

= µ1
tdt+ σt dB

1
t +

∫
R

(eqσt x − 1)NU(dt, dx) +

∫
R

(ex − 1)NS(dt, dx).

With Theorem 4.1 in hand, we are now in the framework of the models developed in

Chapter 3.

4.2.1 Filtration of the Informed Investor

We expand the filtration developed in Chapter 3, to include the information generated

by the martingale Z = (Zt). We assume that all filtrations obey the usual hypothesis;
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that is, they are right continuous and complete. The filtration of the informed

investor (i = 1) is

K1
t = H1

t ∨ σ(Zu : u ≤ t), t ∈ [0, T ], (4.2.8)

where H1
t is the filter for the informed investor in the models where there are no

jumps in fads (cf Lemma 3.2, of Chapter 3). We denote by K1, the filtration for the

informed investor, where

K1 = (K1
t )t≥0.

4.3 Maximization of Logarithmic Utility from

Terminal Wealth for the Informed Investor

Let π = π1 = (π1
t ), t ∈ [0, T ], be the portfolio process of the informed investor. The

corresponding wealth process with initial capital x > 0 is :

V 1
t ≡ V 1,π

t ≡ V 1,π,x
t . (4.3.1)

We now give the dymamic for V 1.

Theorem 4.2. The percentage returns of the wealth V 1 of the informed investor with

stock price dynamic (4.1.1) is:

dV 1
t

V 1
t

= (rt+πt σt θ
1
t )dt+πt σt dB

1
t +

∫
R

πt(e
qσt x−1)NU(dt, dx)+

∫
R

πt(e
x−1)NS(dt, dx).

(4.3.2)
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The discounted wealth process is

Ṽ 1
t = V 1

t exp

(
−
∫ t

0

rsds

)
= V 1

0 exp

(∫ t

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
1
s

)
× Π0≤u≤t(1 + πu(e

qσu∆Zu − 1))× Π0≤s≤t(1 + πs(e
∆Xs − 1)). (4.3.3)

Proof. The crucial component of this proof is Lemma 4.1, which states that NU(t, A)

and NS(t, A) do not jump at the same time, because they are independent Poisson

processes at each bounded Borel set A ∈ B(R − {0}). From Theorem 4.1, the

percentage returns of V 1 is

dV 1
t

V 1
t

= (1− πt)rtdt+ πt
dSt
St

= (1− πt) rt dt+ πt µ
1
t dt+ πt σt dB

1
t +

∫
R

πt(e
qσtx − 1)NU(dt, dx)

+

∫
R

πt(e
x − 1)NS(dt, dx).

= (rt + πt(µ
1
t − rt))dt+ πt σt dB

1
t +

∫
R

πt(e
qσtx − 1)NU(dt, dx)

+

∫
R

πt(e
x − 1)NS(dt, dx).

= (rt + πt σt θ
1
t )dt+ πt σt dB

1
t +

∫
R

πt(e
qσtx − 1)NU(dt, dx)

+

∫
R

πt(e
x − 1)NS(dt, dx).

This proves equation (4.3.2). Applying Theorem 2.18 on Doleans–Dade/Stochastic

exponentials, and using the fact of the independence of jumps of NU and NS, equation

(4.3.2) yields the solution

V 1
t = V 1

0 exp

(∫ t

0

rsds+

∫ t

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
1
s

)
× Π0≤u≤t(1 + πu(e

qσu∆Zu − 1))× Π0≤s≤t(1 + πs(e
∆Xs − 1)), (4.3.4)
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with discounted wealth given by (4.3.3).

Remark 4.2. We use the subscripts “u” and “s” in equation (4.3.4) to distinguish

the jumps due to NU and NS, respectively.

4.3.1 The Objective Function G

For any Lévy measure va(·), a ∈ {U, S}, define the (partial) objective function Ga

by the prescription

Ga : [0, 1] −→ R,

Ga(α ; s)
4
=

∫
R

log(1 + α(es x − 1))va(dx), a ∈ {U, S}, (4.3.5)

where s ∈ (0, σmax]∪{1} is a non-negative parameter or function representing volatility

and σmax > 0 . Note that α and hence π, is restrictd to the domain [0, 1].

Standing Assumption

We insist that there exists an integer k ≥ 2 such that

∫
R

(e±s x − 1)kva(dx) <∞ a ∈ {U, S}, s ∈ (0, σmax] ∪ {1}. (4.3.6)

Define the objective function G by

G : [0, 1] −→ R,

G(α ; s)
4
= GU(α ; s) +GS(α ; 1). (4.3.7)

Lemma 4.2. Let α ∈ [0, 1] and
∫
R

(e± sx − 1)2va(dx) < ∞, where a ∈ {U, S} and

s ∈ (0, σmax] ∪ {1}. Then

G′′(α ; s) < 0

Proof. Let a ∈ {U, S}. Since
∫
R

(e± sx − 1)2va(dx) <∞, with s ∈ (0, σmax] ∪ {1}then
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GU , GS ∈ C2[0, 1], and for all α ∈ [0, 1] and s ∈ [0, σmax] ∪ {1},

G′′a(α ; s) = −
∫

R

(es x − 1)2va(dx)

(1 + α(es x − 1))2
< 0.

Thus G′′(α ; s) = G′′U(α ; s) +G′′S(α ; 1) < 0.

We now give a major result about optimal portfolios.

Theorem 4.3. For the informed investor, the optimal portfolio π1 that maximizes

the expected logarithmic utility from terminal wealth over the investment period [0, T ]

is given by

π1
t =

µ1
t − rt +G′(π1

t ; qσt)

σ2
t

=
µ1
t − rt +G′U(π1

t ; qσt) +G′S(π1
t ; 1)

σ2
t

(4.3.8)

In terms of the stock’s total returns b1
t , the optimal portfolio is

π1
t =

b1
t − rt −KU(qσt)−KS(1) +G′(π1

t ; qσt)

σ2
t

, (4.3.9)

Ka(s) =

∫
R

(es x − 1)va(dx), a ∈ {U, S}, s ≥ 0. (4.3.10)

The maximum expected logarithmic utility from terminal wealth, with x > 0 in initial

capital, is

u1(x) = log x+
1

2
E

∫ T

0

(θ1
t )

2dt+ E

∫ T

0

f
(1)
U,S(π1

t )dt, (4.3.11)
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where

f
(1)
U,S(π1) = G(π1 ; qσ)− 1

2
(π1σ − θ1)2, (4.3.12)

≡ GU(π1 ; qσ) +GS(π1 ; 1)− 1

2
(π1σ − θ1)2,

µ1
t = µt + υ1

t σt − qσt
∫

R

xυU(dx),

υ1
t = −λqUB

t − λqUZ
t ,

b1
t = µ1

t +KU(qσt) +KS(1). (4.3.13)

Proof. Since utility is logarithmic, then using Poisson integration, the utility from

terminal (discounted) wealth for the informed investor is:

log Ṽ 1
T = log x+

∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
1
s

+
∑

0≤u≤T

log(1 + πu(e
qσu∆Zu − 1)) +

∑
0≤s≤T

log(1 + πs(e
∆Xs − 1))

= log x+

∫ T

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ T

0

πsσsdB
1
s

+

∫ T

0

∫
R

log(1 + πu(e
qσux − 1))NU(du, dx)

+

∫ T

0

∫
R

log(1 + πs(e
x − 1))NS(ds, dx)

Taking expectation yields,

E log Ṽ 1
T = log x+

1

2
E

∫ T

0

(θ1
s)

2ds− 1

2
E

∫ T

0

(πsσs − θ1
s)

2ds

+

∫ T

0

∫
R

log(1 + πu(e
qσux − 1))vU(dx)ds

+

∫ T

0

∫
R

log(1 + πs(e
x − 1))vS(dx)ds

Thus

E log Ṽ 1
T = log x+

1

2
E

∫ T

0

(θ1
t )

2dt+ E

∫ T

0

f
(1)
U,S(πt)dt, (4.3.14)
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where

f
(1)
U,S(πt) = −1

2
(πtσt − θ1

t )
2 +

∫
R

log(1 + πt(e
qσtx − 1))vU(dx)

+

∫
R

log(1 + πt(e
x − 1))vS(dx)

= GU(πt; qσt) +GS(πt; 1)− 1

2
(πtσt − θ1

t )
2

= G(πt; qσt)−
1

2
(πtσt − θ1

t )
2.

The value function is

u1(x) = max
π∈A1(x)

E log Ṽ 1,π
T

= log x+
1

2
E

∫ T

0

(θ1
t )

2dt+ max
π

E

∫ T

0

f
(1)
U,S(πs)ds

= log x+
1

2
E

∫ T

0

(θ1
t )

2dt+ E

∫ T

0

max
π

f
(1)
U,S(πs)ds. (4.3.15)

Thus the objective function f
(1)
U,S(π) given by (4.3.12) is strictly concave by Lemma

4.2 if π ∈ [0, 1],
∫
R

(e±σx − 1)2va(dx) < ∞, and
∫
R

(e±x − 1)2va(dx) < ∞, where

a ∈ {U, S}. Thus f
(1)
U,S(π) has a maximum at π1 where

d

dπ

(
f

(1)
U,S(π)

)
|π=π1 . (4.3.16)

Dropping the subscripts “U” and“S”, we have

f ′(π) = G′(π ; qσ)− σ (πσ − θ1) = G′U(π ; qσ) +G′S(π ; 1)− σ(πσ − θ1) = 0,

whence equation (4.3.8) holds. The maximum expected utility u1(x) follows from the

value function (4.3.15), with maxπ f
(1)
U,S(π) = f

(1)
U,S(π1).

Remark 4.3. Because of the intractability of the integrals
∫
R

log(1+π(eσx−1))va(dx)
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where a ∈ {U, S}, we compute the optimal portfolio π1 using approximation techniques.

This is done via the instantaneous centralized moments of returns for both Lévy

processes X and Z, with Lévy measures vS and vU , respectively.

For the stock S, we have the usual centralized moments

MS(k) =

∫
R

(ex − 1)kvS(dx) =
k∑
j=1

(−1)k−j
(
k

j

)
KS(j),

where

KS(s) =

∫
R

(es x − 1)vS(dx), s ≥ 0.

For the fads process linked to U , the instantaneous centralized moments of returns

are dependent on the volatility σt and are given by:

MU(k ; σ) =

∫
R

(eσ x − 1)kvU(dx) =
k∑
j=1

(−1)k−j
(
k

j

)
KU(j ; σ) (4.3.17)

where

KU(j ; σ) =

∫
R

(ej σ x − 1)vU(dx). (4.3.18)

In this case, if
∫
R

(e±σx − 1)k+1va(dx) <∞ and
∫
R

(e±x − 1)k+1va(dx) <∞ for some

k ∈ N, we approximate GU(α ; σ) by GU, k(α ; σ) and G(α ; σ) by Gk(α ; σ), where

α ∈ [0, 1].

GU(α ; σ) ≈ GU, k(α ; σ) =
k∑
j=1

(−1)j−1MU(j ; σ)
αj

j!
(4.3.19)

and

G(α ; σ) ≈ Gk(α ; σ) =
k∑
j=1

(−1)j−1(MS(j) +MU(j ; σ))
αj

j!
. (4.3.20)
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4.3.2 The Case NU = NS = N

We now study the case where X and Z, given by (4.1.5) and (4.1.6) respectively, have

the same Poisson random measure N , and hence the same Lévy measure v = vU = vS.

As already demonstrated by (4.2.4), the stock has log returns dynamic

d(logSt) = µ∗,1t dt+ σt dB
1
t +

∫
R

x (qσt + 1)N(dt, dx). (4.3.21)

Application of Itô’s formula yields,

dSt
St

= µ1
t dt+ σt dB

1
t +

∫
R

(e(qσt+1)x − 1)N(dt, dx). (4.3.22)

It follows from Theorem 3.1, that the dynamic of the wealth process V 1 is

dV 1
t

V 1
t

= (rt + πt σt θ
1
t ) dt+ πt σt dB

1
t +

∫
R

πt(e
(qσt+1)x − 1)N(dt, dx), (4.3.23)

with value

V 1
t = V 1

0 exp

(∫ t

0

rs ds+

∫ t

0

(πsσsθ
1
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
1
s

)
× Π0≤s≤t(1 + πs(e

(qσs+1)∆Xs − 1)). (4.3.24)

The optimal portfolio π1 is given by the equation

π1 =
σθ1 +G′(π1; qσ)

σ2
(4.3.25)

=
µ1 − r +G′(π1; qσ)

σ2
,

where

G(α ; σ) =

∫
R

log(1 + α(e(σ+1)x − 1))v(dx).
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4.4 Asset Price Dynamic for Uninformed Investor

The uninformed investor observes the stock price only and does not know what

the fads are, although it is known that they may exist. Uninformed investors have

filtration K0
t ⊂ F , t ∈ [0, T ], which is contained in K1

t , the filtration of the informed

investor. We shall develop the dynamics for these investors, indexed by i = 0, starting

with the log returns dynamic for the stock given by equations (4.1.1)–(4.1.6).

Recall that

Ut = UB
t + UZ

t .

Definition 4.1. Define the continuous part of the process Y by

Y c
t

4
= Yt − q UZ

t = pWt + q UB
t . (4.4.1)

We have the following major result.

Theorem 4.4. There exists an K0–Brownian motion B0 and a process υ0, B
t ≡ −φ0, B

t

adapted to K0
t , such that for each t ∈ [0, T ] and q ∈ [0, 1],

B0
t = Y c

t +

∫ t

0

φ0, B
s ds ≡ Yt − q UZ

t −
∫ t

0

υ0, B
s ds, (4.4.2)

where

υ0, B
t = −λ

∫ t

0

e−λ(t−s)(1 + γ(s))dB0
s , (4.4.3)

γ(s) =
1− p2

1 + p tanh (λps)
− 1, p ∈ [0, 1],

and λ > 0 is the mean–reversion rate of U .

Proof. Since

Y c
t

4
= Yt − q UZ

t = pWt + q UB
t
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is a continuous Gaussian process (being the sum of two such independent processes),

then by Lemma 3.4 there exists an H0–Brownian motion B0 and a process φ0, B
t

adapted to H0
t , such that

B0
t = Y c

t +

∫ t

0

φ0, B
s ds,

where

φ0, B
s = −υ0, B

s = λ

∫ t

0

e−λ(t−s)(1 + γ(s))dB0
s .

Define the filtration K0 by the prescription

K0
t = H0

t ∨ σ(Zu : u ≤ t), t ∈ [0, T ], (4.4.4)

where we assume that all filtrations are complete and right continuous. Clearly,

H0
t ⊂ K0

t ,

and since B0
t and φ0, B

t are H0
t –adapted, they are K0

t –adapted. Thus,

B0
t = Yt − q UZ

t +

∫ t

0

φ0, B
s ds = Yt − q UZ

t −
∫ t

0

υ0, B
s ds.

From equation (4.4.2), we have

Yt = B0
t +

∫ t

0

υ0, B
s ds+ q UZ

t . (4.4.5)
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Therefore,

dYt = dB0
t + υ0, B

t dt+ q dUZ
t

= dB0
t + υ0, B

t dt− λ q UZ
t dt+ dZt

= dB0
t + υ0, B

t dt+ υZt dt+ dZt

= dBi
t + υit dt+ dZt, i = 0, (4.4.6)

where

υ0
t

4
= υ0,B

t + υZt , (4.4.7)

υZt
4
= −λ q UZ

t . (4.4.8)

Note that (4.4.6) has the same form as (4.1.18), with i = 0. Also equation (4.4.7)

is similar to equation (4.2.1). We have a useful result for the process υ0 which is

similar to the result of Propostion 4.3.

Proposition 4.4. Let t ∈ [0, T ], i ∈ {0, 1} and p, q ∈ [0, 1], where p2 +q2 = 1. Then

E[υit] = 0,

E[υit]
2 = Var[υit] ≤

λ

2
(1− e−2λ t)(1 + p)(1 + (−1)ip)

(
1 +

∫
R

x2 vU(dx)

)
.

Moreover

lim
t→∞

E[υit]
2 =

λ

2
(1− p)(1 + (−1)i+1p)

(
1 +

∫
R

x2 vU(dx)

)
.

Proof. We proved equality for the case i = 1 in Proposition 4.3. The case i = 0

follows from

E[υit]
2 = E[υi,Bt ]2 + E[υZt ]2,
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by importing the inequality for E(υ0, B
t )2 from Corollary 3.5.

We now have a result analogous to Theorem 4.1.

Theorem 4.5. There exists an K0–adapted Brownian motion B0 such that the log

returns dynamic (4.1.1) of the uninformed investor is

d(logSt) = µ∗, 0t dt+ σt dB
0
t +

∫
R

qσtxNU(dt, dx) +

∫
R

xNS(dt, dx), (4.4.9)

and its percentage return dynamic is

dSt
St

= µ0
t dt+ σt dB

0
t +

∫
R

(eqσt x − 1)NU(dt, dx) +

∫
R

(ex − 1)NS(dt, dx). (4.4.10)

NU and NS are defined by (4.1.5)and (4.1.6).

Proof. This follows similarly as in the proof of Theorem 4.1.

4.4.1 Maximization of Logarithmic Utility for the

Uninformed Investor.

Let V 0 ≡ V 0,π ≡ V 0,π,x be the wealth of the uninformed investor, where π ≡ π0 =

(π0
t )t≥0 is the proportion of the wealth invested in the stock, with x > 0 in initial

capital.

Theorem 4.6. The percentage returns dynamic for the uninformed investor is

dV 0
t

V 0
t

= (rt+πt σt θ
0
t ) dt+πt σt dB

0
t +

∫
R

πt(e
qσt x−1)NU(dt, dx)+

∫
R

πt(e
x−1)NS(dt, dx).

(4.4.11)
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The discounted wealth process is

Ṽ 0
t = V 0

t exp

(
−
∫ t

0

rsds

)
= V 0

0 exp

(∫ t

0

(πsσsθ
0
s −

1

2
π2
sσ

2
s)ds+

∫ t

0

πsσsdB
0
s

)
× Π0≤u≤t(1 + πs(e

qσu∆Zu − 1))× Π0≤s≤t(1 + πs(e
∆Xs − 1)), (4.4.12)

Proof. This is the same as the proof for Theorem 4.2 with θ = θ0 and υ = υ0.

4.4.2 The Partial Objective Function G(·)

The G function is the same for both investors, with

G(α ; s) = GU(α ; s) +GS(α ; 1),

q ∈ [0, 1], α ∈ [0, 1], and s ∈ (0, σmax] ∪ {1}, where

Ga(α ; s)
4
=

∫
R

log(1 + α(es x − 1)) va(dx), a ∈ {U, S}.

We assume, as before, that
∫
R

(e±s x − 1)2va(dx) < ∞, where s ∈ (0, σmax] ∪ {1} to

ensure that G′′(α; s) < 0. We now give the optimal portfolios and maximum expected

utilities for the investors.

Theorem 4.7. Let i ∈ {0, 1} and q ∈ [0, 1]. For the i–th investor, the optimal

portfolio πi that maximizes the expected logarithmic utility from terminal wealth V i
T

over the investment period [0, T ], is given by

πit =
µit − rt +G′(πit ; qσt)

σ2
t

=
µit − rt +G′U(πit ; qσt) +G′S(πit ; 1)

σ2
t

. (4.4.13)

In terms of the stock’s total returns bit = µit +KU(qσt) +KS(1), the optimal portfolio
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is

πit =
bit − rt −KU(qσt)−KS(1) +G′(πit ; qσt)

σ2
t

, (4.4.14)

Ka(s) =

∫
R

(es x − 1) va(dx), a ∈ {U, S}, s ≥ 0. (4.4.15)

The maximum expected logarithmic utility from terminal wealth with x > 0 in initial

wealth, is

ui(x) = log x+
1

2
E

∫ T

0

(θit)
2dt+ E

∫ T

0

f
(i)
U,S(πit)dt, (4.4.16)

where

f
(i)
U,S(πit) = G(πit ; qσt)−

1

2
(πitσt − θit)2

µit = µt + υit σt − qσt
∫

R

xυU(dx),

υit
4
= υi,Bt + υZt ,

bit = µit +KU(qσt) +KS(1).

Proof. The case i = 1 was proven in Theorem 4.3. For the case i = 0, simply replace

the superscript “1” by“0” in the said theorem.

4.4.3 Approximation of Optimal Portfolios using

Instantaneous Centralized Moments

As in the cases examined in Chapter 3, we need to use approximation methods to

compute the optimal portfolios, since the partial objective function

Ga(α ; s)
4
=
∫
R

log(1+α(es x−1) va(dx), a ∈ {U, S} , s ∈ (0, σmax]∪{1}, is in general,

not tractable. We assume as before, that
∫
R

(e±s x − 1)2va(dx) < ∞, to ensure that
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the optimal portfolios exist(i.e; G′′(α) < 0). Since

G(α ; s) = GU(α ; s) +GS(α ; 1), α ∈ [0, 1], (4.4.17)

then, if
∫
R

(e± sx − 1)k+1va(dx) < ∞, where s ∈ (0, σmax] ∪ {1}, we can approximate

G(α ; s) by a k–th degree polynomial Gk(α ; s), where

Gk(α ; s)
4
=

k∑
j=1

(−1)j−1M(j ; s)
αj

j!
, (4.4.18)

G′k(α ; s)
4
=

k∑
j=1

(−1)j−1M(j ; s)αj−1, (4.4.19)

M(j ; s) = MU(j ; s) +MS(j ; 1), j = 1, 2, · · · , k. (4.4.20)

Ma(j ; s) =

∫
R

(es x − 1)jva(dx), a ∈ {U, S}, s ∈ (0, σmax] ∪ {1} (4.4.21)

=

j∑
r=1

(−1)r−1

(
j

r

)
Ka(r ; s) (4.4.22)

Ka(j ; s) =

∫
R

(ej s x − 1) va(dx). (4.4.23)

We have the following lemma.

Lemma 4.3. Let k ∈ N. If
∫
R

(e±s x − 1)k+1va(dx) < ∞, where s ∈ (0, σmax] ∪ {1},

and a ∈ {U, S}, then the k–th centralized moment exists, and is given by

M(k ; s) =
k∑
j=1

(−1)j−1

(
k

j

)
K(j ; s) = MU(k ; s) +MS(k ; 1), (4.4.24)

where

K(j ; s) = KU(j s) +KS(j), (4.4.25)

Ka(γ) =

∫
R

(eγ x − 1) va(dx), a ∈ {U, S}. (4.4.26)
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Proof. Obviously,

Ka(j ; s) =

∫
R

(ej s x − 1) va(dx) = Ka(j s).

Thus

K(j ; s) = KU(j ; s) +KS(j ; 1) = KU(j s) +KS(j),

whence

M(k ; s) =
k∑
j=1

(−1)j−1

(
k

j

)
K(j ; s) =

k∑
j=1

(−1)j−1

(
k

j

)
(KU(j ; s) +KS(j ; 1))

=
k∑
j=1

(−1)j−1

(
k

j

)
KU(j ; s) +

k∑
j=1

(−1)j−1

(
k

j

)
KS(j ; 1) = MU(k ; s) +MS(k ; 1).

4.5 Asymptotic Utilities

We assume that the partial objective function G(α) ≡ G(α ; s) = GU(α ; s) +

GS(α ; 1), is restricted to the domain [0, 1], where s ∈ (0, σmax] ∪ {1} and∫
R

(e±s x − 1)3va(dx) < ∞, where a ∈ {U, S}. That is, we have at least a quadratic

approximation of G(α). Let Q(θ) be given as in Chapter 3. That is,

Q(θ)
4
= Aθ2 +Bθ + C (4.5.1)

where θ is the Sharpe ratio and

Ma(j ; s) =

∫
R

(es x − 1)jva(dx), a ∈ {U, S}, s ∈ [0, σmax] ∪ {1}.
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Set

M(j ;σ)
4
= MU(j ;σ) +MS(j ; 1), j = 1, 2, · · · , k. (4.5.2)

A =
−M(2 ; qσt)

2(σ2
t +M(2 ; qσt))

, (4.5.3)

B =
2M(1 ; qσt)

2(σ2
t +M(2 ; qσt))

, (4.5.4)

C =
M(1 ; qσt)

2(σ2
t +M(2 ; qσt))

. (4.5.5)

Note that A,B,C are functions of σt. Let

γ2
t =

σ2
t

σ2
t +M(2 ; qσt)

. (4.5.6)

Then γt is the proportion of total volatility due to the diffusive component of the

stock with dynamic (4.1.1) We assume that

limt→∞σt = σ∞ = σ > 0,

and set

γ2 = limt→∞γ
2
t =

σ2
∞

σ2
∞ +M(2 ; qσ∞)

=
σ2

σ2 +M(2 ; qσ)
. (4.5.7)

Note that in (4.5.3)–(4.5.5), σ is really σt, while in (4.5.7), σ is a positive constant.

Theorem 4.8. Assume that
∫
R

(e±s x−1)kv(dx) <∞, s ∈ (0, σmax]∪{1}, k ≥ 3 and

G is restricted to [0, 1]. Let x > 0 be the initial wealth of investors and i ∈ {0, 1}.

(1) As T →∞, the asymptotic optimal utility for the i–th investor due to jumps is

ui∞, d(x) ∼
∫ T

0

Q

(
µt
σt

: σt,M(1, qσt)M(2, qσt)

)
dt

+
λ

2
A∞(1− p)(1 + (−1)i+1p)

[
1 +

∫
R

x2 vU(dx)

]
T, (4.5.8)
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where Q(θ) is given by (4.5.1) and

A∞ = − M(2, qσ)

2(σ2 +M(2, qσ))
, σ = lim

t→T
σt. (4.5.9)

(2) The excess asymptotic optimal utility of the informed investor over the uninformed

investor, due to jumps is:

u1
∞, d(x)− u0

∞, d(x) ∼ λA∞ p (1− p)
[
1 +

∫
R

x2 vU(dx)

]
T. (4.5.10)

Proof. Assume that
∫
R

(e±s x − 1)2v(dx) < ∞, where s ∈ (0, σmax] ∪ {1} and G is

restricted to [0, 1].

By Proposition 4.4, as t→∞

E(υit)
2 −→ λ

2
(1− p)(1 + (−1)i+1p)

[
1 +

∫
R

x2 vU(dx)

]
, i ∈ {0, 1}.

By Corollary 3.3, as T →∞ we have

uiT, d(x) ∼ E

∫ T

0

Q

(
µt
σt

: σt, M(1, qσt)M(2, qσt)

)
dt+

∫ T

0

AtE(υit)
2dt

= E

∫ T

0

Q

(
µt
σt

)
dt+ T lim

t→∞
AtE(υit)

2

= E

∫ T

0

Q

(
µt
σt

)
dt+ T A∞ lim

t→∞
E(υit)

2

= E

∫ T

0

Q

(
µt
σt

)
dt+

λ

2
A∞(1− p)(1 + (−1)i+1p)

[
1 +

∫
R

x2 vU(dx)

]
T,

where

A∞ = lim
t→T

At = lim
t→∞
− M(2, qσt)

2(σ2
t +M(2, qσt))

= − M(2, qσ)

2(σ2
∞ +M(2, qσ))

= − M(2, qσ)

2(σ2 +M(2, qσ))
.

From part(1), since λ
2
A∞

∫
R
x2 vU(dx)T, is common for both investors, it follows that
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the excess optimal utility of the informed investor due to the jumps is

u1
∞, d(x)− u0

∞, d(x) =
λ

2
A∞[(1− p)(1 + p)− (1− p)(1− p)]

[
1 +

∫
R

x2 vU(dx)

]
T

= λA∞ p (1− p)
[
1 +

∫
R

x2 vU(dx)

]
T.

We have the following major result as a consequence of the quadratic approximation

of G(α ; σ). This is analogous to Theorems 3.18 and 3.19, with r = 0.

Theorem 4.9. Assume that the conditions of Theorem 4.8 hold. Let the investment

horizon T −→∞. Under quadratic approximation of G(α ; s), we have:

(1) The maximum expected asymptotic logarithmic utility from terminal wealth for

the i–th investor with initial capital x > 0 is ui∞(x)

≈ log x+
1

2

∫ T

0

(
µt
σt

)2

dt+

∫ T

0

Q

(
µt
σt

)
dt+

λ̃

4
(1−p)(1+(−1)i+1p)

[
1 +

∫
R

x2 vU(dx)

]
T.

(4.5.11)

(2) The excess asymptotic logarithmic utility of the informed investor is

u1
∞(x)− u0

∞(x) ≈ λ̃

2
p (1− p)

[
1 +

∫
R

x2 vU(dx)

]
T, (4.5.12)

where λ̃ = λγ2 is the long run adjusted mean-reversion rate and γ2 is given by (4.5.7).

Proof. (1) follows from Theorem 3.16, with (1− p)(1 + (−1)i+1p)(1 +
∫
R
x2 vU(dx)),

replacing (1−p)(1+(−1)i+1p) andM2 replaced byM(2 ; qσ) = MU(2 ; qσ)+MS(2 ; 1).

(2) follows by taking the difference of the optimal utilities for both investors.
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Chapter 5

Numerical Approximation of

Optimal Portfolios

Using Centralized Moments

In this chapter, we apply some of the theories developed in Chapter 3 to Lévy markets

having a non-zero diffusive coefficient. Let i ∈ {0, 1}. Recall from Theorem 3.17, that

the random optimal portfolio πi for the i-th investors is linked to the deterministic

optimal portfolio π of the symmetric market, via the relationship:

where

πi = π + noisei, noisei = vi σ̃, (5.0.1)

and

σ̃t =
σt

σ2
t + |G′′(ηit)|

,

for some ηit between πt and πit, t ∈ [0, T ]. In particular, under quadratic approximation

noisei = vi σt
σ2
t+M2

, where the vis are defined in Theorem 1.2, Guasoni [21]. It is clear

from the foregoing that we only need π, the deterministic optimal portfolio in the

symmetric market, to obtain the approximate optimal portfolios in the asymmetric

markets. Explicitly, by Theorem 3.8 give the optimal portfolio π∗, it for each investor
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as

π∗, it =
µit − rt +G′(π∗, it )

σ2
t

. (5.0.2)

This chapter is focused on obtaining and estimating π and π∗, it using Newton’s method

and other iteration procedures, with the help of polynomial approimations of G(·)

built from the centralized moments of returns. We study various markets including

Kou, Variance Gamma, Double Poisson, and m-Double Poisson. We obtain analyic

formulas for the optimal portfolios for the Kou and Double Poisson markets, while

the VG and m–Double Poisson markets are estimated by numerical procedures.

5.1 The Symmetric Lévy Market

The symmetric market is driven by standard Brownian motion B and a pure jump

Lévy process X. Both investors have equal knowledge. The stock price S has log

returns dynamic:

d(logSt) = (µt −
1

2
σ2
t )dt+ σtdBt + dXt, (5.1.1)

with equivalent percentage returns dynamic

dSt
St

= µt dt+ σt dBt +

∫
R

(ex − 1)N(dt, dx), (5.1.2)

where B is a standard Brownian motion independent of X, which has Lévy triple

(γ , 0, v), with γ =
∫

[−1, 1]
x v(dx). σt is the continuous component of the stock’s

volatility and µt is the continuous component of the total stock appreciation rate

b = µ + M1, where M1 =
∫
R

(ex − 1)v(dx). Note that the percentage returns has

three components: one continuous and locally deterministic (µt); one continuous and

stochastic (σt dBt), and the third is discontinuous and driven by the Poisson Random
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measure N on [0, T ]×R.

All processes live on a filtered complete probability space (Ω,F , (Ft),P). The

structure of (5.1.2) is analogous to that of a stock dynamic with jumps first considered

by Merton [36] in 1976, and more recently in 2003 by Liu, Longstaff and Pan [34]. In

these papers, stocks follow a jump-diffusion process with Poisson arrival rates. In the

sequel, we examine Merton’s and other models, where jumps are not constrained only

to slow Poisson arrival rates, but may arrive at extremely fast, even infinite rates.

We study Lévy markets that are driven by both finite and infinite activity processes.

We assume that the jumps in stock returns are smooth in the sense that the jump

paths are of finite variation. That is (cf Propostion 2.2)

∫
R

min(|x|, 1)v(dx) <∞. (5.1.3)

Finite activity processes drive the Merton and Kou jump-diffusion models, while

the Variance Gamma (VG) and CGMY processes are (driven by) infinite activity

processes. We also consider markets driven by a Double Poisson process (Π(1, 2)(λ)),

and by m-Double Poisson processes (Π(m, 2)(λ)), where m is an positive integer and

λ is the arrival/intensity rate. All markets consist of a single stock and a bond B

with price Bt = exp
(∫ t

0
rs ds

)
, where rt is the continuously compounded risk–free

interest rate, T is the investment horizon, and t ∈ [0, T ].

5.2 Instantaneous Centralized Moments of Returns

In this section we present a general result for instantaneous centralized moments of

returns. Let v(·) be the Lévy measure of an arbitrary pure jump Lévy process X.

Definition 5.1 (Instantaneous Centralized Moments of Returns).
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Define the objects Mj and Ks by the prescriptions:

Mj =

∫
R

(ex − 1)jv(dx), (5.2.1)

Ks =

∫
R

(esx − 1)v(dx). (5.2.2)

Mj is called the j-th instantaneous centralized moments of returns of the Lévy process

X, with measure v(·). Ks is a kernel used to calculate Mj.

We have the following result, which will be quite useful in the sequel.

Lemma 5.1. If there exists k ∈ N such that
∫
R

(ejx − 1)v(dx) <∞ for each

0 ≤ j ≤ k, then Mj and Kj exist, and

Mj =

j∑
i=1

(−1)j−i
(
j

i

)
Ki. (5.2.3)

Proof. If there exists k ∈ N such that
∫
R

(ejx− 1)v(dx) <∞ for each 0 ≤ j ≤ k, then

Kj =

∫
R

(ejx − 1)v(dx) <∞.

Now

Mj =

∫
R

(ex − 1)j v(dx).
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From the Binomial Theorem

(ex − 1)j =

j∑
i=0

(−1)j−i
(
j

i

)
eix

=

j∑
i=0

(−1)j−i
(
j

i

)
(eix − 1) +

j∑
i=0

(−1)j−i
(
j

i

)

=

j∑
i=1

(−1)j−i
(
j

i

)
(eix − 1) + (1− 1)j

=

j∑
i=1

(−1)j−i
(
j

i

)
(eix − 1).

Therefore

Mj =

∫
R

(ex − 1)j v(dx) =

j∑
i=1

(−1)j−i
(
j

i

) ∫
R

(eix − 1) v(dx) =

j∑
i=1

(−1)j−i
(
j

i

)
Ki,

which is clearly finite for each integer 0 ≤ j ≤ k.

The following results are particular consequences of Lemma 5.1, and are used repeatedly

in the sequel. We encapsulate them in the following corollary.

Corollary 5.1. Let k be the largest integer such that
∫
R

(ejx − 1)v(dx) <∞ for each

integer 0 ≤ j ≤ k. Then Kj and Mj exist for each j ≤ k. In particular:

M1 = K1, if k=1; (5.2.4)

M2 = K2 − 2K1, if k=2; (5.2.5)

M3 = K3 − 3K2 + 3K1, if k=3; (5.2.6)

M4 = K4 − 4K3 + 6K2 − 4K1, if k=4; and (5.2.7)

M5 = K5 − 5K4 + 10K3 − 10K2 + 5K1, if k=5. (5.2.8)
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Remark 5.1. The kernels Kj, j = 1, . . . , k, are easy to compute when the Lévy

measure v(dx) has the form

v(dx) = const e−Mxf(x)dx

|x|
,

where f is a real bounded function on R. This will be the case for most of the models

considered in this dissertation, and indeed, represents a large class of Lévy processes

in finance.

5.3 Polymonial Approximation of G(α)

The Newtons’ method algorithm requires explicit values for the first and second

derivatives of

G(α) =

∫
R

log(1 + α(ex − 1))v(dx),

which must be estimated if an analytic formula is not available. In the sequel,

we estimate G(α) by the k–th degree polynomial Gk(α). We shall use the Mjs to

approximate the function G and hence G′ and G′′, by a truncated Taylor series. The

larger the value of k, the better the approximation of G. We have the following result

which is general for all models where Mk exists.

Theorem 5.1. If there exists k ∈ N such that Mj =
∫
R

(ex−1))j v(dx) <∞ for each

1 ≤ j ≤ k, then G(·) has a k-th degree polynomial approximation Gk(·) given by:

Gk(α) =
k∑
j=1

(−1)j−1Mj

j
αj, α ∈ [0, 1], (5.3.1)

where

G′k(α) =
k∑
j=1

(−1)j−1Mjα
j−1 and G′′k(α) =

k∑
j=2

(−1)j−1(j − 1)Mjα
j−2. (5.3.2)
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Proof. Let k be the largerst integer such that Mj exists for each j ≤ k. Expanding

G(α) about α = 0 as a truncated Taylor series of degree k, yields:

G(α) ≈
k∑
j=1

G(j)(0)
αj

j!

=
k∑
j=1

(−1)j−1(j − 1)!

∫
R

(ex − 1)jv(dx)
αj

j!

=
k∑
j=1

(−1)j−1

∫
R

(ex − 1)jv(dx)
αj

j
.

The result follows with

Gk(α) =
k∑
j=1

(−1)j−1Mj

j
αj,

and

G′k(α) =
k∑
j=1

(−1)j−1Mjα
j−1.

G′′k(α) follows directly by differentiating G′k(α).

5.4 The Error in the Approximation of the Optimal

Portfolio

Let π be the optimal portfolio that maximizes the expected logarithmic utility from

terminal wealth. Let π(k) be the estimate of π based on the k-th degree truncated

Taylor polynomial Gk(·) of G(·), with remainder Rk(·), where for π ∈ [0, 1]

G(π) = Gk(π) +Rk(π), (5.4.1)
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where

Gk(π) =
k∑
j=1

G(j)(0)
πj

j!
=

k∑
j=1

(−1)j−1Mj
πj

j!
.

We assume that
∫
R

(e±x− 1)k+1v(dx) <∞, to ensure that all integrals, and hence all

derivatives, exist. Explicitly, For j = 1, . . . , k + 1, we have

G(j)(π) = (−1)j−1(j − 1)!

∫
R

(ex − 1)j v(x)dx

(1 + π (ex − 1))j
, (5.4.2)

G(j)(0) = (−1)j−1(j − 1)!Mj. (5.4.3)

In particular,

G(2)(π) = −
∫
R

(ex − 1)2v(x)dx

(1 + π(ex − 1))2
< 0. (5.4.4)

Thus G(·) is strictly concave on [0, ∞). Clearly Gk(π) → G(π) as k → ∞, iff

Rk(π)→ 0 as k →∞. By Taylor’s theorem, there exists θα ∈ (0, α), where α ∈ (0, 1],

such that

Rk(α) = G(k+1)(θα)
αk+1

(k + 1)!
= (−1)k

αk+1

k + 1

∫
R

(ex − 1)k+1v(x)dx

(1 + θα(ex − 1))k+1
. (5.4.5)

Definition 5.2 (k-th Degree Error).

Let t ∈ [0, T ]. The k-th degree error in the approximation of πt is denoted by ε
(k)
t and

defined by

ε
(k)
t
4
= πt − π(k)

t , (5.4.6)

where π
(k)
t is the k-th degree approximation of πt.

We have the following result.

Theorem 5.2. If G ∈ Ck+2[0, 1] for some k ∈ N, then there exists θ
(k)
α ∈ (0, 1),

such that

ε
(k)
t =

R′k(π
(k)
t )

σ2
t + |G′′(θ(k)

α )|
, (5.4.7)
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where Rk(·) is the remainder.

Proof. The optimal portfolio πt is given by Theorem 5.7 as

πt =
θt
σt

+
1

σ2
t

G′(πt)

Its k-th degree approximation is given by Theorem 5.6, as

π
(k)
t =

θt
σt

+
1

σ2
t

G′k(π
(k)
t ).

Thus

ε
(k)
t = πt − π(k)

t =
1

σ2
t

(G′(πt)−G′k(π
(k)
t )).

Since G(k+2)(α) exists for α ∈ [0, 1] and G(α) = Gk(α) +Rk(α) then

G′k(π
(k)
t ) = G′(π

(k)
t )−R′k(π

(k)
t ).

By the Mean Value theorem, there exists θ
(k)
α between πt and π

(k)
t , such that

ε
(k)
t =

1

σ2
t

(G′(πt)−G′(π(k)
t ) +R′k(π

(k)
t ))

=
1

σ2
t

[
(πt − π(k)

t )G′′(θ(k)
α ) +R′k(π

(k)
t )
]

=
1

σ2
t

(ε
(k)
t G′′(θ(k)

α ) +R′k(π
(k)
t )).

Thus ε
(k)
t (σ2

t −G′′(θ
(k)
α )) = R′k(π

(k)
t ) and so with G′′(α) < 0 for all α, we have

ε
(k)
t =

R′k(π
(k)
t )

σ2
t −G′′(θ

(k)
α )

=
R′k(π

(k)
t )

σ2
t + |G′′(θ(k)

α )|
.

Moreover θ
(k)
α ∈ (0, 1), since πt and π

(k)
t ∈ [0, 1].

An immediate consequence of the last result is:
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Corollary 5.2.

|ε(k)
t | ≤

|R′k(π
(k)
t )|

σ2
t

. (5.4.8)

Theorem 5.3. Let G ∈ Ck+2[0, 1] for some k ∈ N and α ∈ [0, 1). Then there exists

θ
(k)
α , θα ∈ (0, 1), such that

ε
(k)
t =

1

σ2
t + |G′′(θ(k)

α )|

(
∆k (π

(k)
t , θα) + θ′α∆k+1(π

(k)
t , θα)

)
, (5.4.9)

where

∆k(α, θα) =
αk

k!
G(k+1)(θα) (5.4.10)

and α = π
(k)
t is the k-th degree approximation of πt.

Proof. Since G(k+2)(α) exists, then from (5.4.5) there exists θα ∈ (0, α), such that

Rk(α) =
αk+1

(k + 1)!
G(k+1)(θα).

Thus

R′k(α) =
αk

k!
G(k+1)(θα) +

αk+1

(k + 1)!
G(k+2)(θα)θ′α, (5.4.11)

= ∆k(α, θα) + θ′α∆k+1(α, θα.)

Setting α = π
(k)
t and applying Theorem 5.2, yield the result.

Corollary 5.3. Suppose there is k ∈ N such that G(k+2)(α) exists for all α ∈ [0, 1).

Then there exists θα ∈ (0, 1) such that

|ε(k)
t | ≤

1

σ2
t

[
(π

(k)
t )k

k!
|Gk+1(θα)|+ (π

(k)
t )k+1

(k + 1)!
|Gk+2(θα)|

]
, (5.4.12)

where α = π
(k)
t .
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Proof. Without loss of generality, we take 0 < |θ′α| < 1 since θα ∈ (0, α) ⊂ (0, 1).

Applying the triangle inequality to (5.4.11), yields

|R′k(α)| ≤ αk

k!
|G(k+1)(θα)|+ αk+1

(k + 1)!
|G(k+2)(θα)||θ′α|

≤ αk

k!
|G(k+1)(θα)|+ αk+1

(k + 1)!
|G(k+2)(θα)|.

Set α = π
(k)
t , and apply Corollary 5.2 to the above inequality to get the result.

Corollary 5.4. If there exists C > 0 such that for j = k + 1 and j = k + 2,∣∣∣G(j)(α)
(j−1)!

∣∣∣ ≤ C, for all α ∈ [0, 1], then

|ε(k)
t | ≤ 2C

(π
(k)
t )k

σ2
t

. (5.4.13)

Proof. Set α = π
(k)
t ∈ [0, 1]. Imposing |G(j)(θα)

(j−1)!
| ≤ C for j = k+ 1 and j = k+ 2, onto

equation (5.4.12) yields |ε(k)
t | ≤ 1

σ2
t

[
(π

(k)
t )kC + (π

(k)
t )k+1C

]
≤ 2C

(π
(k)
t )k

σ2
t
.

It is obvious from the last result that if |G(j)(α)| ≤ C(j − 1)!, C > 0, and j ∈

{k + 1, k + 2}, then ε
(k)
t → 0 as k → ∞. In other words, if the derivatives of G(·)

are bounded, we get convergence of the approximation π
(k)
t to the optimal portfolio π.

Theorem 5.4. π
(k)
t → 0 iff Rk(α)→ 0, ∀ α ∈ [0, 1].

Proof. Asssume that Rk(α) → 0 ∀ α ∈ [0, 1] and take α = π
(k)
t , t ∈ [0, T ]. Since

G(α) = Gk(α) + Rk(α) then as k → ∞, Gk(α) → G(α). Thus G′k(α) → G′(α), and

so

ε
(k)
t = πt − π(k)

t =
1

σ2
t

(G′k(α)−G′(α))→ 0.
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Now assume that π
(k)
t → 0. Then

G(α) = Gk(α) +Rk(α) =
k∑
j=1

(−1)j−1Mj

j
αj +Rk(α), : α ∈ [0, 1].

Thus 0 = G(0) = Gk(0) + Rk(0) ⇒ Rk(0) = 0. By the Mean Value theorem, there

exists θα ≡ θ(α) ∈ (0, α) such that

Rk(α) = Rk(α)−Rk(0) =
R′k(θ(α))

α
.

For each x ∈ (0, 1), define

θ−1(x) = α if θ(α) = x

where α ∈ (0, 1). Then

R′k(x) =
Rk(θ

−1(x))

θ−1(x)
.

By Theorem 5.2, with x = π
(k)
t , ε

(k)
t → 0 implies that

R′k(π
(k)
t ) =

Rk(θ
−1(π

(k)
t ))

θ−1(π
(k)
t )

→ 0.

Thus with α = θ−1(π
(k)
t ), we get Rk(θ

−1(π
(k)
t )) = Rk(α)→ 0.

Remark 5.2. This result proves that the error vanishes iff the remainder of the

approximating series vanishes at all points in [0, 1]. So if there is divergence of the

series, the error diverges.
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5.5 Estimation of Optimal Portfolio Using

Newton’s Method

By Theorem 3.8, the exact unique optimal portfolio in a symmetric market is

πt =
θt
σt

+
G′(πt)

σ2
t

=
µt − rt +G′(πt)

σ2
t

.

This is a non-linear equation which must be solved numerically. In this section,

we employ Newton’s method to achieve this objective. For each t ∈ [0, T ], define

g : [0, 1] −→ R by the prescription g(πt) = πt − θt
σt
− G′(πt)

σ2
t
. We generate a sequence

{πt(n)} which converges to πt, via the algorithm:

πt(0) =
θt
σt

πt(n+ 1) = πt(n)− g(πt(n))

g′(πt(n))
, n ≥ 0. (5.5.1)

In term of the derivatives G′(α) and G′′(α), we have the equivalent algorithm:

Set ε = 0.5× 10−d, where d ∈ {5, 6, 7, 8, 9, 10}.

πt(0) =
θt
σt

(5.5.2)

πt(n+ 1) =
−πt(n)G′′(πt(n)) + θt σt +G′(πt(n))

σ2
t −G′′(πt(n))

, n ≥ 0. (5.5.3)

εt(n) = |πt(n+ 1)− πt(n)| (5.5.4)

Stop if εt(n) < ε, and take πt = πt(n + 1). Else, set n = n + 1 and repeat search. In

the event that G′(α) is estimated by a k–th polynomial G′k(α), then πt is estimated
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by π
(k)
t , where

π
(k)
t (0) =

θt
σt

(5.5.5)

π
(k)
t (n+ 1) =

−π(k)
t (n)G′′k(π

(k)
t (n)) + θt σt +G′k(π

(k)
t (n))

σ2
t −G′′k(π

(k)
t (n))

, n ≥ 0. (5.5.6)

ε
(k)
t (n) = |π(k)

t (n+ 1)− π(k)
t (n)| (5.5.7)

Stop if ε
(k)
t (n) < ε, and take π

(k)
t = π

(k)
t (n+ 1). Else, set n = n+ 1 and repeat search.

5.5.1 Estimation of Optimal Portfolios: Asymmetric Market

Let i ∈ {0, 1}. We use Newtons’ method to estimate the optimal portfolios πit at

each time t ∈ [0, T ]. We restate Theorem 3.8 as follows.

Theorem 5.5. Let i ∈ {0, 1}, t ∈ [0, T ], and p, q ∈ [0, 1], p2 + q2 = 1. Assume∫
R

(e±x − 1)2 v(dx) <∞. Then the optimal portfolio for the i–th investor is

πit =
θt
σt

+
υit
σt

+
G′(πit)

σ2
t

, (5.5.8)

which is estimated by πit(n) using Newtons’ method given by (5.5.2)–(5.5.4) or (5.5.5)–

(5.5.7), where

υ1
t = −λ q B1

t , and υ0
t = −λ B̃0

t , (5.5.9)

and

B1
t ∼ N (0, t),

B̃0
t =

∫ t

0

e−λ (t−s)(1 + γ(s)) dB0
s ∼ N

(
0,

∫ t

0

e−2λ (t−s)(1 + γ(s))2ds

)
,

γ(s) =
1− p2

1 + p tanh(λ p s)
− 1.
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N (0, δ2) is a Gaussian distribution with mean 0 and variance δ2; B0
t and B1

t are

standard Brownian motion previously defined by Lemmas 3.4 and 3.2.

Remark 5.3. Since B1
t and B̃0

t are Gaussian random variables for each t ∈ [0, T ],

we randomly generate these values for use in the Newtons’ method algorithm at each

time point t.

Consider the normal random variable τ ∼ N (0, δ2). Then

ξ =
τ

δ
∼ N (0, 1).

We further refine Theorem 5.5 as follows:

The Algorithm

Let i ∈ {0, 1}, t ∈ [0, T ], and p, q ∈ [0, 1], p2 + q2 = 1.

Step 1. Randomly generate ui, independent uniform variables on [0, 1].

Step 2. Generate independent standard normal random variables ξ0 and ξ1 by

the Box–Muller method as follows:

ξ0 =
√
−2 lnu1 cos(2πu0) (5.5.10)

ξ1 =
√
−2 lnu1 sin(2πu0). (5.5.11)

Step 3 The optimal portfolios for the investors are generated numerically from

π1
t =

θt
σt
− λ q ξ1

√
t

σt
+
G′(π1

t )

σ2
t

, (5.5.12)
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and

π0
t =

θt
σt
−
λ q ξ0

√∫ t
0
e−2λ (t−s)(1 + p tanh(λ p s))−2ds

σt
+
G′(π1

t )

σ2
t

, (5.5.13)

and are estimated by πit(n) using Newtons’ method given by

πit(0) =
θt
σt

πit(n+ 1) =
−πit(n)G′′(πit(n)) + θit σt +G′(πit(n))

σ2
t −G′′(πit(n))

, n ≥ 0,

with Sharpe ratios

θ1
t =

θt − λ q ξ1
√
t

σt
, θt =

µt − rt
σt

, (5.5.14)

θ0
t =

θt − λ q ξ0

√∫ t
0
e−2λ (t−s)(1 + p tanh(λ p s))−2ds

σt
. (5.5.15)

Remark 5.4. This result follows directly from Theorem 5.5 with B1
t generated by

ξ1
√
t and B̃0

t generated by q ξ0

√∫ t
0
e−2λ (t−s)(1 + p tanh(λ p s))−2ds; ξi ∼ N (0, 1).

5.5.2 Linear Iteration

We can also generate estimates of the optimal portfolios using the following algorithm.

For each t ∈ [0, T ], define g : [0, 1] −→ R by the prescription

g(πt) =
θt
σt

+
G′(πt)

σ2
t

. (5.5.16)

We generate a sequence {πt(n)} which converges to πt, via the algorithm:

πt(0) =
θt
σt

πt(n+ 1) = g(πt(n)), n ≥ 0. (5.5.17)
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In term of the derivative G′(α), we have the equivalent algorithm:

Set ε = 0.5× 10−d, where d ∈ {5, 6, 7, 8, 9, 10}.

πt(0) =
θt
σt

πt(n+ 1) =
µt − rt +G′(πt(n))

σ2
t

, n ≥ 0. (5.5.18)

εt(n) = |πt(n+ 1)− πt(n)| (5.5.19)

Stop if εt(n) < ε, and take πt = πt(n + 1). Else, set n = n + 1 and repeat search. In

the event that G′(α) is estimated by a k–th polynomial G′k(α) then πt is estimated

by π
(k)
t where

π
(k)
t (0) =

θt
σt

π
(k)
t (n+ 1) =

µt − rt +G′k(π
(k)
t (n))

σ2
t

, n ≥ 0. (5.5.20)

ε
(k)
t (n) = |π(k)

t (n+ 1)− π(k)
t (n)| (5.5.21)

Stop if ε
(k)
t (n) < ε, and take π

(k)
t = π

(k)
t (n+ 1). Else, set n = n+ 1 and repeat search.

Remark 5.5. Equation (5.5.17) has a unique root provided g′(α) 6= 1 on the admissible

set. For illustration, assume that the admisible set is [0, 1] and let α ∈ [0, 1]. This

condition is equivalent to G′′(α) 6= σ2 in (5.5.18) and G′′k(α) 6= σ2 in (5.5.20) where

Gk is any k–th degree polynomial approximation of G. A sufficient condition of

convergence of this algorithm to a unique root is |G′′k(α)| < σ2. Thus from (5.3.2), if

k∑
j=2

(j − 1) |Mj| < σ2, (5.5.22)

we are assured of a unique portfolio in [0, 1]. While (5.5.22) gives a very crude

bound on G′′(α), it works in most models that are simulated in this dissertation. We
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may further relax this condition and use the necessary requirement that the equation

G′′k(α) = σ2 (5.5.23)

must not have any roots in [0, 1], the admissible set. In partilcular, G′′k(0) = −M2 6=

σ2 is automatically satisfied. We also require that

G′′k(1) =
k∑
j=2

(−1)j−1(j − 1)Mj 6= σ2,

and that because of the continuity of the polynomial G′′k,

minG′′k(α) 6= σ2 and maxG′′k(α) 6= σ2.

By solving the equation G′′′k (α) = 0 we obtain l ≤ k− 3 turning points r1, r2, · · · , rl in

the admissile set, and provided G′′k(rj) 6= σ2, we are assured that the iterative procedure

returns a unique optimal portfolio.

Example: Take the case of k = 4.

G′′4(α) = −M2 + 3M3 α− 3M4 α
2,

which has a maximum at r = M3

3M4
. If G′′4(1) and G′′4(r) are different from σ2, we are

asssured of a unique optimal portfolio.

We are now in a position to give an approximation of the optimal portfolio that

maximizes the expected logarithmic utility from terminal wealth.

Theorem 5.6. Let π be the portfolio that maximizes the expected logarithmic utility

from terminal wealth in the Lévy market. Then π is approximated by π(k) given by

Newton’s method in ( 5.5.5)–(5.5.7). We may also compute π(k) by linear iteration,
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provided G′′k(αt) 6= σ2
t , αt ∈ [0, 1], using the equation

π
(k)
t =

µt − rt +G′k(π
(k)
t )

σ2
t

=
θt
σt

+
1

σ2
t

k∑
j=1

(−1)j−1Mj (π
(k)
t )j−1, (5.5.24)

where Gk(·) is given in the last theorem, µt is the continuous appreciation rate, rt is

the risk-free interest rate, and θt is the stock’s Sharpe ratio.

The approximate maximum expected logarithmic utility with x > 0 in initial wealth,

is:

u(k)(x) = log x+
1

2

∫ T

0

θ2
t dt+

∫ T

0

(
Gk(π

(k)
t )− 1

2
(π

(k)
t σt − θt)2

)
dt. (5.5.25)

Proof. By Theorem 5.7, π is given exactly by the equation

πt =
θt
σt

+
G′(πt)

σ2
t

=
µt − rt +G′(πt)

σ2
t

,

Since k be the largest integer such that Mj exists for each j ≤ k. By Theorem

5.1 we can approximate G(α) by the kth–degree polynomial Gk(α) which implies

that Gk(α) ≈ G(α). Thus if G′′k(α) 6= σ2, we have a unique optimal portfolio π
(k)
t

approximating πt given by (5.9.1). The utility formula follows similarly.

5.6 Jump–Diffusion Markets

A jump–diffusion market has stock price dynamic:

d(logSt) = (µt −
1

2
σ2
t ) dt+ σt dBt + d(Σ

N(t)
i=1 (Vi − 1)). (5.6.1)

N is the driving Poisson process (Π(λ)) with intensity λ. The jump amplitude Vi are

independent and identically distributed variables drawn from a random variable V .
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The random variable Vi is the ith jump of the stock returns in the interval (0, t). The

log jump amplitude X = log V has distribution FX(·), and Xi = logVi, i = 1,2,. . . ,

N(t) are iid random variables.

Our model (5.6.1), has percentage returns:

dSt
St

= µt dt+ σt dBt + d(Σ
N(t)
i=1 (eXi − 1)), (5.6.2)

while the total stock returns and Lévy measure for the model are:

bt = µt + λ

∫
R

(ex − 1)FX(dx) and v(dx) = λFX(dx). (5.6.3)

5.7 The Kou Jump–Diffusion Model

The stock price dynamic for this model is:

d(logSt) = (µt −
1

2
σ2
t ) dt+ σt dBt + d(Σ

N(t)
i=1 (Vi − 1)), (5.7.1)

where the log jump amplitude X = log(V ) has double exponential distribution with

density f = fkou, dependent on 3 parameters p, η1 and η2, and given by

fkou(x) = p η1 exp (−η1 x)I{x>0} + q η2 exp (−η2 |x|)I{x<0}, (5.7.2)

η1 > 1, η2 > 0, p+ q = 1, p ≥ 0, q ≥ 0.

X can be expressed as:

X =

 Xu, with probability p.

Xd, with probability q.
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Equivalently,

X = Xu I{x>0} −Xd I{x<0}, (5.7.3)

where

Xu ∼ exp(η1), Xd ∼ exp(η2),

are exponential random variables with means 1
η1

and 1
η2

, respectively. Xu, the upward

jump log amplitude, occurs with probability p, which is not expected to exceed 100%.

This leads to the constraint

E(Xu) =
1

η1

< 1. (5.7.4)

Xd is the log amplitude of the downward movements in returns, which occurs with

probabilty q = 1− p. For this model ( cf Kou [30]), we have:

E(X) =
p

η1

− q

η2

, (5.7.5)

Var(X) = p q

(
1

η1

+
1

η2

)2

+

(
p

η2
1

+
q

η2
2

)
, (5.7.6)

and

E(V ) =
q η2

(η2 + 1)
− p η1

(η1 − 1)
, (5.7.7)

is the expected jump amplitude. The Kou Lévy density vkou is given by:

vkou(x) = λfkou(x) = λ p η1 exp (−η1 x) I{x>0} + λ q η2 exp (−η2 |x|) I{x<0}. (5.7.8)

The stock dynamic (5.7.1) can be written as:

dSt
St

= µt dt+ σt dBt +

∫
R

(ex − 1)N(dt, dx), (5.7.9)
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with total returns:

bt = µt + λ

∫
R

(ex − 1) fkou(x)dx = µt + λ

(
p

η1 − 1
− q

η2 + 1

)
. (5.7.10)

Standing Assumptions

(1) For all markets, the stock’s Sharpe ratio or market price of risk, is:

θt =
µt − rt
σt

. (5.7.11)

(2) The Performance Function G(·) is restricted to the domain [0, 1], where

G(π) =

∫
R

log(1 + π (ex − 1)) v(dx). (5.7.12)

Theorem 5.7. Let π be the optimal portfolio that maximizes the expected logarithmic

utility from terminal wealth. Then

(1)

πt =
θt
σt

+
G′(πt)

σ2
t

=
µt − rt +G′(πt)

σ2
t

. (5.7.13)

(2 The maximum expected logarithmic utility with x > 0 in initial wealth, is

u(x) = log(x) +
1

2
E

∫ T

0

θ2
t dt+ E

∫ T

0

f(πt) dt, (5.7.14)

where

f(πt) = −1

2
(πt σt − θt)2 +G(πt). (5.7.15)

Proof. This follows directly from Theorem 3.8.

Remark 5.6. Because G(π), and hence G′(π), is in general very difficult to compute,

we resort to approximation methods. This leads to an approximation π(k) of π, based

on a k-th degree truncated Taylor series expansion of G.

155



Definition 5.3. Define the objects M̂j(η) and K̂s(η) by the prescriptions:

M̂j(η) =

∫ ∞
0

(ex − 1)je−ηxdx, η > 0, j < η. (5.7.16)

K̂s(η) =

∫ ∞
0

(esx − 1)e−ηxdx, s < η. (5.7.17)

B(α, β) =

∫ ∞
0

xα−1(x+ 1)−α−βdx, α > 0, β > 0. (5.7.18)

Lemma 5.2. Let B(α, β) be the Beta function above.

(1) If j < η, then

M̂j(η) = B(j + 1, η − j) =
Γ(j + 1)Γ(η − j)

Γ(η + 1)
. (5.7.19)

(2) If s < η, then

K̂s(η) =
s

η(η − s)
. (5.7.20)

Proof. (1) Let y = ex − 1. Then x = log(1 + y) and dy = ex dx. Thus

M̂j(η) =

∫ ∞
0

yje−η log(1+y)dx =

∫ ∞
0

yj(1 + y)−η−1dy

=

∫ ∞
0

y(j+1)−1(1 + y)−(j+1)−(η−j)dy

= B(j + 1, η − j) =
Γ(j + 1)Γ(η − j)

Γ(η + 1)
.

(2) If η > s, then

K̂s(η) =

∫ ∞
0

(esx − 1) e−ηxdx =
1

η − s
− 1

η
=

s

η(η − s)
.

With Lemma 5.2 in hand, we are now able to compute the kernels Ks(η) and
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instantaneous centralized moments of returns Mj(η), defined by:

Definition 5.4 (Instantaneous Centralized Moments of Returns).

Mj ≡ Mj(η1, η2, p, λ)
4
=

∫
R

(ex − 1)jvkou(x)dx = λ

∫
R

(ex − 1)jfkou(x)dx,

and

Ks ≡ Ks(η1, η2, p, λ)
4
=

∫
R

(esx − 1)vkou(x)dx = λ

∫
R

(esx − 1)fkou(x)dx.

Lemma 5.3. For the Kou jump–diffusion market given by (5.7.1), we have the

following. Let η1 > 1, η2 > 0, p + q = 1, p ≥ 0, q ≥ 0, with Poisson intensity

rate λ > 0. If max(s, j) < η1, then

Mj = (−1)j (j!)
λ q η2 Γ(η2)

Γ(η2 + j + 1)
+ (j!)

λ p η1 Γ(η1 − j)
Γ(η1 + 1)

, (5.7.21)

and

Ks =
λ p s

(η1 − s)
+

λ q s

(η2 + s)
= λ

s (p η2 − q η1 + s)

(η1 − s)(η2 + s)
. (5.7.22)

Proof. (1). Let j < η1 and s < η2. From (5.7.20), we get:

Mj

λ
=

∫
R

(ex − 1)jfkou(x)dx

=

∫
R

(ex − 1)j
(
pη1 exp (−η1x)I{x>0} + qη2 exp (−η2|x|)I{x<0}

)
dx

= qη2

∫ 0

−∞
(ex − 1)j exp (−η2|x|)dx+ pη1

∫ ∞
0

(ex − 1)j exp (−η1x)dx

= qη2

∫ ∞
0

(1− ex)j exp (−jx) exp (−η2x)dx+ pη1M̂j(η1),
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and from equation (5.7.16) and Lemma 5.2,

Mj

λ
= (−1)j q η2

∫ ∞
0

(ex − 1))j exp (−(j + η2)x)dx+ p η1 M̂j(η1)

= (−1)j q η2 M̂j (j + η2) + p η1 M̂j (η1)

= (−1)jq η2
Γ(j + 1) Γ(j + η2 − j)

Γ(η2 + j + 1)
+ p η1

Γ(j + 1) Γ(η1 − j)
Γ(η1 + 1)

= (−1)j j!
λ q η2 Γ(η2)

Γ(η2 + j + 1)
+ j!

λ p η1 Γ(η1 − j)
Γ(η1 + 1)

,

and the result follows.

For (2):

Ks

λ
=

∫
R

(esx − 1)fkou(x)dx

=

∫
R

(esx − 1)
(
pη1 exp (−η1x)I{x>0} + qη2 exp (−η2|x|)I{x<0}

)
dx

= qη2

∫ 0

−∞
(esx − 1) exp (−η2|x|)dx+ pη1

∫ ∞
0

(esx − 1) exp (−η1x)dx

= qη2

∫ ∞
0

(e−sx − 1) exp (−η2x)dx+ pη1

∫ ∞
0

(esx − 1) exp (−η1x)dx

= qη2

∫ ∞
0

(exp(−(s+ η2)x)− exp(−η2x))dx

+pη1

∫ ∞
0

(exp((s− η1)x)− exp (−η1x))dx

= qη2K̂−s(η2) + pη1K̂s(η1),

= qη2

[
−s

η2(η2 + s)

]
+ pη1

[
s

η1(η1 − s)

]
,

=
s (p η2 − q η1 + s)

(η1 − s)(η2 + s)
,

which completes the proof.

For the Kou model η1 = 1
E(Xu)

> 1, and Mj exists provided j < η1. Thus M1 always
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exists for this model, where

M1 =
λp

η1 − 1
− λq

η2 + 1
= λ(E(eX − 1)) = λ(E(V )− 1)), (5.7.23)

where E(V ) is the mean jump amplitude. In this case M1 is the jump component of

the total stock appreciation rate b = µ + M1, where µ is the continuous component

of stock returns.

Corollary 5.5.

For the double exponential Kou jump-diffusion model with p = q = 1
2

and η1 = η2 = η, we have the following:

(1) If j < η, then

Mj =
λ

2
j!

[
(−1)j

Πj
r=1(η + r)

+
1

Πj
r=1(η − r)

]
. (5.7.24)

(2) If |s| < η, then

Ks =
λs2

η2 − s2
. (5.7.25)

Proof. This result follows from Lemma 5.3 with p = q = 1
2

and η1 = η2 = η.

Remark 5.7. There are many combinatorial identities resulting from Lemma 5.3 and

its corollary. They are contained in Appendix A.

In the next section we develop an analytic formula for the derivatives of G(π) in terms

of the cumulative distribution function of a Beta random variable.
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5.8 Analytic Formulas for G′(π) and G′′(π) for Kou

Market

We show thatG′(π) andG′′(π) can be expressed analytically in terms of the cumulative

distribution function of Beta random variables. The proofs for the results of this

section involve lots of calculations and are located in appendix A. Let π ∈ [0, 1] and

η > 0. Define

D(π, η)
4
=

∫ ∞
0

ex − 1

1 + π(ex − 1)
e−η xdx. (5.8.1)

Define J(π, η) by the prescription:

J(π, η)
4
=

∫ ∞
0

dy

(1 + π y)(1 + y)η
η > 0. (5.8.2)

We now give a major result.

Theorem 5.8. Let 0 < η < 1 , π ∈ (0, 1) and β = 1− π. Then

J(π, η) =
1

π

(
π

β

)η
B(1− η, η)

[
1− F

(
π

β
; 1− η, η

)]
, (5.8.3)

and

D(π, η) =
1

β π

(
π

β

)η
B(1− η, η)

[
1− F

(
π

β
; 1− η, η

)]
− 1

β π
, (5.8.4)

where F (x; a, b) is the cumulative distribution function of a Beta random variable with

parameters a and b, and B(a, b) is the corresponding Beta function.

We now have the following result.

Proposition 5.1. For the Kou model,with parameters η1 ≥ 1, η2 > 0, λ > 0,
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p+ q = 1, p, q ≥ 0,

G′(π) = λ p η1D(π, η1)− λ q η2D(1− π, η2). (5.8.5)

We now give the main result for the Kou model.

Theorem 5.9. Let π ∈ (0, 1) and β = 1 − π. For the Kou model with parameters

η1 ≥ 1, η2 > 0, λ > 0, p + q = 1, p, q ≥ 0, Sharpe ratio θt and volatility σt, the

optimal portfolio is the unique solution of the equation

πt =
θt
σt

+
(λ p η1D(πt, η1)− λ q η2D(1− πt, η2))

σ2
t

, (5.8.6)

where D(πt, η1) and D(1− πt, η2) can be computed from equation (A.1.18).

An explicit formula for G′′(π) is given below

Theorem 5.10. Let π ∈ (0, 1), β = 1 − π and a = π
β

. For the Kou model with

parameters η1 ≥ 1, η2 > 0, λ > 0, p+ q = 1, p, q ≥ 0,

G′′(πt) = −λ p η1A(πt, η1)− λ q η2A(1− πt, η2), (5.8.7)

where

A(π, η) = πη−2 (I1 − 2I2 + I3) ,

I1 =
1

η πη
,

I2 =
1

πη−1
J(π, η + 1),

I3 =
(a
π

)η+2

H(η + 1, a),

where

J(π, η + 1) =
1

βη
− a J(π, η),
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and for 0 < η < 1,

J(π, η) =
1

π
aη B(1− η, η) [1− F (a; 1− η, η)] ,

and

H(η+1, a) =
1

η aη
−B(1−η, η)[1−F (a; 1−η, η)]−B(1−η, 1+η)[1−F (a; 1−η, η+1)],

(5.8.8)

where F (x;u, v) is the cumulative distribution function of a Beta random variable

with parameters u and v, and B(u, v) is the corresponding Beta function.

5.9 Polymonial Approximation of G(α)–Kou Model

We now use the Mjs to approximate the function G, and hence G′, by a truncated

Taylor series which is controlled by η1, the inverse of the average upward log jump

amplitude. Since η1 →∞, as E(Xu) ↓ 0, then the smaller the average upward jump

size, the better the approximation of G. We have the following result.

Theorem 5.11. Let η1 > 1, be the inverse of the average upward jump amplitude. If

k ≤ η1 then G(·) has a k-th degree polynomial approximation Gk(·) given by:

Gk(α) =
k∑
j=1

(−1)j−1Mj

j
αj, α ∈ [0, 1], (5.9.1)

where Mj is given by Lemma 5.3 with

G′k(α) =
k∑
j=1

(−1)j−1Mjα
j−1 and G′′k(α) =

k∑
j=2

(−1)j−1(j − 1)Mjα
j−2. (5.9.2)

Proof. By Lemma 5.3, Mj exists for all j ≤ k = [η1]. The result then follows from

Theorem 5.1.3.
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Remark 5.8. Since Mj is the main ingredient required for an approximation of G(α),

it follows that when η1 is large, we get a better approximation. In particular, if η1 ∈

(2, 3) we have quadratic approximation of G; η1 ∈ (3, 4) leads to cubic approximation,

while η1 ∈ (k, k + 1) leads to a k-th degree polynomial approximation of G(α).

Theorem 5.12. An approximation π
(1)
t of the optimal portfolio πt always exists for

the Kou market. It is given by:

π
(1)
t =

µt − rt +M1

σ2
t

=
bt − rt
σ2
t

, (5.9.3)

where b = µ + M1 is the total stock appreciation rate, and r is the risk-free interest

rate.

Proof. Since η1 > 1, then M1 always exists, and we approximate G(·) by a linear

function G1(α) = M1α. Thus G′1(α) = M1, and the result follows from Theorem

5.6.

Remark 5.9. Note that, in this case M1

σ2
t

is the excess optimal stock holdings required

over the Merton [36] (GBM) case, with dynamic dSt
St

= µtdt+ σtdBt.

We give particular values of π
(k)
t when η1 falls in the interval (k, k + 1), where k is a

positive integer.

Theorem 5.13. Let π be the optmial portfolio that maximizes the expected logarithmic

utility from terminal wealth in the Kou market. Let η1 > 1 and bt = µt + M1 be the

total stock appreciation rate and rt is the risk-free interest rate.

(1) If η1 ∈ (2, 3], we have quadratic approximation of π given by

π
(2)
t =

µt − rt +M1

σ2
t +M2

=
bt − rt
σ2
t +M2

. (5.9.4)
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(2) If η1 ∈ (3, 4], we have cubic approximation of π given by

π
(3)
t = π± =

(σ2
t +M2)±

√
(σ2

t +M2)2 − 4M3(bt − rt)
2M3

, (5.9.5)

where

π
(3)
t =



π−, if M3 < 0 or bt − rt > 0 ,

π+, if M3 > 0 and bt − rt < 0,

σ2
t+M2

M3
, if M3 > 0 and bt − rt = 0,

0, if M3 < 0 and bt − rt = 0,

with π
(3)
t = π

(2)
t if M3 = 0. If M3 > 0 and bt − rt > 0 then at most one of π± is in

[0, 1] and π
(3)
t is 0, 1 or this value.

Proof. (1) If η1 ∈ (2, 3] then 2 < η1, whence M2 exists. By Theorem 5.1, G(α) can

be approximated by G2(α) = M1α − 1
2
M2α

2, where α ∈ [0, 1]. By Theorem 5.6, π

can be aproximated by π(2), where

π
(2)
t =

µt − rt +G′k(π
(2)
t )

σ2
t

=
µt − rt +M1 −M2π

(2)
t

σ2
t

,

which yields (5.9.4).

(2) If η1 ∈ (3, 4], then the average upward jump amplitude is at most 33.3%. Since

3 < η1, then M3 exists and by Theorem 5.1, we may approximate G(α) by the

3rd degree polynomial G3(α) = M1α − 1
2
M2α

2 + 1
3
M3α

3. By Theorem 5.6, π has

approximation

π
(3)
t =

µt − rt +M1 −M2π
(3)
t +M3(π

(3)
t )2

σ2
t

,

whence

µt − rt +M1 − (σ2
t +M2)π

(3)
t +M3(π

(3)
t )2 = 0,

and so, (5.9.5) holds.

164



We generalize the last result and Theorem 5.6 as follows:

Theorem 5.14. Let π be the optimal portfolio that maximizes the expected logarithmic

utility from terminal wealth in the Kou market. Let η1 be the inverse of the average

upward log jump amplitude, r the risk-free interest rate, and µ the continuous component

of total stock returns. Let k = [η1]. There exists a k-th degree polynomial Gk(·) such

that π(k), the k-th degree approximation of π, is the unique root of the the equation

π =
µ− r
σ2

+
1

σ2

(
k∑
j=1

(−1)j−1Mjπ
j−1

)
(5.9.6)

provided G′′k(·) 6= σ2.

Proof. If k = [η1] then η1 ∈ [k, k + 1), and k ≤ η1. Thus Mk exists, and by

Theorem 5.6, π has k-th degree approximation:

π(k) =
µ− r +

(∑k
j=1(−1)j−1Mj(π

(k))j−1
)

σ2
,

=
µ− r
σ2

+
1

σ2

(
k∑
j=1

(−1)j−1Mj(π
(k))j−1

)
.

We now give explicit relationships between the optimal portfolios in the asymmetric

setting, to that of the symmetric setting for the Kou market.

Theorem 5.15. Let π be the optimal portfolio that maximizes the expected logarithmic

utililty from terminal wealth in the symmetric Kou market with parameters r, µ, σ, λ,

p, q, η1, η2. Assume that k ≤ [η1] and that π
(k)
t is the approximation of π based on

the k-th degree polynomial approximation Gk, of G. Let πi be the optimal portfolio

for the i-th investor, i ∈ {0, 1}. Then for each t ∈ [0, T ], there exists η
(i, k)
t between

π and π
(k)
t such that

πit = πt + vi
σt

σ2
t + |G′′(η(i)

t )|
, (5.9.7)
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where ηi lies between π and πi, with approximation given by

πit ≈ π
(k)
t + vit

σt

σ2
t + |G′′(η(i,k)

t )|
. (5.9.8)

Under quadratic approximation of G,

πit ≈ π
(2)
t + vit

σt

σ2
t + 2λ

[
q

(η2+2)(η2+1)
+ p

(η1−2)(η1−1)

] . (5.9.9)

Proof. The result follows from Theorem 3.20 with πt replaced by π
(k)
t . Under quadratic

approximation, G′′(π) = −M2, which is explicitly given in Lemma 5.3.

5.10 Diffusion Market Driven by a Variance

Gamma Process

Let XV G ≡ (Xt)t≥0 be a Variance Gamma process with Lévy triple (γ, 0, vV G), where

γ =
∫ 1

−1
xvV G(x)dx. We assume that XV G has parameters, C , G, M , and Lévy

measure

v(x) ≡ vV G(x) =
C exp (−G |x|)

|x|
I{x<0} +

C exp (−M x)

x
I{x>0}, (5.10.1)

where C > 0, G > 0, M > 0, G ≥M .

5.10.1 The Symmetric VG Market

This market consists of a single bond B that earns risk–free interest rt with price

dynamic giveb by (3.1.1). There is also a single risky asset S called stock, with log
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returns dynamic:

d(logSt) = (µt −
1

2
σ2
t ) dt+ σt dBt + dXV G

t , (5.10.2)

which is equivalent to the percentage returns dynamic:

dSt
St

= µt dt+ σt dBt +

∫
R

(ex − 1)N(dt, dx), (5.10.3)

XV G
t =

∫
R

xN(t, dx), (5.10.4)

where N(t, A) is the Poisson Random measure on R+× (R−{0}), A ∈ B(R−{0}),

that counts the jumps of XV G in (0, t), t ∈ [0, T ], T > 0. The total returns on the

stock is; bt = µt +M1 ≡ µt +
∫
R

(ex− 1) v(x)dx. The VG process is a pure jump Lévy

process with an infinite arrival rate of small jumps, (
∫
R
v(x)dx = ∞) and having

paths of finite variation (
∫ 1

−1
|x|v(x)dx <∞).

5.10.2 The Centralized Moments of Instantaneous

Returns for the VG Market

Definition 5.5. The k-th centralized moment of instantaneous returns for the VG

market is Mk, with kernel Ks, define by the prescriptions:

Mk =

∫
R

(ex − 1)kvV G(x)dx and Ks =

∫
R

(esx − 1)vV G(x)dx. (5.10.5)

The following result helps with future computations.

Lemma 5.4. Let u, v > 0. Then

∫ ∞
0+

(e−ux − e−vx)dx
x

= ln
(v
u

)
. (5.10.6)
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Proof. Fix v > u > 0 and t > 0.

∫ ∞
0+

(e−ux − e−vx)dx
x

=

∫ ∞
0+

∫ v

u

d(e−t x)
dx

x
=

∫ ∞
0+

[∫ v

u

−xe−t xdt
]
dx

x

= −
∫ ∞

0+

[∫ v

u

e−t xdt

]
dx = −

∫ v

u

[∫ ∞
0+

e−t xdx

]
dt

= −
∫ v

u

[
e−t x

−t
|∞0+

]
dt =

∫ v

u

1

t
dt

= ln
(v
u

)
.

We are now able to compute the VG kernel Ks.

Lemma 5.5. Let XV G be a Variance Gamma process with parameters C,G,M . Then

for 0 ≤ s < M ,

Ks = C log

[
GM

(G+ s)(M − s)

]
. (5.10.7)

Proof. Let 0 ≤ s < M . From Lemma 5.4, we get

Ks =

∫
R

(esx − 1)vV G(x)dx

= C

∫ 0−

−∞
(esx − 1)

eGx

−x
dx+ C

∫ ∞
0+

(esx − 1)
e−Mx

x
dx

= C

∫ ∞
0+

(e−sx − 1)
e−Gx

x
dx+ C

∫ ∞
0+

(esx − 1)
e−Mx

x
dx

= C

∫ ∞
0+

(e−(G+s)x − e−Gx + e−(M−s)x − e−Mx)
dx

x
dx

Thus

Ks = C

[
log(

G

G+ s
) + log(

M

M − s
)

]
= C log

[
GM

(G+ s)(M − s)

]
.
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With these explicit values for K1, K2, . . . , K5, in hand, we can now compute the first

five (5) instantaneous centralized moments of returns, M1,M2, . . . ,M5, which are

required for the estimation of the optimal portfolio, π.

Theorem 5.16. Let X be the VG process with parameters C,G,M . Then

M1 = K1 = C log

[
GM

(G+ 1)(M − 1)

]
, if M > 1.

M2 = C log

[
(G+ 1)2(M − 1)2

GM(G+ 2)(M − 2)

]
, if M > 2.

M3 = C log

[
GM(G+ 2)3(M − 2)3

(G+ 3)(M − 3)(G+ 1)3(M − 1)3

]
, if M > 3

M4 = C log

[
(G+ 3)4(M − 3)4(G+ 1)4(M − 1)4

GM(G+ 4)(M − 4)(G+ 2)6(M − 2)6

]
, if M > 4.

M5 = C log

[
GM(G+ 4)5(M − 4)5(G+ 2)10(M − 2)10

(G+ 5)(M − 5)(G+ 3)10(M − 3)10(G+ 1)5(M − 1)5

]
, if M > 5.

Proof. This follows easily from Lemma 5.1.

We now give a general formula for Mk.

Theorem 5.17. Let X be a VG process with parameters C, G, M . Let k ∈ N, with

k < M . Then

Mk = C logAk, (5.10.8)

where

Ak
4
= Πk

j=0 [(G+ j)(M − j)]((−1)(k−j+1)(kj)) . (5.10.9)
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Proof. If M > k then by Lemma 5.1, Ks exist for s = 0, 1, . . . , k, and

Mk = C
k∑
j=1

(−1)k−j
(
k

j

)
log

[
GM

(G+ j)(M − j)

]

= C

k∑
j=1

log

[
GM

(G+ j)(M − j)

]
(−1)k−j

(
k

j

)

= C

k∑
j=1

log [GM ] (−1)k−j
(
k

j

)
+ C

k∑
j=1

log [(G+ j)(M − j)] (−1)k−j+1

(
k

j

)
.

Therefore

Mk = C log[GM ]
∑k
j=1(−1)k−j(kj) + C log(

k∏
j=1

[(G+ j)(M − j)](−1)k−j+1(kj)

= C log[GM ](−1)k+1(kj) + C log(
k∏
j=1

[(G+ j)(M − j)](−1)k−j+1(kj)

= C
k∏
j=0

[(G+ j)(M − j)]((−1)(k−j+1)(kj)) 4= C logAk.

Maximization of Expected Logarithmic Utility from Terminal Wealth in

VG model

Let π be the optimal portfolio that maximizes the expected logarithmic utility from

terminal wealth at time T > 0, with initial wealth x > 0. We now give explicit

formulas for the approximation of π, based on linear, quadratic and cubic approximation

of GV G(π).

Theorem 5.18. Let π be the optimal portfolio that maximizes the expected logarithmic

utililty from terminal wealth in the VG market with parameters r, µ, σ, C, G, M .

Assume that k ≤ [M ], and that π
(k)
t is the approximation of π based on the k–th

degree polynomial approximation, Gk, of G. Let bt = µt + M1 be the total stock

returns, where M1 = K1 = C log
[

GM
(G+1)(M−1)

]
.
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(1) Under linear approximation of G,

π
(1)
t =

µt − rt +M1

σ2
t

=
µt − rt + C log

[
GM

(G+1)(M−1)

]
σ2
t

=
bt − rt
σ2
t

. (5.10.10)

(2) Under quadratic approximation of G,

π
(2)
t =

µt − rt +M1

σ2
t +M2

=
µt − rt + C log

[
GM

(G+1)(M−1)

]
σ2
t + C log

[
(G+1)2(M−1)2

GM(G+2)(M−2)

] =
bt − rt

σ2
t + C log

[
(G+1)2(M−1)2

GM(G+2)(M−2)

] .
(5.10.11)

(3) Under quadratic approximation of G,

π
(3)
t = π± =

(σ2
t +M2)±

√
(σ2

t +M2)2 − 4M3(bt − rt)
2M3

, (5.10.12)

where

π
(3)
t =



π−, if M3 < 0 or bt − rt > 0 ,

π+, if M3 > 0 and bt − rt < 0 ,

σ2
t+M2

M3
, if M3 > 0 and bt − rt = 0,

0, if M3 < 0 and bt − rt = 0,

with π
(3)
t = π

(2)
t if M3 = 0, and

M3 = C log

[
GM(G+ 2)3(M − 2)3

(G+ 3)(M − 3)(G+ 1)3(M − 1)3

]
.

Proof. Mk exists if k ≤ [M ], and are given by Theorem 5.16. The results numbered

1, 2 and 3 follow by imposing these constants onto Theorems ?? and 5.13.

Remark 5.10. For the VG market with parameters C, G, ,M , the approximating

polynomial Gk is controlled by M . The errors ε
(k)
t are controlled by Mk+1 and Mk+2.

Thus we are able to get an actual bound on ε
(k)
t , when k+2 ≤ [M ]. An observation of

the data in Table 1, in Carr, Geman, Madan and Yor [12], shows that the values of
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M range between 25 and 138. Thus polynomials of degree k ∈ [23, 136] may be used

to approximate π, in addition to giving a bound for the absolute error |ε(k)
t |.

We now give explicit relationships between the optimal portfolios in the asymmetric

setting to those of the symmetric case, for the VG market.

Theorem 5.19. Let π be the optimal portfolio that maximizes the expected logarithmic

utililty from terminal wealth in the symmetric VG market with parameters r, µ, σ,

C, G, M . Assume that k ≤ [M ], and that π
(k)
t is the approximation of π based on the

k-th degree polynomial approximation Gk, of G. Let πi be the optimal portfolio for

the i-th investor, i ∈ {0, 1}. Then for each t ∈ [0, T ], there exist η
(i)
t between π and

πi, and η
(i, k)
t between π and π

(k)
t , such that

πit = πt + vit
σt

σ2
t + |G′′(η(i)

t )|
, (5.10.13)

πit ≈ π
(k)
t + vit

σt

σ2
t + |G′′(η(i,k)

t )|
. (5.10.14)

Under quadratic approximation of G,

πit ≈ π
(2)
t + vit

σt

σ2
t + C log

[
(G+1)2(M−1)2

GM(G+2)(M−2)

] . (5.10.15)

Proof. The result follows from Theorem 3.17 with πt replaced by π
(k)
t . Under quadratic

approximation G′′(π) = −M2, which is explicitly given in Theorem 5.17.

5.11 The Jump Diffusion Market Driven by the

Double Poisson Process: Π(1, 2)

The Double Poisson jump diffusion market consist of a single stock S and a bond B

which earns the risk–free interest r and has price (3.1.1). The risky asset (stock) has
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log return dynamic:

d(logSt) = (µt −
1

2
σ2
t ) dt+ σt dBt + dXt, (5.11.1)

where

Xt = αuN
u(t) + αdN

d(t), (5.11.2)

with

αu ∈ (0, log 2), αd = log(2− eαu). (5.11.3)

X is called the Double Poisson Lévy process with parameters αu, αd, λu, λd, where

Nu and Nd are independent Poisson processes with intensities λu and λd, respectively.

In this model, Nu controls the upward jumps, which have log amplitude αu, while

Nd controls the downward jumps, with log amplitude αd. As in the other models,

B is standard Brownian motion; σ and µ − 1
2
σ2, are continuous components of

total volatility and log returns, respectively. We denote a Double Poisson process

by Π(1, 2). In the next section, we generalize this idea to a process driven by m

independent Double Poisson processes, which we denote by Π(m, 2).

The Lévy measure for the Double Poisson process is:

v(dx) ≡ vΠ(1,2)(dx)
4
= λu δαu(dx) + λd δαd(dx), (5.11.4)

where

0 ≤ λd ≤ λu < 1. (5.11.5)

δa(·) is the Dirac measure on B(R−{0}), where δa(A) = 1, if a ∈ A, and 0, otherwise.

Let N(t, A) be the Poisson Random measure that counts the jumps of X in the set

A ∈ B(R− {0}), in the time interval (0, t). Then Xt =
∫
R
xN(t, dx). Applying Itô’s
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change of variable formula to (5.11.1), yields the percentage returns dynamic:

dSt
St

= µt dt+ σt dBt +

∫
R

(ex − 1)N(dt, dx). (5.11.6)

The total returns on the stock is bt = µt +M1, where

M1 =

∫
R

(ex − 1)v(dx) = (λu − λd)(eαu − 1) = (λu − λd)Au, (5.11.7)

and

A ≡ Au = eαu − 1 (5.11.8)

is the upward jump size. Note that since αu ∈ (0, log 2), then

0 < Au < 1. (5.11.9)

5.12 Maximization of Logarithmic Utility from

Terminal Wealth

Because of the relatively simple nature of the Lévy measure for the Double Poisson

process, we are able to explicity compute G(·). The other models do not allow for

this, hence approximation methods are required. We now compute G(α).

G(α) =

∫
R

log(1 + α (ex − 1))vΠ(1,2)(dx)

=

∫
R

log(1 + α (ex − 1))(λu δαu(dx) + λd δαd(dx))

= λu log(1 + α (eαu − 1)) + λd log(1 + α(eαd − 1)) (5.12.1)
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Since αd = log(2− eαu) and Au = eαu − 1, then

G′(α) =
λu(e

αu − 1)

1 + α(eαu − 1)
+

λd(e
αd − 1)

1 + α(eαd − 1)

=
λu(e

αu − 1)

1 + α(eαu − 1)
+

λd(1− eαu)

1 + α(1− eαu)

=
λuAu

1 + αAu
− λdAu

1− αAu
=

λu
a+ α

− λd
a− α

,

and

G′′(α) = − λu
(a+ α)2

− λd
(a− α)2

,

where a is the inverse upward jump size. Explicitly, a ≡ au = 1
Au

with a > 1 and G(α)

is well defined for α ∈ (−a , a). The optimal portfolio π that maximizes logarithmic

utility from terminal wealth for the symmetric Double Poisson market is given by

π = g(π) =
µ− r
σ2

+
1

σ2

[
λu

a+ π
− λd
a− π

]
, (5.12.2)

where π ∈ (−a , a), a > 1, and a = 1
Au

, Au = eαu − 1. We now give an analytic

formula for the optimal portfolio for the symmetric Double Poisson market.

5.12.1 Analytic Solution of Optimal Portfolio

It is easy to show that equation (5.12.2) reduces to the cubic equation (5.12.3), and

the optimal portfolio π, is its unique root, where

π3 + bπ2 + cπ + d = 0 (5.12.3)

and

b = −m = −(µ− r)
σ2

, c = −(λ̃u + λ̃d + a2), d = a(−̃λu − λ̃d +ma), (5.12.4)
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where

λ̃u =
λu
σ2
, λ̃d =

λd
σ2
, a > 1. (5.12.5)

Theorem 5.20. Let σ > 0 and m > 0. The optimal portfolio π that maximizes

logarithmic utility from terminal wealth for the symmetric Double Poisson market is

π = −

(
b+ 3

√
L+I

2
+ 3

√
L−I

2

)
3

, (5.12.6)

where a is the inverse average upward jump amplitude; b, c and d are given by (5.12.5)

and

L = 2b3 − 9bc+ 27d. (5.12.7)

K = b2 − 3c. (5.12.8)

I =
√
L2 − 4K3. (5.12.9)

Proof. This is the standard unique root of a cubic equation with coefficients 1, b, c

and d,and can be found on the internet.

Remark 5.11. We see that the optimal portfolio is the fixed point of g(.), whence it

may be obtained iteratively by the sequence:

π(n+1) = g(π(n)). (5.12.10)

We will employ this procedure to compute the optimal portfolio. Note also that

equation (5.12.2) is cubic, and can also be easily solve using Newton’s method or

linear iteration.
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Theorem 5.21. Let {πn} be defined recursively by

π(n+1) = g(π(n)), π0 ∈ (−a , a), a =
1

Au
.

If there exists 0 ≤ κ < 1 such that |g′(α)| ≤ κ, then π(n) → π, where π is the optimal

portfolio for the Double Poisson market and g(·) is defined by (5.12.2).

Proof. The optimal portfolio π is given exactly by the equation π = g(π). Let π(n+1) =

g(π(n)), with error en = πn − π. Then there exists αn between π and πn such that

en+1 = πn+1 − π = g(πn)− g(π) = (πn − π)g′(αn) = eng
′(αn)

Thus, |en+1| ≤ |en|κ and so |en| ≤ κn−1 → 0 as n→∞. Therefore en = πn− π → 0,

whence πn → π.

We now examine the instantaneous centralized moments for this market.

5.12.2 The Centralized Moments of Instantaneous Returns

for the Double Poisson Market

The k-th instantaneous centralized moment of returns is given by:

Mk =

∫
R

(ex − 1)kvΠ(1,2)(dx).

Lemma 5.6. Let k ∈ N and Mk be the k-th instantaneous centralized moment of

returns for a stock in the Double Poisson market, with parameters λu, λd, αu. Let

Au = eαu − 1 be the upward jump size. Then

Mk = (λu + (−1)kλd)A
k
u. (5.12.11)
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In particular,

M2k = (λu + λd)A
2k
u , (5.12.12)

M2k−1 = (λu − λd)A2k−1
u . (5.12.13)

Proof. Let k ∈ N. Since αd = log(2− eαu), we have

Mk =

∫
R

(ex − 1)kvΠ(1,2)(dx) =

∫
R

(ex − 1)k(λu δαu(dx) + λd δαd(dx))

= λu (eαu − 1)k + λd (eαd − 1)k = λu (eαu − 1)k + λd (1− eαu)k

= (λu + (−1)kλd)(e
αu − 1)k = (λu + (−1)k λd)A

k
u.

The particular results follow from k being even and odd, respectively.

Remark 5.12. From equation (5.12.13), it is obvious that there is no skewness in

the returns iff λu = λd. However, since M4 = (λu + λd)A
4
u is always positive, there

is always excess Kurtosis, given by:

KURT − 3 =
M4

σ2 +M2

=
(λu + λd)

[(a σ)2 + λu + λd]2
, (5.12.14)

where a = 1
Au

. Note also, that if λu or λd gets very large, there is no excess kurtosis

and we essentially revert to GBM.

Corollary 5.6. Assume that the stock has Double Poisson dynamic. There exists

0 < Au < 1, and a bounded sequence {ak}, such that

Mk = ak A
k. (5.12.15)

Moreover, Mk → 0 as k →∞.

Proof. For each k ∈ N, set ak = (λu+(−1)kλd). Then {ak} is a binary sequence, and
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hence, is bounded. Set A = Au = eαu − 1. From Lemma 5.6, Mk = ak A
k
u = ak A

k.

Since αu ∈ (0, log 2) then 1 < eαu < 2, whence 0 < Au = eαu − 1 < 1. Therefore

|Mk| = |ak|Ak ≤ (λu + λd)A
k → 0,

as k →∞, whereby Mk → 0.

We state without proof the following:

Corollary 5.7. The approximating polynomial Gk(α) =
∑k

j=1(−1)j−1Mj
αj

j
converges

absolutely to G(α) for all α ∈ R.

5.12.3 Optimal Portfolios for Asymmetric Double Poisson

Market

As with the other models, we now give the optimal portfolios for the investors in the

asymmetric Double Poisson market.

Theorem 5.22. Let π be the optimal portfolio that maximizes the expected logarithmic

utililty from terminal wealth in the symmetric Double Poisson market with parameters

r, µ, σ2, λu, λd, αu, αd. Let πi be the optimal portfolio for the i-th investor, where

i ∈ {0, 1}. Then for each t ∈ [0, T ], there exists ηit between π and πi , such that

πit = πt + vit
σt

σ2
t + |G′′(η(i)

t )|
, (5.12.16)

where a = 1
Au

, Au = eαu − 1 and

G′′(α) = −
[

λu
(a+ α)2

+
λd

(a− α)2

]
. (5.12.17)
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Under quadratic approximation of G,

πit ≈ πt + vit
σt

[σ2
t + (λu + λd)A2

u]
, (5.12.18)

where Au is the upward jump size and the vis are defined as in Chapter 3.

Proof. The result follows from Theorem 3.17. Under quadratic approximation,

G′′(π) = −M2 = −(λu + λd)A
2
u, which is explicitly given in Lemma 5.6.

5.13 The m-Double Poisson Jump Diffusion

Market: Π(m, 2)

The m-Double Poisson jump diffusion market consist of a single stock S and a bond

B, which earns the risk–free interest r and having price given by (ref3.0). The risky

asset (stock) has log return dynamic:

d(logSt) = (µt −
1

2
σ2
t )dt+ σtdBt + dXt, (5.13.1)

where

Xt =
m∑
i=1

αui N
ui(t) + αdi N

di(t), (5.13.2)

with

αui ∈ (0, log 2), αdi = log(2− eαui ), i = 1, 2, · · · ,m. (5.13.3)

X is called the m-Double Poisson Lévy process with parameters αui , αdi , λui , λdi ,

where Nui , and Ndi are independent Poisson processes with intensities λui and λdi

respectively, with

0 < λdi ≤ λui < 1. (5.13.4)
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In this model, Nui controls the upward jumps, which have log amplitude αui ∈

(0, log 2), while Ndi controls the downward jumps, with log amplitude αdi . As in

the other models, B is standard Brownian motion; σ and µ − 1
2
σ2, are continuous

components of total volatility and log returns, respectively. We denote a m-Double

Poisson process by Π(m, 2), with Π(1, 2) denoting the Double Poisson.

The Intensities of Π(m, 2)

We expect smaller jumps to occur more frequently that larger jumps. In addition,

we expect upward jumps to occur more frequently than downward jumps (large

downward jumps represent market crashes, etc). Consequently, we have the following

restrictions on this model:

1 > λu1 > λu2 >, . . . , > λum > 0. (5.13.5)

0 < λd1 < λd2 <, . . . , < λdm < 1. (5.13.6)

λd1 ≤ λu1 , λd2 ≤ λu2 , . . . , λdm ≤ λum . (5.13.7)

The requirement that 0 < λdi ≤ λui < 1, ensures that the Poisson processes do

not interrupt the continuous Geometric Brownian Motion component of the stock’s

trajectory too often. Indeed, we expect λui ≤ 1
10

and λdi ≤ 1
20

. The greater the

amplitude of the jump, the lower its frequency.

The Lévy Measure of Π(m, 2)

The Lévy measure for the Double Poisson process

X i
t = αui N

ui(t) + αdi N
di(t), (5.13.8)
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is

vi(dx) = λui δλui (dx) + λdi δλdi (dx), i = 1, 2, · · · ,m, (5.13.9)

where δ(·) is the Dirac measure on B(R−{0}). It follows easily that the Lévy measure

for the m-Double Poisson process: Xt =
∑m

i=1 αui N
ui(t) + αdi N

di(t), is

v(dx) ≡ vΠ(m,2)(dx)
4
=

m∑
i=1

vi(dx) =
m∑
i=1

λui δλui (dx) + λdi δλdi (dx). (5.13.10)

Let N(t, A) be the Poisson random measure on R+×(R−{0}) that counts the jumps

of X in the time interval (0, t). Then we can express X and its Lévy measure v,

respectively, as Xt =
∫
R
xN(t, dx) and v(dx) = E[N(1, dx)]. The first instantaneous

centralized moment of returns is

M1 =

∫
R

(ex − 1) v(dx) =
m∑
i=1

∫
R

(ex − 1)vi(dx) =
m∑
i=1

M1(i),

where M1(i), the first instantaneous centralized return of the i-th double, is given by

M1(i) =

∫
R

(ex − 1)vi(dx) =

∫
R

(ex − 1)(λuiδλui (dx) + λdiδλdi (dx))

= λui(e
αui − 1) + λdi(e

αdi − 1) = λuiAi − λdiAi = (λui − λdi)Ai,

where the upward jump size of the i-th double component is Ai = eαui − 1. Thus

M1 =
m∑
i=1

(λui − λdi)Ai. (5.13.11)

By applying Itô’s change of variable formula to the log returns dynamic (5.13.1), we

get the percentage returns dynamic:

dSt
St

= µtdt+ σtdBt +

∫
R

(ex − 1)N(dt, dx). (5.13.12)
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The total returns on the stock is

bt = µt +M1 = µt +
m∑
i=1

(λui − λdi)Ai, (5.13.13)

which is the sum of the continuous and expected returns from each of the jump

doubles.

The G(·) Function for the Π(m, 2) model.

We can easily compute the G function because of the relatively simple nature of the

Lévy measure.

Theorem 5.23. Let v ≡ vΠ(m, 2) be the Lévy measure for the m–Double Poisson

market. There exists a > 1, such that for all α ∈ (−a , a),

G(α) = log
[
Πm
i=1(1 + αAi)

λui (1− αAi)λdi
]
, (5.13.14)

where 0 < Ai < 1, 1
ai

= Ai = eαui − 1, and a = mini=1,...,m{ai} > 1.

Proof. Set Ai = eαui − 1 and ai = 1
Ai

for each i = 1, . . . ,m.

G(α) =

∫
R

log(1 + α(ex − 1))v(dx)

=
m∑
i=1

∫
R

log(1 + α(ex − 1))vi(dx)
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=
m∑
i=1

[λui log(1 + α(eαui − 1)) + λdi log(1 + α(eαdi − 1))]

=
m∑
i=1

[λui log(1 + α(eαui − 1)) + λdi log(1− α(eαui − 1))]

=
m∑
i=1

[λui log(1 + αAi) + λdi log(1− αAi)]

=
m∑
i=1

log
[
(1 + αAi)

λui (1− αAi)λdi
]
,

whence, provided the product exists,

G(α) = log
[
Πm
i=1(1 + αAi)

λui (1− αAi)λdi
]
. (5.13.15)

Clearly G(α) exists, if for each i = 1, . . . ,m, 1 + αAi > 0, 1 − αAi > 0, which is

equivalent to a1 +α > 0, ai−α > 0. Thus α ∈ (−ai , ai) and ai > 1, since 0 < Ai < 1.

Now take a
4
= mini=1,...,m{ai}. Then a > 1 and G(α) exists for all α ∈ (−a , a).

Remark 5.13. This model allows for borrowing (π > 1) and short selling (π < 0),

since G(π) exists in (−a , a), where a > 1.

5.14 Maximizing of Utility from Terminal Wealth

Let π be the optimal portfolio that maximizes the expected logarithmic utility from

terminal wealth at time T > 0, with x > 0 in initial investment. Unlike most of the

other models considered in this dissertation, we will allow for the possibility of short–

selling (π < 0) by borrowing stocks, selling them, and investing the proceeds in the

bank account. We also allow for the possibility of borrowing money at the risk–free

interest rate, to buy stocks (π > 1). The relaxing of the assumption π ∈ [0, 1], is

possible for this, and hence, the Double Poisson model, because G(α) exists in the

interval (−a , a) ⊃ (−1 , 1). The optimal portfolio for the symmetric market follows.
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Theorem 5.24. Let the stock be driven by a symmetric m-Double Poisson market

with parameters m, µ, r, σ2, λui , λdi , αui , αdi , where i = 1, 2, · · · ,m. The optimal

portfolio π can be solved by Newtons method using (5.5.2)–(5.5.4) or recursively from

the equation

π =
µ− r
σ2

+
m∑
i=1

(
λ̃ui

ai + π
+

λ̃di
ai − π

)
(5.14.1)

using (5.5.18)–(5.5.19), where

G′(α) = σ2

m∑
i=1

[
λ̃ui

ai + α
+

λ̃di
ai − α

]
(5.14.2)

and

G′′(α) = −σ2

m∑
i=1

[
λ̃ui

(ai + α)2
+

λ̃di
(ai − α)2

]
. (5.14.3)

Proof. By Theorem 3.8, the optimal portfolio is given by

π =
µ− r
σ2

+
G′(π)

σ2
,

provided G′(π) exists. Since G(α) exists for all α ∈ (−a, a), where a = min{ai}, then

G(α) exists within said interval. From the proof of Theorem 5.23, we have

G(α) =
m∑
i=1

[λui log(1 + αAi) + λdi log(1− αAi)] ,

whence

G′(α) =
m∑
i=1

[
λuiAi

1 + αAi
+

λdiAi
1− αAi

]
=

m∑
i=1

[
λui

1
Ai

+ α
+

λdi
1
Ai
− α

]
,

which yields

G′(α)

σ2
=

m∑
i=1

[
λui
σ2

ai + α
+

λdi
σ2

ai − α

]
=

m∑
i=1

[
λ̃ui

ai + α
+

λ̃di
ai − α

]
,
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and

G′′(α)

σ2
= −

m∑
i=1

[
λ̃ui

(ai + α)2
+

λ̃di
(ai − α)2

]
.

Thus

π =
µ− r
σ2

+
m∑
i=1

(
λ̃ui

ai + π
+

λ̃di
ai − π

)
4
= g(m)(π) ≡ g(π), (5.14.4)

provided π ∈ (−a , a).

We give an equivalent form of Theorem 5.24 as follows. For each i = 1, 2, . . . ,m,

define functions:

g, gi : (−a , a)→ R,

by the prescription

gi(α) =
λ̃ui

ai + α
+

λ̃di
ai − α

, (5.14.5)

g(α) = πMer +
m∑
i=1

gi(α), (5.14.6)

πMer =
µ− r
σ2

. (5.14.7)

As in the case of the Double Poisson market, this sequence will converge if |g′(α)| < 1,

for all α ∈ (−a, a). We have an analogous result for the m–Double Poisson market.

Theorem 5.25. Let π be the optimal portfolio for the m–Double Poisson market.

The sequence {πn}, defined by

πn+1 = g(πn), π0 = πMer

converges to π, if g′(α) > −1 for all α ∈ (−a , a).

Proof. Convergence is assured if −1 < g′(α) < 1. From equation (5.14.4), we have
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for all α ∈ (−a , a), where a = min{ai}, that

g′(α) =
G′′(α)

σ2

=
d

dα

(
m∑
i=1

[
λ̃ui

ai + α
+

λ̃di
ai − α

])

= −
m∑
i=1

[
λ̃ui

(ai + α)2
+

λ̃di
(ai − α)2

]
, (5.14.8)

which is striclty negative. Thus for all α ∈ (−a, a),

g′(α) < 0.

This reduces the convergence condtion to g′(α) > −1.

We have the following corollary which give an equivalent condition in terms of the

market parameters.

Corollary 5.8. If
m∑
i=1

[
λ̃ui

(ai + α)2
+

λ̃di
(ai − α)2

]
< 1, (5.14.9)

for all α ∈ (−a, a), then πn → π as n→∞.

Proof. This follows directly from equation (5.14.8) and the fact that g′(α) > −1.

If no short–selling or borrowing from the bank account is allowed, then α is restricted

to the interval [0, 1], and so if

max
α∈[0,1]

m∑
i=1

[
λ̃ui

(ai + α)2
+

λ̃di
(ai − α)2

]
< 1, (5.14.10)

we get convergence. This leads to the following:
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Theorem 5.26. Let a = min{ai} and α ∈ [−1 , 1] in the m–Double Poisson market,

then

|g′(α)| < 2mλu1

σ2(a− 1)2
. (5.14.11)

Moreover, if λu1 <
σ2 (a−1)2

2m
then πn → π, as n→∞.

Equivalently, if λu1 <
σ2 (1−A)2

2mA2 , we have convergence, where A = 1
a
.

Proof. Assume that α ∈ [0, 1]. Then ai ≥ a, where a = min{ai}. Let

gi(α) =
λ̃ui

ai + α
− λ̃di
ai − α

.

Then

|g′i(α)| = λ̃ui
(ai + α)2

+
λ̃di

(ai − α)2
≤ λ̃ui

a2
i

+
λ̃di

(ai − α)2
≤ λ̃ui

a2
+

λ̃di
(a− α)2

≤ λ̃ui
(a− 1)2

+
λ̃di

(a− 1)2
≤ 2λ̃ui

(a− 1)2
≤ 2λ̃u1

(a− 1)2
.

Thus

|g′(α)| = |
m∑
i=1

g′i(α)| ≤
m∑
i=1

|g′i(α)| ≤
m∑
i=1

2λ̃u1

(a− 1)2
=

2mλ̃u1

(a− 1)2

By symmetry, if α ∈ [−1, 0], then −α ∈ [0, 1], and by replacing α by −α, we get

|g′(α)| =
m∑
i=1

λ̃ui
(ai − α)2

+
λ̃di

(ai + α)2
≤ 2λ̃u1

(a− 1)2
.

Therefore, if α ∈ [−1, 1]

|g′(α)| < 2mλu1

σ2(a− 1)2
.

Convergence of the sequence is assured if |g′(α)| < 1, for all α ∈ [−1, 1]. This obtains,

if

2mλu1

σ2(a− 1)2
< 1.
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That is, if λu1 <
σ2(a−1)2

2m
.

Theorem 5.26 tells us that to ensure convergence in [−1, 1], we must select the largest

intensity to satisfy the condition

λu1 <
σ2(a− 1)2

2m
=
σ2(1− A)2

2mA2
,

which shows that λui → 0 as m → ∞, and consequently λdi → 0. This proves that

when m→∞ we revert to GBM.

Note also, that to ensure convergence, the intensities λui , of upward jumps must all

satisfy the condition

λui <
σ2(a− 1)2

2m
.

Since λu1 < 1, to calibrate our model we can choose m such that 2m > σ2(a − 1)2.

Likewise, for fixed m, the volatility σ2, must obey the condition σ2 < 2m
(a−1)2

.

5.15 Instantaneous Centralized Moments of

Returns for the Π(m, 2) Market

The k–th instantaneous centralized moment of returns for the m–Double Poisson

market is

M
(m)
k ≡Mk =

∫
R

(ex − 1)kvΠ(m,2)(dx). (5.15.1)

We have the following result.

Theorem 5.27. Let Mk be the k–th instantaneous centralized moment of returns for

any Lévy market with dynamic (5.1.2). The total instantaneous variance at time

t ∈ [0, T ] is

V AR = σ2
t +M2. (5.15.2)
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Moreover, the Skewness and excess Kurtosis of the instantaneous returns at time t

are respectively:

SKEW =
M3

(σ2
t +M2)

3
2

. (5.15.3)

KURT − 3 =
M4

(σ2
t +M2)2

. (5.15.4)

Proof. The results follow from the variance of dSt
St

, which is given in Chapter 2, as

σ2
t +M2.

Remark 5.14.

Note that when dSt
St

is driven only by Brownian motion with drift, it has zero skewness

and a Kurtosis of 3. Therefore skewness and excess kurtosis in the model comes

only from the jump component. This result is general and applies to any model with

diffusive and jump components.

We now give the Mks in terms of market parameters.

Theorem 5.28. Let M
(m)
k ≡Mk be the k–th centralized moment of the instantaneous

returns for a stock in a m–Double Poisson market with parameters m, µ, r, σ2, λui ,

λdi , αui , αdi, where i = 1, 2, . . . ,m. Then

Mk =
m∑
i=1

Mk(i),

Mk(i) = (λui + (−1)kλdi)A
k
i . (5.15.5)

where Ai is the upward jump size in the i–th interval, or the i-th jump size.

Proof. Set Ai = eαui − 1. Then

Mk(i) =

∫
R

(ex − 1)k(λuiδλui (dx) + λdiδλdi (dx)) = λui(e
αui − 1)k + λdi(e

αdi − 1)k

= λui(e
αui − 1)k + λdi(1− eαui )k = (λui + (−1)kλdi)A

k
i .
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Since vΠ(m,2)(dx) =
∑m

i=1 vi(dx), then

Mk =

∫
R

(ex − 1)kvΠ(m,2)(dx) =

∫
R

(ex − 1)k(
m∑
i=1

vi(dx))

=

∫
R

m∑
i=1

(ex − 1)kvi(dx) =
m∑
i=1

∫
R

(ex − 1)kvi(dx) =
m∑
i=1

Mk(i).

A direct consequence of the last result is:

Corollary 5.9. Let M
(m)
k ≡Mk be the k–th centralized moment of the instantaneous

returns for a stock in a m–Double Poisson market with parameters m, µ, r, σ2,

λui , λdi , αui , αdi where i = 1, 2, . . . ,m. Then

M2k =
m∑
i=1

(λui + λdi)A
2k
i , (5.15.6)

M2k+1 =
m∑
i=1

(λui − λdi)A2k+1
i , (5.15.7)

where Ai is the upward jump size in the i–th interval, or the i-th jump size. Moreover,

the Variance, Skewness, and Excess Kurtosis of the instantaneous returns dSt
St

, are

respectively

V ARIANCE = σ2
t +

m∑
i=1

λ+
i A

2
i , (5.15.8)

SKEWNESS =

∑m
i=1 λ

−
i A

3
i

(σ2
t +

∑m
i=1 λ

+
i A

2
i )

3
2

, (5.15.9)

KURT − 3 =

∑m
i=1 λ

+
i A

4
i

(σ2
t +

∑m
i=1 λ

+
i A

2
i )

2
, (5.15.10)

where

λ+
i

4
= λui + λdi , c and λ−i

4
= λui − λdi . (5.15.11)

Remark 5.15.

Observe from (5.15.9) that since λui ≥ λdi, then we always have zero or positive
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skewness. In fact, if λui > λdi for some i ≤ m, we have positive skewness, and the

returns are skewed to the right. This leads to

Theorem 5.29. The m–Double Poisson market has stock returns that always have

excess kurtosis, and are either symmetrically distributed or positively skewed. Further,

as m→∞, skewness and kurtosis go to zero iff
∑m

i=1 λuiA
2
i →∞.

Proof. Fix m ∈ N. Then λui ≥ λdi and 0 < Ai < 1 for each i ≤ m. It follows

immediately from (5.15.9), that Skewness > 0, unless λui = λdi , in which case,

Skewness = 0. Likewise from (5.15.10) λui + λdi > 0 implies that KURT − 3 > 0.

With λ±i = λui ± λdi , assume that

m∑
i=1

λuiA
2
i −→∞.

Then

SKEW =

∑m
i=1 λ

−
i A

3
i

(σ2
t +

∑m
i=1 λ

+
i A

2
i )

3
2

≤
∑m

i=1 λ
−
i A

2
i

V AR
3
2

≤
∑m

i=1 λ
+
i A

2
i

V AR
3
2

≤ (σ2 +
∑m

i=1 λ
−
i A

2
i )

V AR
3
2

=
V AR

V AR
3
2

=
1

V AR
1
2

=
1

(σ2
t +

∑m
i=1 λ

+
i A

2
i )

1
2

=
1√∑m

i=1 λ
+
i A

2
i

=
1√∑m

i=1 λuiA
2
i

−→ 0

By equation(5.15.10),

KURT − 3 =

∑m
i=1 λ

+
i A

4
i

(σ2
t +

∑m
i=1 λ

+
i A

2
i )

2)
<

∑m
i=1 λ

+
i A

2
i

V AR2
<
σ2 +

∑m
i=1 λ

+
i A

2
i

V AR2

=
V AR

V AR2
=

1

V AR
=

1

σ2
t +

∑m
i=1 λ

+
i A

2
i

<
1∑m

i=1 λ
+
i A

2
i

≤ 1∑m
i=1 λuiA

2
i

−→ 0.

Conversely, suppose SKEW → 0, and let 0 <
∑∞

i=1 λuiA
2
i <∞. Then since
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λui ≤ λdi , we have
∑∞

i=1 λ
+
i A

2
i <∞. Therefore, V AR <∞. Since

SKEW =

∑m
i=1 λ

−
i A

3
i

(σ2
t +

∑m
i=1 λ

+
i A

2
i )

3
2

=

∑m
i=1 λ

−
i A

3
i

V AR
3
2

,

then as m −→∞,
m∑
i=1

λ−i A
3
i = V AR

3
2SKEW −→ 0.

Since λ−i A
3
i ≥ 0, then λ−i A

3
i = 0 for all i. But Ai 6= 0. Thus λui = λdi , for all i.

Consequently, SKEW = 0 for each m. But since SKEW 6= 0 for at lease one m, we

have a contradiction. Thus
m∑
i=1

λuiA
2
i −→∞.

Similarly, if 0 <
∑∞

i=1 λuiA
2
i <∞, and KURT − 3 −→ 0, then V AR <∞. Thus

m∑
i=1

λ+
i A

4
i = (KURT − 3)(V AR)2 −→ 0.

Therefore, λ+
i A

4
i = 0 for all i, whence λui = λdi = 0, since Ai 6= 0. Therefore∑∞

i=1 λuiA
2
i = 0, which contradicts

∑∞
i=1 λuiA

2
i > 0. Thus

∑m
i=1 λuiA

2
i −→∞.

Theorem 5.30. For the m–Double Poisson market with parameters

m, µ, r, σ2, λui , λdi , αui , αdi, where i = 1, 2, . . . ,m, there exists a > 1 such that

Mk ≤
2mλu1

ak
≤ 2m

ak
. (5.15.12)

Moreover, as k −→∞

Mk −→ 0. (5.15.13)
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Proof. From Theorem 5.28, Ai ∈ (0, 1) and

Mk =
m∑
i=0

(λui + (−1)kλdi)A
k
i .

Thus

|Mk| ≤
m∑
i=0

(λui + λdi)A
k
i ≤

m∑
i=0

2λuiA
k
i ≤ 2λu1

m∑
i=1

Aki .

But Ai = 1
ai

, where a = min{ai}. Thus Ai = 1
ai
≤ 1

a
, for all i = 1, 2, . . . ,m.. Hence

|Mk| < 2λu1

m∑
i=1

1

ak
=

2mλu1

ak
,

from which Mk −→ 0 when k −→∞.

Remark 5.16. Since 1 > λui ≥ λdi, we see that λui + (−1)kλdi ≥ 0. Thus for each

k ≤ m,

0 ≤Mk <
2m

ak
.

However, if we relax the condition that λui ≥ λdi then (5.15.12) still holds.

Optimal Portfolios for Asymmetric m–Double Poisson Market.

We now give the relation between the symmetric and asymmeric optimal portfolios.

As with the other models, we give the optimal portfolios for the investors in the

asymmetric Doule Poisson market.

Theorem 5.31. Let π be the optimal portfolio that maximizes the expected logarithmic

utililty from terminal wealth in the symmetric Double Poisson market with parameters

m, µ, r, σ2, λui , λdi , αui , αdi, where i = 1, 2, . . . ,m. Let πi be the optimal portfolio

for the i-th investor, i ∈ {0, 1}. Then for each t ∈ [0, T ] there exists ηit between π and

πi such that

πit = πt + vit
σt

σ2
t + |G′′(η(i)

t )|
, (5.15.14)
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where ai = 1
Ai

, Ai = eαui − 1 and

G′′(α) = −
m∑
i=1

[
λui

(ai + α)2
+

λdi
(ai − α)2

]
.

Under quadratic approximation of G,

πit ≈ πt + vit
σt

[σ2
t +

∑m
i=0(λui + λdi)A

2
i ]
, (5.15.15)

where Ai is the i–th upward jump size, and the vis are defined as in Chapter 3.

Proof. The result follows from Theorem 3.17. Under quadratic approximationG′′(π) =

−M2 = −
∑m

i=0(λui + λdi)A
2
i , which is explicitly given in Corollary 5.9.

Example 5.1 (Optimal Portfolio of Symmetric 4–Double Poisson Market).

Input parameters: m, µ, r, σ2, λui , λdi , αui , αdi, where i = 1, 2, . . . , 4

Set m = 4.

πMer = µ−r
σ2 .

λ̃ui =
λui
σ2 , λ̃di =

λdi
σ2 .

Ai = eλui − 1.

ai = 1
Ai
, a = min{ai}.

For π ∈ (−a , a), set

g(π) ≡ g(4)(π) =
4∑
i=1

λ̃ui
ai + α

+
λ̃di

ai − α
.

1. Set error ε = 0.5× 10−d, where d ∈ {4, 5, 6, 7}

2. Set π0 = πMer

3. Generate a sequence {πn} by the prescription πn+1 = g(πn)

4. Stop if |πn+1 − πn| ≤ ε and take optimal to be π ≈ πn+1.

5. Otherwise,set n=n+1, and go to 3.
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Chapter 6

Numerical Approximation of

Optimal Portfolios Using

Quasi-Centralized Moments

In this chapter, we construct two series expansions to approximate the function

G′(π), which is partitioned as the sum of two independent derivatives. Each series

is convergent, and is built from quasi–centralized moments defined on the half–

line which, like the instantaneous centralized moments, are dependents of the Lévy

measure. With this in hand, we then approximate the optimal portfolio and maximum

expected utility from terminal wealth for various models, including the Kou jump–

diffusion, Variance Gamma, CGMY and Generalized Tempered Stable markets.

6.1 Series Expansion of G′(π)

Recall that

G′(π) =

∫
R

ex − 1

1 + π(ex − 1)
v(x)dx (6.1.1)

=

∫ ∞
0

ex − 1

1 + π(ex − 1)
v(dx) +

∫ 0

−∞

ex − 1

1 + π(ex − 1)
v(dx).
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Thus

G′(π) = G′+(π) +G′−(π), (6.1.2)

where

G′±(π)
4
=

∫
R±

ex − 1

1 + π(ex − 1)
v(x)dx. (6.1.3)

6.1.1 Expansion of G′−(π)

G′−(π) =

∫
(−∞, 0)

ex − 1

1 + π(ex − 1)
v(x)dx

Since x ∈ R− = (−∞, 0), then |ex − 1| < 1 , whence |π(ex − 1)| < |π|.

If |π| ≤ 1, then

ex − 1

1 + π(ex − 1)
= (ex − 1)

∞∑
k=0

(−1)kπk(ex − 1)k = −
∞∑
k=0

πk(1− ex)k+1,

whence

G′−(π) =

∫
R−

ex − 1

1 + π(ex − 1)
v(x)dx

= −
∞∑
k=0

πk
∫ 0

−∞
(1− ex)k+1v(dx)nonumber (6.1.4)

= −
∞∑
k=0

πkM−
k+1 (6.1.5)

where the negative quasi–centralized moment is

M−
k

4
=

∫ 0

−∞
(1− ex)kv(dx). (6.1.6)

Remark 6.1. Note that for each k ∈ N, the negative quasi–centralized moment M−
k

is always positive.
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6.1.2 Series Expansion of G′+(π)

G′+(π) =

∫
R+

ex − 1

1 + π(ex − 1)
v(x)dx = −

∫ ∞
0

(1− e−x)v(x)

(e−x + π(1− e−x))
dx. (6.1.7)

Put x = −y and β = 1− π. Then

G′+(π) = −
∫ −∞

0

(1− ey)v(−y)

(ey + π(1− ey))
dy =

∫ −∞
0

(ey − 1)v(−y)

(1 + (1− π)(ey − 1))
dy

=

∫ −∞
0

(ey − 1)v(−y)

(1 + β(ey − 1))
dy =

∫ 0

−∞

(1− ey)v(−y)

(1− β(1− ey))
dy.

Since y ∈ (−∞, 0), then |ey − 1| < 1. If |β| ≤ 1, then

G′+(π) =

∫ 0

−∞

∞∑
k=0

(−1)k(−β)k(1− ey)k+1v(−y)dy

=
∞∑
k=0

βk
∫ 0

−∞
(1− ey)k+1v(−y)dy

=
∞∑
k=0

βkM+
k+1, (6.1.8)

where

M+
k

4
=

∫ 0

−∞
(1− ey)kv(−y)dy. (6.1.9)

By putting y = −x in the last equation, we get

M+
k = −

∫ 0

∞
(1− e−x)kv(x)dx =

∫ ∞
0

(1− e−x)kv(x)dx. (6.1.10)

Definition 6.1 (Quasi-Centralized Moments of Returns).

The Quasi-Centralized Moments of Returns are defined by:

M±
k

4
=

∫
R±

(1− e−|x|)kv±(x)dx, (6.1.11)
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where the Levy density v(·) is explicitly given as:

v(x) =

 v−(x) if x ∈ (−∞, 0) ;

v+(x) if x ∈ (0, ∞).

Note that M±
k are always positive numbers.

Theorem 6.1. Let π ∈ [0, 1]. Then

G′(π) = G′−(π) +G′+(π), (6.1.12)

where

G′−(π) = −
∞∑
k=0

πkM−
k+1, |π| ≤ 1, (6.1.13)

G′+(π) =
∞∑
k=0

(1− π)kM+
k+1, |1− π| ≤ 1. (6.1.14)

Explicitly, for all π ∈ [0, 1]

G′(π) = −
∞∑
k=0

πkM−
k+1 +

∞∑
k=0

(1− π)kM+
k+1. (6.1.15)

6.2 Application to General Models

This section contains the main result which will be applied to general Lévy markets

in the sequel.

Theorem 6.2 (Main).

For each π ∈ [0, 1],

G′(π) =
∞∑
k=0

(1− π)kM+
k+1 −

∞∑
k=0

πkM−
k+1, (6.2.1)
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and

G′′(π) = −
∞∑
k=1

k (1− π)k−1M+
k+1 −

∞∑
k=0

k πk−1M−
k+1, (6.2.2)

where M±
k is given by (6.1.11). The optimal portfolio π that maximizes the logarithmic

utility from terminal wealth for a stock with dynamic (5.1.2): is given by the equation:

σ2 π = µ− r +
∞∑
k=0

(1− π)kM+
k+1 −

∞∑
k=0

πkM−
k+1, (6.2.3)

which is approximated by Newtons method or by recursion from the equation:

σ2 π = µ− r +

m2∑
k=0

(1− π)kM+
k+1 −

m1∑
k=0

πkM−
k+1, (6.2.4)

where m1 and m2 are chosen truncation points.

Proof. Equations (6.2.1) and (6.2.2) follow from Theorem 6.1. A stock with dynamic

(??) has optimal portfolio π given by Theorem 3.8 as σ2π = µ−r+G′(π), which yields

(6.2.3). By truncating the series
∑∞

k=0(1− π)kM+
k+1 and

∑∞
k=0 π

kM−
k+1 respectively,

at the cut-off points m1 and m2 respectively, we get (6.2.4).

We now apply Theorem 6.2 to various models.

6.3 Kou Jump Diffusion Model

In this case the Lévy density is given in terms of the intensity rate λ.

v(x)

λ
= v−(x)I{x<0} + v+(x)I{x>0} (6.3.1)

= fkou(x)

= q η2 e
−η2 |x|I{x<0} + p η1 e

−η1 xI{x>0},
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where η1 ≥ 1, η2 > 0, p+ q = 1, p, q ≥ 0. Changing x to −x, yields:

M−
k =

∫ 0

−∞
(1− ex)kv−(x)dx = λ qη2

∫ 0

−∞
(1− ex)ke−η2|x|dx

= λ qη2

∫ ∞
0

(1− e−x)ke−η2xdx = λ qη2

∫ ∞
0

(ex − 1)ke−(η2+k)xdx.

Setting t = ex − 1, we get

M−
k = λ qη2

∫ ∞
0

tk(t+ 1)−(η2+k+1)dt

= λ qη2B(k + 1, η2). (6.3.2)

Since

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (6.3.3)

we have

B(k + 1, η2) =
Γ(k + 1) Γ(η2)

Γ(k + 1 + η2)
=

k! Γ(η2)

(k + η2) Γ(k + η2)

=
k! Γ(η2)

Πk
j=0(j + η2) Γ(η2)

=
k!

Πk
j=0(j + η2)

.

Similarly, we have from equation (6.1.11) that

M+
k =

∫ ∞
0

(1− e−x)kv+(x)dx = λ p η1

∫ ∞
0

(1− e−x)ke−η1xdx

= λ p η1 B(k + 1, η1) =
λ p k!

Πk
j=0(j + η1)

. (6.3.4)

We now have the following:

Theorem 6.3. For the Kou model with parameters p ≥ 0, q ≥ 0, λ > 0, η1 > 1 and
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η2 ≥ 0,

G′(π) = −λ q η2

∞∑
k=0

πk B(k + 2, η2) + λ p η1

∞∑
k=0

(1− π)k B(k + 2, η1),

and

G′′(π) = −λ q η2

∞∑
k=1

k πk B(k + 2, η2)− λ p η1

∞∑
k=1

k (1− π)k B(k + 2, η1). (6.3.5)

Explicitly,

G′(π) = −λq
∞∑
k=0

πk
k!

Πk
j=0(j + η2)

+ λp
∞∑
k=0

(1− π)k
k!

Πk
j=0(j + η1)

(6.3.6)

and

G′′(π) = −λq
∞∑
k=0

k πk−1 k!

Πk
j=0(j + η2)

− λp
∞∑
k=1

k (1− π)k−1 k!

Πk
j=1(j + η1)

(6.3.7)

Proof. This follows from Theorem 6.1 with M±
k given by (6.1.11).

We now give the optimal portfolio for the Kou model.

Theorem 6.4. The optimal portfolio π for the Kou jump–diffusion market with

parameters r, µ, σ2, λ, p, q, η1 and η2, is given exactly by:

σ2 π = µ− r + λ pη1

∞∑
k=0

(1− π)k B(k + 2, η1)− λ q η2

∞∑
k=0

πk B(k + 2, η2), (6.3.8)

which can be solved by iteration using (5.5.18)–(5.5.19) or by Newton’s method using

(5.5.2)–(5.5.4) where the derivatives are given by Theorem 6.3.

Proof. The optimal portfolio is given by Theorem 3.8 as σ2 π = µ − r + G′(π), on

which we impose Theorem 6.3 to get the result.
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6.4 Kou Approximations by Recursion

We must truncate the infinite series in Theorem 6.4 to obtain approximations of the

optimal portfolio using the simpler recursion method. Choose integers m1 and m2

such that

∞∑
k=0

(1− π)k B(k + 2, η1) ≈
m1∑
k=0

(1− π)k B(k + 2, η1)
4
= S1(π; m1), (6.4.1)

and
∞∑
k=0

πk B(k + 2, η2) ≈
m2∑
k=0

πk B(k + 2, η2)
4
= S2(π; m2). (6.4.2)

Theorem 6.5. The optimal portfolio π for the Kou jump–diffusion market is

approximated recursively by the equation:

σ2 π = µ− r + λ p η1 S1(π; m1)− λ q η2 S2(π; m2). (6.4.3)

Explicitly,

σ2 π = µ− r + λ p η1

m1∑
k=0

(1− π)k B(k + 2, η1)− λ q η2

m2∑
k=0

πk B(k + 2, η2).

Proof. This follows from Theorem 6.4 and equation (6.4.1).

Example 6.1.

Let η1 = η2 = η = 1 and m1 = m2 = m. Then

B(k + 2, η) = B(k + 2, 1) =
Γ(k + 2)Γ(1)

Γ(k + 3)
=

(k + 1)!

(k + 2)!
=

1

k + 2
.
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Thus

G′(π) = λ p
m∑
k=0

(1− π)k

k + 2
− λ q

m∑
k=0

πk

k + 2
= λ

m∑
k=0

p (1− π)k − q πk

k + 2
. (6.4.4)

The approximate optimal portfolio is π where

σ2 π = µ− r + λ
m∑
k=0

p (1− π)k − q πk

k + 2
. (6.4.5)

If p = q = 1
2

and m = 4, then from (6.4.5)

G′(π) ≈ 1

2
λ

4∑
k=0

p (1− π)k − q πk

k + 2

=
1

2
λ

[
1− 2π

3
+

1− 2π

4
+

1− 3π + 3π2 − 2π3

5
+

(1− 2π)(1− 2π + 2π2)

6

]
,

where

σ2 π = µ− r +
1

2
λ

[
7(1− 2π)

13
+

1− 3π + 3π2 − 2π3

5
+

(1− 2π)(1− 2π + 2π2)

6

]

gives the approximate optimal portfolio π which is solved numerically using a recursion

method.

Example 6.2. Let η1 = η2 = η ∈ N, m1 = m2 = m ∈ N, p, q, and λ ≥ 0 be

arbitrary. In this case

B(k + 1, η) =
Γ(k + 1) Γ(η)

Γ(k + 1 + η)
=

(k + 1)! (η − 1)!

(k + 1 + η)!

=
(k + 1)! (η − 1)!

Πk+η
j=0 (k + 1 + η − j)

=
(k + 1)! (η − 1)!

Πη−1
j=0(k + 1 + η − j)(k + 1)!

=
(η − 1)!

Πη−1
j=0(k + 1 + η − j)

. (6.4.6)
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Thus

G′+(π) ≈ λ p η

m∑
k=0

(1− π)k B(k + 2, η) = λ p (η!)
m∑
k=0

(1− π)k

Πη−1
j=0(k + 1 + η − j)

,

and

G′−(π) ≈ −λ q η
m∑
k=0

πk B(k + 2, η) = −λ q (η!)
m∑
k=0

πk

Πη−1
j=0(k + 1 + η − j)

.

Thus

G′(π) = λ (η!)
m∑
k=0

p (1− π)k − q πk

k + 2
,

and the approximate optimal portfolio is given by

σ2 π = µ− r + λ (η!)
m∑
k=0

p (1− π)k − q πk

k + 2
. (6.4.7)

We now consider the most general case.

Example 6.3.

Let η1 6= η2 ∈ N, with truncation points m1 6= m2 ∈ N. Then

G′+(π) ≈ λ p η2

m2∑
k=0

(1− π)k B(k + 2, η2) = λ p (η2!)

m2∑
k=0

(1− π)k

Πη2−1
j=0 (k + 1 + η2 − j)

,

and

G′−(π) ≈ −λ q η1

m1∑
k=0

πk B(k + 2, η1) = −λ q (η1!)

m1∑
k=0

πk

Πη1−1
j=0 (k + 1 + η1 − j)

.

Therefore

G′(π) = λ p (η2!)

m2∑
k=0

Φ(k, η2) (1− π)k − λ q (η1!)

m1∑
k=0

Φ(k, η1) πk, (6.4.8)
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where

Φ(k, η)
4
=

1

Πη−1
j=0(k + 1 + η − j)

=
1

Πη
j=1(k + 2 + η − j)

. (6.4.9)

If m1 = 4, m2 = 2, η1 = 1, η2 = 2, p = 1
4
, q = 3

4
and λ = 1

3
, then

Φ(k, η1) = Φ(k, 1) =
1

k + 2

and

Φ(k, η2) = Φ(k, 2) =
1

(k + 2)(k + 3)
.

Thus

σ2 π = µ− r +
1

2
λ

2∑
k=0

(1− π)k

(k + 2)(k + 3)
− 3

4
λ

4∑
k=0

πk

k + 2

= µ− r +
1

6

2∑
k=0

(1− π)k

(k + 2)(k + 3)
− 1

4

4∑
k=0

πk

k + 2

= µ− r −
[

3

40
+

41

360
π +

13

240
π2 +

1

20
π35 +

1

24
π4

]
.

We solve this equation numerically for π by recursion or by Newtons’ method.

6.5 The Variance Gamma Model

We now apply the main theorem to the Variance Gamma (VG) Model. The Lévy

density for this model is given by:

v(x) =

 C e−G|x|

|x| if x < 0;

C e−Mx

x
if x > 0,
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where C, G, and M are parameters of the model and are non-negative constants.

Recall that the quasi-centralized moments are:

M±
k

4
=

∫
R±

(1− e−|x|)kv±(x)dx,

We now define kernelsK±s that are useful in calculating the quasi-centralized moments.

Definition 6.2. The kernels of the quasi-centralized moments are defined by the

prescription:

K±s =

∫ ∞
0

(e−sx − 1)v±(x)dx, s ≥ 0.

We have the following result.

Theorem 6.6. For the VG model with parameters C, G, and M , we have:

M+
k = C log(Ak(M)) (6.5.1)

and

M−
k = C log(Ak(G)), (6.5.2)

where

Ak(α)
4
= Πk

j=0(α + j)[(−1)(j+1)(kj)]. (6.5.3)

Proof.

M+
k =

∫ ∞
0

(1− e−x)kv+(x)dx

= (−1)k
k∑
j=0

(−1)(k−j)
(
k

j

)∫ ∞
0

e−jxv+(x)dx =
k∑
j=0

(−1)−j
(
k

j

)∫ ∞
0

(e−jx − 1)v+(x)dx

= (−1)k
k∑
j=0

(−1)(k−j)
(
k

j

)
K+
j .
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Recall that ∫ ∞
0+

(e−ux − e−vx)dx
x

= log(
v

u
).

Now

K+
s =

∫ ∞
0

(e−sx − 1)v+(x)dx = C

∫ ∞
0

(e−sx − 1) e−Mxdx

x
= C log

(
M

s+M

)
.

Thus with A = log(M), we get

K+
s = C log(

M

M + s
) = C (A− log(M + s)). (6.5.4)

M+
k = (−1)k C

k∑
j=0

(−1)(k−j)
(
k

j

)
(A− log(M + s))

= (−1)k C A
k∑
j=0

(−1)(k−j)
(
k

j

)
+ (−1)k C

k∑
j=0

(−1)(k−j+1)

(
k

j

)
log(M + j)

= (−1)k C A(1− 1)k + C
k∑
j=0

log(M + j)(−1)(j+1)(kj)

= C Πk
j=0(α + j)[(−1)(j+1)(kj)] = C log(Ak(M)),

where

Ak(α)
4
= Πk

j=0(α + j)[(−1)(j+1)(kj)].
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Similarly, by putting x = −y and using v−(x) = v−(−x), we get

M−
k =

∫ 0

−∞
(1− ex)kv−(x)dx = −

∫ 0

∞
(1− e−x)kv−(−x)dx

=

∫ ∞
0

(1− e−x)kv−(x)dx =
k∑
j=0

(−1)(−j)
(
k

j

)∫ ∞
0

(e−jx − 1)v−(x)dx

= (−1)k
k∑
j=0

(−1)(k−j)
(
k

j

)
K−j .

Now

K−s =

∫ ∞
0

(e−sx − 1)v−(x)dx = C

∫ ∞
0

(e−sx e−G|x| − e−G|x|)dx
|x|

= C

∫ ∞
0

(e−(s+G)x − e−Gx)dx
x

= C log(
G

G+ s
).

Therefore

K−s = C (log(G)− log(G+ s)),

which is the same as equation(6.5.4) with M replaced by G. It now follows that

M−
k = C log(Ak(G)).

We are now in a position to compute G′(π) and G′′(π) explicitly.

Theorem 6.7. Let π ∈ [0, 1]. For the VG market with parameters C, G and M

G′(π) = C

[
∞∑
k=0

(1− π)k log(Ak+1(M))−
∞∑
k=0

πk log(Ak+1(G))

]
(6.5.5)

and

G′′(π) = −C

[
∞∑
k=1

k (1− π)k−1 log(Ak+1(M)) +
∞∑
k=1

k πk−1 log(Ak+1(G))

]
. (6.5.6)
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The optimal portfolio π that maximizes the logarithmic utility from terminal wealth

for a stock with dynamic (5.1.2): is given by the equation:

σ2 π = µ− r + C

[
∞∑
k=0

(1− π)k log(Ak+1(M))−
∞∑
k=0

πk log(Ak+1(G))

]
(6.5.7)

which can be approximated by Newton’s method using Theorem 6.2 or recursively,

using equation

σ2 π = µ− r + C

[
m2∑
k=0

(1− π)k log(Ak+1(M))−
m1∑
k=0

πk log(Ak+1(G))

]
, (6.5.8)

where m1 and m2 are chosen truncation points and

Ak(α)
4
= Πk

j=0(α + j)[(−1)(j+1)(kj)]. (6.5.9)

Proof. The result follows from Theorems 6.1, 6.2 and 6.6.

Example 6.4. Let m1 = m2 = 3. It is easy to show that

A1(α) =
1

α(α + 1)2
. (6.5.10)

A2(α) =
1

α(α + 1)4(α + 2)3
. (6.5.11)

A3(α) =
1

α(α + 1)6(α + 2)9(α + 3)4
. (6.5.12)

A4(α) =
1

α(α + 1)8(α + 2)18(α + 3)16(α + 4)5
. (6.5.13)

210



Assuming that G = M we get

G′(π) = C

[
3∑

k=0

(1− π)k log(Ak+1(M))−
3∑

k=0

πk log(Ak+1(G))

]

= C

[
3∑

k=0

((1− π)k − πk) log(Ak+1(G))

]
,

and π is given by

σ2 π ≈ µ− r + C

[
3∑

k=0

((1− π)k − πk) log(Ak+1(G))

]
.

6.6 The Carr, Geman, Madan, and Yor Model

We now apply the main theorem to the CGMY Model. The Lévy density for this

model is given by:

v(x) =

 C e−G|x|

|x|(1+Y ) if x < 0;

C e−Mx

x(1+Y ) if x > 0,

where C, G, M and Y < 2 with Y 6= 1, are parameters of the model. Recall that

M±
k =

k∑
j=0

(−1)(k−j)
(
k

j

)
K±j and K±s =

∫ ∞
0

e−sxv±(x)dx.

We now have the following result.

Theorem 6.8. The quasi-centralized moments for the CGMY model with parameters

C,G,M, Y , where Y < 2 with Y 6= 1, are:

M−
k = C Γ(−Y )

k∑
j=0

(−1)(k−j)
(
k

j

)
(G+ j)Y . (6.6.1)

M+
k = C Γ(−Y )

k∑
j=0

(−1)(k−j)
(
k

j

)
(M + j)Y . (6.6.2)
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Proof.

K−s =

∫ ∞
0

e−sxv−(x)dx = C

∫ ∞
0

e−sx e−G|x|
dx

|x|Y+1
= C

∫ ∞
0

x−Y e−(s+G)xdx

x
.

Putting t = (G+ s)x gives

K−s = C

∫ ∞
0

(G+ s)Y t−Y e−t
dt

t
= C (G+ s)Y

∫ ∞
0

t−Y e−t
dt

t
= C (G+ s)Y Γ(−Y ),

whence

M−
k = C Γ(−Y )

k∑
j=0

(−1)(k−j)
(
k

j

)
(G+ j)Y . (6.6.3)

Similarly,

K+
s =

∫ ∞
0

e−sxv+(x)dx = C

∫ ∞
0

e−sx e−Mx dx

xY+1
= CΓ(−Y )(M + s)Y .

Thus M+
k = C Γ(−Y )

∑k
j=0(−1)(k−j)(k

j

)
(M + j)Y .

We now offer the main result.

Theorem 6.9. Let Ψ+ = M and Ψ− = G in the CGMY model. For each k ∈ N

define the partial sum

Sk(Ψ)
4
=

k∑
j=0

(−1)(k−j)
(
k

j

)
(Ψ + j)Y . (6.6.4)

Then for each π ∈ [0, 1]

M±
k = C Γ(−Y )Sk(Ψ±), (6.6.5)

G′(π) = C Γ(−Y )

[
∞∑
k=0

(1− π)k Sk+1(M)−
∞∑
k=0

πk Sk+1(G)

]
. (6.6.6)
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The optimal portfolio π is given exactly by

σ2 π = µ− r + C Γ(−Y )

[
∞∑
k=0

(1− π)k Sk+1(M)−
∞∑
k=0

πk Sk+1(G)

]
, (6.6.7)

which is approximated by Newton’s method or recursion using the equation

σ2 π = µ− r + C Γ(−Y )

[
m2∑
k=0

(1− π)k Sk+1(M)−
m1∑
k=0

πk Sk+1(G)

]
, (6.6.8)

where m1 and m2 are truncation points.

Proof. This result follows from the Main Theorem 6.2 and Theorem 6.8.

6.7 The Generalized Tempered Stable Model

The GTS model is a generalization of the CGMY model and depends on six parameters

satisfying

α± < 2, with α± /∈ {0, 1}; C± ≥ 0, C− + C+ > 0; G± ≥ 0, G+ +G− > 0G+ ≥ G−.

The Lévy density is

v(x) = v−(x)I{x<0} + v+(x)I{x>0}, (6.7.1)

v±(x) = C±e
−G±|x| 1

|x|1+α±
. (6.7.2)

The CGMY model is the GTS model with α1 = α2 = Y , C± = C, G− = G and

G+ = M . Define

Sk(G,α)
4
=

k∑
j=0

(−1)(k−j)
(
k

j

)
(G+ j)α. (6.7.3)

The main result is analogous to the last.
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Theorem 6.10. For the GTS model with parameters C±, G±, α± /∈ {0, 1}

K±s = C± Γ(−α±) (G± + s)α± , (6.7.4)

M±
k = C± Γ(−α±)Sk(G±, α±). (6.7.5)

For each π ∈ [0, 1], and truncation points m1 and m2,

G′(π) = C+ Γ(−α+)
∞∑
k=0

(1− π)k Sk+1(G+, α+)− C− Γ(−α−)
∞∑
k=0

πk Sk+1(G−, α−).

(6.7.6)

The optimal portfolio π is given exactly by

σ2 π = µ−r+C+ Γ(−α+)
∞∑
k=0

(1−π)k Sk+1(G+, α+)−C− Γ(−α−)
∞∑
k=0

πk Sk+1(G−, α−),

(6.7.7)

which is approximated by Newton’s method or recursion using the equation

σ2 π ≈ µ−r+C+ Γ(−α+)

m2∑
k=0

(1−π)k Sk+1(G+, α+)−C− Γ(−α−)

m1∑
k=0

πk Sk+1(G−, α−).

(6.7.8)

Proof. Assume that α± 6= {0, 1}.

K±s =

∫ ∞
0

e−sx v±(x)dx. = C±

∫ ∞
0

e−sxe−G±|x|
dx

|x|1+α±

= C±

∫ ∞
0

x−α±e−(s+G±)xdx

x
. = C± Γ(−α±) (G± + s)α± .

The result then follows by importing the last formula in the Main Theorem 6.2.

Remark 6.2. The GTS model generalizes the CGMY model, which generalizes the

VG model. From empirical data (cf. CGMY [12]), G and M are quite large, falling

between 25 and 130. In this case
∫
R

(ejx− 1) v(x)dx exists for each integer 0 ≤ j ≤ k

where k ∈ [25, 130]. Consequently, we may use the more practical approximation of

214



G′(π) using the instantaneous centralizes moments; that is, by a single Taylor series

expansion about π = 0, given by

G′k(π) =
m∑
j=0

(−1)j πjMj+1,

where Mj is the the instantaneous centralized moments of returns and m ≤ k − 1 is

the truncation point. This approach is computationally more efficient in the sense that

we rely on only one infinite series to approximate G′(π), instead of two, as in the Main

Theorem 6.2. For the Merton jump–diffusion model with v(x) = const e(−ax2+bx+c),

the kernel Ks exists for all s, and so (6.2) is valid as it converges to G′(π). However

if
∫
R

(ekx − 1)v(x)dx <∞ for only small values of k, as in the Kou model, using two

series to approximate G′(π) is more valid.

6.8 Comparison of Series Approximation of G′(π)

Since G(π) =
∫
R

log(1 + π(ex − 1))v(x)dx, then

Gk+1(π) = (−1)k k!

∫
R

(ex − 1)k+1v(x)dx

(1 + π(ex − 1))
,

whence Gk+1(0) = (−1)k k!
∫
R

(ex−1)k+1v(x)dx exists only if
∫
R

(ejx−1)v(x)dx <∞

for each integer 0 ≤ j ≤ k + 1. If this condition holds, we may expand G′(π) about

π = 0 as a truncated Taylor series of degree k given by (6.2): Note that Mk exists

iff
∫
R

(ejx − 1)v(x)dx < ∞ for each integer j ≤ k. Since
∫ 0

−∞(ejx − 1)v(x)dx always

exists then Mj exists iff
∫∞

0
(ejx − 1)v(x)dx <∞.

Although
∫∞

0
(ex − 1)jv(x)dx may not always exist–that is,

∫∞
0

(ejx − 1)v(x)dx may

not exist–we are certain that
∫∞

0
(1−e−x)jv(x)dx always exists ∀j, because

∫∞
0

(e−jx−

1)v(x)dx exists. Consequently Gk(1), the k-th derivative of G at π = 1 exists ∀k, and
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so we may expand G′(π) about π = 1. Moreover, this expansion is always convergent

although it consists of two infinite series given by:

G′(π) =
∞∑
k=0

(1− π)kM+
k+1 −

∞∑
k=0

πkM−
k+1,

where M±
k

4
=
∫
R±

(1 − e−|x|)kv±(x)dx. Consider the Kou model with say, η1 = 2 and

v+(x) =constant e−2x. Then
∫∞

0
(ekx − 1)v(x)dx exists only for k ≤ 2. Thus we are

only assured of the existence of M1 and M2, and a first degree polynomial M1−M2π

to approximate G′(π). However, with the quasi-centralized moments, there is no such

restriction since M±
k always exist. In conclusion, if

∫∞
0

(ekx− 1)v(x)dx exists for only

small values of k, say k ≤ 4, we use quasi-centralized momemts. Otherwise we use

the centralized moments to build the approximation polynomial when k > 4.
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Chapter 7

Future Research and Numerical

Results

7.1 Future Research

We may extend the research done in this dissertation in some promising directions,

as follows:

A: Non–Logarithmic Utility Functions and One Stock

We successfully extended the theory of asymmetric information in fads models

from the purely continuous case to the general setting, where both the fads and

underlying stock price are allowed to jump. These jumps are modelled by pure jump

Lévy processes. In our study, the utility function was always logarithmic. One may

consider other utility functions, such as the power utility (x
θ

θ
, θ < 1) and the negative

exponential utility function (−e−x). We still keep one stock and one bond in this

development.
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B: Multiple Stocks and Under Logarithmic Utility

A further promising direction is the consideration of a portfolio consisting of a

single bond and multiple stocks. In this case, n stocks S1, S2, . . . , Sn are considered,

which are driven by n independent pure jump Lévy processes X1, X2, . . . , Xn with

n independent Ornstein–Uhlenbeck processes U1, U2, . . . , Un, representing the fads

for each stock. In the background there are also n independent standard Brownian

motions B1, B2, . . . , Bn and Poisson random measures N1, N2, . . . , Nn. One may

also relax the independence condition by allowing some kind of correlation between

the processes. This will clearly be more difficult, however one may ”test” the model by

first considering a model with two dependent stocks. Utility is taken to be logarithmic.

C: Multiple Stocks and Non–Logarithmic Utility

One may further extend this study, by considering other utility functions, such as

the power and negative exponential utilities.

7.2 Numerical Results

We present numerical outputs of approximate optimal portfolios for various symmetric

Lévy markets. These include the Kou, Merton, VG, CGMY, Double Poisson and m–

Double Poisson.

Let i ∈ {0, 1}. The optimal portfolios for the investors under asymmetric

information are generated numerically from the equations:

πit =
θt
σt
− λ q ξi

√
V arit

σt
+
G′k(π

i
t)

σ2
t

, (7.2.1)
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where

V ar1
t = t and V ar0

t =

√∫ t

0

e−2λ (t−s)(1 + p tanh(λ p s))−2ds. (7.2.2)

πit are estimated by π
(k)
t (ω), where ω ∈ Ω is the state of the world, and Gk is the

k–th degree polynomial estimate of G built from quasi–centralized moments,

with k ∈ {2, 3, 4, · · · , 8}. ξ1 and ξ0 are drawn from independent standard normal

variables. We present data for the 0% and 100% fads market for the Kou model.

The optimal portfolios for investors in the asymmetric market (q 6= 0) can also be

approximated from the symmetric (q = 0) optimal portfolio by the formula:

πit = πt + υit σ̃t = πt + noiseit ∼ πt −
λσt q ξ

i
√
V arit

M2 + σ2
t

i ∈ {0, 1}, (7.2.3)

where υi and σ̃ are known, and πt is given by

πt =
µt − rt +G′(πt)

σ2
t

, t ∈ [0, T ]. (7.2.4)

G is approximated by the k–th degree polynomial Gk(α) built from the instantaneous

centralized moments of returns Mj where

Gk(α) =
k∑
j=1

(−1)j−1Mj
αj

j
.

In each simulation, we assume that the market coefficients rt, µt, σ
2
t are constants.

We compare the computed optimal portfolios to the benchmark Merton [36] optimal

πmer =
µt − rt
σ2
t

.
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7.2.1 Kou Jump–Diffusion Model: Asymmetric Information

Table: Kou1A–100% FADS

Lévy Density: vkou(x) = λ (p η1 exp (−η1 x)I{x>0} + q η2 exp (−η2 |x|)I{x<0})

Parameters: p = pup = .8, q = qup = .2, intensity = 1
5
, η1 = 8, η2 = 2.

Fads = 100%,λ = .2, µ = .140685, r = .0876, σ2 = .24282, πmer = .900481.

t i π(2) π(3) π(4) π(5) π(6) π(7) π(8)

0.0 1 .904788 .904993 .905004 .905005 .905005 .905005 .905005

0 .904788 .904993 .905004 .905005 .905005 .905005 .905005

0.1 1 .888139 .888422 .888441 .888441 .888441 .888441 .888441

0 .636569 .639556 .640177 .640177 .640352 .640367 .640367

0.2 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0 .551013 .555572 .556742 .557070 .557169 .557213 .557226

0.3 1 .808049 .809715 .809807 .809818 .809819 .809819 .809819

0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.4 1 .876590 .876935 .876959 .876961 .876961 .876961 .876961

0 .932555 .932658 .932662 .932662 .932662 .932662 .932662

0.5 1 .716454 .718272 .718567 .718619 .718629 .718632 .718632

0 .392367 .400718 .403617 .404718 .405164 .405435 .405519

0.6 1 .632366 .635422 .636065 .636212 .636248 .636262 .636265

0 .886861 .887151 .887171 .887171 .887171 .887171 .887171

0.7 1 .887408 .887694 .887713 .887714 .887714 .887714 .887714

0 .855079 .855554 .855593 .855597 .855597 .855597 .855597
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t i π(2) π(3) π(4) π(5) π(6) π(7) π(8)

0.8 1 .881503 .881820 .881843 .881843 .881844 .881844 .881844

0 .084560 .103514 .113429 .119102 .122564 .127215 .128215

0.9 1 .688762 .690953 .691343 .691419 .691439 .691440 .691440

0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1 .779562 .780661 .780800 .780819 .780822 .780822 .780822

0 .821113 .821837 .821911 .821919 .821920 .821920 .821920

7.2.2 Kou Model-2: Asymmetric Information

Table: Kou2A–100% FADS

Lévy Density: vkou(x) = λ (p η1 exp (−η1 x)I{x>0} + q η2 exp (−η2 |x|)I{x<0})

Parameters: p = pup = .8, q = qup = .2, intensity = 1
5
, η1 = 8, η2 = 2.

Fads = 100%,λ = .1, µ = .114913, r = .0740, σ2 = .322, πmer = .399541.

t i π(2) π(3) π(4) π(5) π(6) π(7) π(8)

0.0 1 .707250 .709188 .709375 .709409 .709415 .709418 .709418

0 .707250 .709188 .709375 .709409 .709415 .709418 .709418

0.1 1 .698925 .700975 .701178 .701217 .701224 .701227 .701227

0 .572472 .576606 .577187 .577387 .577406 .577411 .577411

0.2 1 .786056 .787091 .787164 .787175 .787176 .787176 .787176

0 .528602 .533628 .534408 .534637 .534743 .534755 .534755
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t i π(2) π(3) π(4) π(5) π(6) π(7) π(8)

0.3 1 .658880 .664144 .664439 .664502 .664516 .664522 .664522

0 .789141 .790146 .790216 .790227 .790227 .790227 .790227

0.4 1 .693151 .695281 .695495 .695537 .695545 .695548 .695548

0 .721408 .723164 .723325 .723353 .723358 .723359 .723359

0.5 1 .613083 .616469 .616900 .617004 .617043 .617044 .617044

0 .444717 .451691 .452965 .453407 .453662 .453698 .453698

0.6 1 .571039 .575200 .575788 .575990 .576009 .576015 .576015

0 .698022 .700084 .700289 .700328 .700328 .700328 .700328

0.7 1 .698560 .700615 .700819 .700867 .700867 .700867 .700867

0 .681541 .683835 .684076 .684123 .684137 .684137 .684137

0.8 1 .695607 .697703 .697913 .697953 .697961 .697964 .697964

0 .281080 .292770 .295535 .296777 .297372 .297800 .297800

0.9 1 .599237 .602869 .603348 .603500 .603513 .603517 .603517

0 .868419 .868810 .868827 .868829 .868829 .868829 .868829

1.0 1 .644637 .647493 .647827 .647919 .647925 .647926 .647926

0 .663577 .665940 .666224 .666224 .666283 .666297 .666302
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7.2.3 Kou Model-3: Symmetric Information

Table: Kou3–0% Fads

Model: Kou Jump–Diffusion

Lévy Density: vkou(x) = λ (p η1 exp (−η1 x)I{x>0} + q η2 exp (−η2 |x|)I{x<0})

ICMR: Mk =
∫
R

(ex − 1)k vkou(x) dx

M1 = −0.011, M2 = 0.012, M3 = −0.0055, M4 = 0.01, M5 = 0.015,

σ2 = .24282 = .0589

Input Parameters: p = .4, q = .6, λ = 1
20

, η1 = 6, η2 = 1

Error: ε = 0.5× 10−6

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0230 .070127 .24 .80 .706704 .641421 .623298 .604557 .623824

2 .0876 .140685 .24 .90 .806703 .732183 .708751 .681802 .715138

3 .0931 .098990 .24 .10 .006703 .006084 .006083 .006083 .006083

4 .0094 .059490 .24 .85 .756704 .686802 .666105 .643504 .668986

5 .8087 .131188 .24 .75 .656704 .596040 .580329 .565030 .579364

6 .0297 .062125 .24 .55 .456704 .414515 .406796 .401314 .404727

7 .0037 .027260 .24 .40 .306704 .278371 .274848 .273120 .273835

8 .0024 .002400 .24 .00 .000000 .000000 .000000 .000000 .000000

9 .0732 .108598 .24 .60 .506704 .459896 .450431 .443055 .448189

10 .0545 .110514 .24 .95 .856704 .777565 .751238 .719630 .762675
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Table: Kou4–0% Fads

Model: Kou Jump–Diffusion

Lévy Density: vkou(x) = λ (p η1 exp (−η1 x)I{x>0} + q η2 exp (−η2 |x|)I{x<0})

ICMR: Mk =
∫
R

(ex − 1)k vkou(x) dx

M1 = .009524, M2 = .014286, M3 = .000571, M4 = .007238, M5 = .005714,

σ2 = .1024, IMOP ≈ .60

Input Parameters: p = .8, q = .2, λ = 1
5
, η1 = 8, η2 = 2

Error: ε = 0.5× 10−6

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0244 .116551 .32 .90 .946503 .884785 .886980 .864171 .880979

2 .0015 .011748 .32 .10 .146503 .136950 .137002 .136912 .136921

3 .0595 .146553 .32 .85 .896503 .838046 .840014 .820493 .833991

4 .0788 .155568 .32 .75 .796503 .744566 .746119 .732244 .740639

5 .0007 .056986 .32 .55 .596503 .557607 .558478 .552516 .555167

6 .0740 .114913 .32 .40 .446503 .417388 .417876 .415343 .416180

7 .0257 .025679 .32 .00 .046503 .043471 .043476 .043473 .043473

8 .0338 .095275 .32 .60 .640503 .604347 .605370 .597819 .601470

9 .0428 .140055 .32 .95 .996503 .931524 .933959 .907541 .928257

10. .0219 .103870 .32 .80 .846503 .791306 .793061 .776513 .787229
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7.2.4 Merton Model: Symmetric Information

Table: Merton1–0% Fads

Model: Merton Jump–Diffusion

Lévy Density: vmer(x) = λ 1√
2πδ2

e−
1
2(x−mδ )

2

ICMR: Mk =
∫
R

(ex − 1)k vMer(x) dx

M1 = .003625, M2 = .006312, M3 = .003453, M4 = .004360, M5 = .005294,

σ2 = .24282 = .05895, IMOP ≈ .60

Input Parameters: mean = m = .02, variance = δ2 = .1, λ = 1
20

Error: ε = 0.5× 10−6

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0810 .134093 .24 .90 .930749 .883456 .907582 .882194 .913458

2 .0883 .094210 .24 .10 .130749 .124105 .124560 .124488 .124499

3 .0201 .070161 .24 .85 .880749 .835996 .857535 .835935 .860562

4 .0545 .098757 .24 .75 .780749 .741077 .757902 .742750 .757538

5 .0695 .101874 .24 .55 .580749 .551240 .560440 .554147 .558517

6 .0476 .071143 .24 .40 .430749 .408862 .413879 .411306 .412607

7 .0421 .042100 .24 .00 .030749 .029186 .029211 .029211 .029211

8 .0848 .120220 .24 .60 .630749 .598700 .609583 .601534 .607657

9 .0298 .085846 .24 .95 .980749 .930915 .957784 .928212 .928212

10 .0348 .081966 .24 .80 .830749 .788537 .807642 .789449 .808650
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Table: Merton2–0% Fads

Model: Merton Jump–Diffusion

Lévy Density: vmer(x) = λ 1√
2πδ2

e−
1
2(x−mδ )

2

ICMR: Mk =
∫
R

(ex − 1)k vMer(x) dx

M1 = .014502, M2 = .025425, M3 = .013814, M4 = .017439, M5 = .021178,

σ2 = .322 = .1024, IMOP ≈ .60

Input Parameters: mean = m = .02, variance = δ2 = .10, λ = 1
5

Error: ε = 0.5× 10−6

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0099 .102022 .32 .90 .970809 .864267 .921549 .866205 .950668

2 .0237 .033905 .32 .10 .170809 .152063 .153656 .153389 .153406

3 .0886 .175617 .32 .85 .920809 .819754 .870914 .823380 .887548

4 .0884 .165200 .32 .75 .820809 .730729 .770803 .738750 .773828

5 .0483 .104644 .32 .55 .620809 .552679 .574977 .560217 .571014

6 .0687 .109640 .32 .40 .470809 .419140 .431710 .425166 .428657

7 .0497 .049724 .32 .00 .070809 .063038 .063308 .063267 .063288

8 .0358 .097227 .32 .60 .670809 .597191 .623404 .604586 .619851

9 .0023 .099625 .32 .96 1.020809 .908780 .972581 .908689 1.00000

10 .0543 .136255 .32 .80 .870809 .775241 .820669 .780224 .829083
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7.2.5 Variance Gamma Model: Symmetric Information

Table: VG1–0% Fads

Lévy Density: vV G(x) = C
|x| e

−λ− |x|I{x<0}(x) + C
x
e−λ+ xI{x>0}(x)

ICMR: Mk =
∫
R

(ex − 1)k vV G(x) dx

M1 = .041304, M2 = .059114, M3 = .000272, M4 = .000163, M5 = 3.96E − 06,

σ2 = .24282 = .05895, IMOP ≈ .70

Input Parameters: C = 65.65, G = 47.38, M = 46.98

Error: ε = 0.5× 10−6

Stock: Bank of America

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0267 .079730 .24 .90 1.250319 .832783 .834388 .833588 .833604

2 .0013 .051439 .24 .85 1.200319 .799480 .800959 .800252 .800265

3 .0800 .085850 .24 .10 .450319 .299938 .300146 .300108 .300106

4 .0062 .050373 .24 .75 1.100319 .732874 .734117 .733572 .733582

5 .0508 .083179 .24 .55 .900319 .599663 .600494 .600196 .600200

6 .0323 .055838 .24 .40 .750319 .499755 .500332 .500159 .500161

7 .0728 .072775 .24 .00 .350319 .233332 .233458 .233440 .233440

8 .0933 .126631 .24 .60 .950319 .632966 .633892 .633541 .633547

9 .0183 .074295 .24 .95 1.300319 .866086 .867822 .866922 .866941

10 0.888 .135973 .24 .80 1.150319 .760177 .767535 .766912 .766924

11 .0041 .045330 .24 .70 1.050319 .699572 .700703 .700230 .700238
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Table: VG2–0% Fads

Model: Variance Gamma

Lévy Density: vV G(x) = C
|x| e

−λ− |x|I{x<0}(x) + C
x
e−λ+ xI{x>0}(x)

ICMR: Mk =
∫
R

(ex − 1)k vV G(x) dx

M1 = .021090, M2 = .017778, M3 = 9.73162E − 6, M4 = 4.5996E − 5,

M5 = 1.20696E − 6, σ2 = .13312 = .0177, IMOP ≈ 1.00

Input Parameters: C = 21.34, G = 49.78, M = 48.40

Error: ε = 0.5× 10−6

Stock: General Electric

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0072 .023230 .13 .90 1.49525 .995672 .998410 .997136 .997170

2 .0033 .005042 .13 .10 .69525 .462960 .463550 .463422 .463424

3 .0049 .019968 .13 .85 1.44525 .962377 .964935 .963785 .963814

4 .0750 .087430 .13 .70 1.29525 .862494 .864547 .863719 .863738

5 .0038 .013567 .13 .55 1.14525 .762610 .764214 .763643 .763654

6 .0810 .088110 .13 .40 .99525 .662727 .663938 .663562 .663569

7 .0222 .022162 .13 .00 .59525 .396371 .396803 .396723 .396724

8 .0667 .077378 .13 .60 1.19525 .795905 .797652 .797002 .797016

9 .0721 .088882 .13 .95 1.54525 1.00000 1.00000 1.000000 1.00000

10 .0731 .087248 .13 .80 1.39525 .929083 .931466 .930431 .930457
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7.2.6 Carr, Geman, Madan & Yor (CGMY) Model:

Symmetric Information

Table: CGMY1–0% Fads

Model: CGMY

Lévy Density: vCGMY (x) = C
|x|1+Y e

−G |x|I{x<0}(x) + C
x1+Y e

−M xI{x>0}(x),

ICMR: Mk =
∫
R

(ex − 1)k vCGMY (x) dx

M1 = .032327, M2 = .046272, M3 = .000226, M4 = .000135, M5 = 3.96E − 06,

σ2 = .24282 = .05895, IMOP ≈ .70

Input Parameters: C = 65.65, G = 47.38, M = 46.98, Y = −0.0719

Error: ε = 0.5× 10−6

Stock: BANK of AMERICA

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0239 .077000 .24 .90 1.174186 .843248 .844613 .843924 .843938

2 .0301 .035972 .24 .10 .374186 .268723 .268862 .268839 .268840

3 .0836 .133737 .24 .85 1.124186 .807340 .808591 .807986 .807999

4 .0432 .084460 .24 .70 .974186 .699617 .700556 .700162 .700169

5 .0093 .041746 .24 .55 .824186 .591893 .592565 .592327 .592331

6 .0980 .121628 .24 .40 .674186 .484170 .484619 .484489 .484491

7 .2020 .202043 .24 .00 .274186 .196908 .196982 .196973 .196973

8 .9072 .132583 .24 .60 .874186 .627801 .628557 .628273 .628277

9 .0218 .077795 .24 .95 1.224186 .879155 .880640 .879859 .879876

10 .0010 .048155 .24 .80 1.074186 .771432 .772574 .772047 .772057
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Table: CGMY2–0% Fads

Model: CGMY

Lévy Density: vCGMY (x) = C
|x|1+Y e

−G |x|I{x<0}(x) + C
x1+Y e

−M xI{x>0}(x),

ICMR: Mk =
∫
R

(ex − 1)k vCGMY (x) dx

M1 = .025377, M2 = .026979, M3 = .000262, M4 = .0001402, M5 = 6.63E − 06,

σ2 = .19052 = .03629, IMOP ≈ .9454

Input Parameters: C = 23.70, G = 36.59, M = 35.70, Y = −0.0963

Error: ε = 0.5× 10−6

Stock: WALMART

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0091 .041762 .19 .90 1.24964 .911004 .914024 .912557 .912620

2 .0451 .048758 .19 .10 .449640 .327793 .328183 .328114 .328115

3 .0410 .071882 .19 .85 1.19964 .874553 .877336 .876038 .876092

4 .0150 .040364 .19 .70 1.04964 .765201 .767330 .766460 .766492

5 .0816 .101551 .19 .55 .89964 .6558497 .657412 .656864 .656881

6 .0389 .053391 .19 .40 .74964 .546497 .547581 .547265 .547273

7 .0002 .000203 .19 .00 .34964 .254892 .255127 .255095 .255095

8 .0272 .048968 .19 .60 .94964 .692300 .694041 .693398 .693419

9 .0552 .089665 .19 .95 1.29964 .947455 .950722 .949072 .949146

10 .0204 .049414 .19 .80 1.14964 .838103 .840658 .839515 .839560

230



Table: CGMY3–0% Fads

Model: CGMY

Lévy Density: vCGMY (x) = C
|x|1+Y e

−G |x|I{x<0}(x) + C
x1+Y e

−M xI{x>0}(x),

ICMR: Mk =
∫
R

(ex − 1)k vCGMY (x) dx

M1 = .030125, M2 = .060285, M3 = .000107, M4 = 7.302E − 05,

M5 = 2.589E − 06, σ2 = .18882 = .03565, IMOP ≈ .50025

Input Parameters: C = 0.0823, G = 25.04, M = 25.04, Y = 1.5063

Error: ε = 0.5× 10−6

Stock: MCDONALDS

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .079 .111923 .19 .90 1.322564 .71558 .716355 .715976 .715985

2 .0479 .051416 .19 .10 .522564 .284149 .284269 .284245 .284245

3 .0276 .057925 .19 .85 1.272564 .688615 .689333 .688995 .689003

4 .0976 .122580 .19 .70 1.225640 .607722 .608280 .608048 .608053

5 .0158 .035452 .19 .55 .972564 .520829 .527247 .527096 .527099

6 .0204 .034608 .19 .40 .822564 .445935 .446234 .446143 .446144

7 .0835 .083531 .19 .00 .422564 .230220 .230298 .230286 .230286

8 .0718 .093139 .19 .60 1.022564 .553793 .554255 .554081 .554084

9 .0809 .114784 .19 .95 1.372564 .742544 .743379 .742955 .742966

10 .0513 .079775 .19 .80 1.222564 .661651 .662313 .662013 .662020

11 .0683 .086170 .19 .50 .922564 .499864 .500240 .500112 .500114
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Table: CGMY4–0% Fads

Model: CGMY

Lévy Density: vCGMY (x) = C
|x|1+Y e

−G |x|I{x<0}(x) + C
x1+Y e

−M xI{x>0}(x),

ICMR: Mk =
∫
R

(ex − 1)k vCGMY (x) dx

M1 = .017097, M2 = .034202, M3 = .0000211, M4 = .0000141,

M5 = 8.18932E − 08, σ2 = .19052 = .03629, IMOP ≈ 0.50025

Input Parameters: C = 1.7454, G = 73.39, M = 73.39, Y = 0.9315

Error: ε = 0.5× 10−6

Stock: DRG

n r µ σ πmer π(1) π(2) π(3) π(4) π(5)

1 .0065 .039132 .19 .90 1.13556 .77185 .772023 .771933 .771934

2 .0802 .083807 .19 .10 .33556 .228085 .228100 .228097 .228097

3 .0916 .122461 .19 .85 1.08556 .737864 .738023 .737944 .737945

4 .0517 .077072 .19 .70 .93556 .635908 .636026 .635976 .635976

5 .0477 .067672 .19 .55 .78556 .533952 .534035 .534006 .534006

6 .0267 .041208 .19 .40 .63556 .431996 .432051 .432035 .432005

7 .0089 .008896 .19 .00 .23556 .160114 .160121 .160121 .160121

8 .0124 .034201 .19 .60 .83556 .567938 .568031 .567996 .567996

9 .0082 .042626 .19 .95 1.18556 .805835 .806024 .805922 .805922

10 .0709 .099909 .19 .80 1.03556 .703879 .704023 .703955 .703955

11 .0763 .094489 .19 .50 .73556 .499967 .500040 .500015 .500016
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7.2.7 Double Poisson Model: Symmetric Information

Table: DP1–0% Fads

Model: Double Poisson

Lévy Density: vΠ(1,2)(dx) = λu δαu(dx) + λd δαd(dx)

ICMR: Mk =
∫
R

(ex − 1)k vΠ(1,2)(dx)

M1 = .005, M2 = .0015, M3 = .00005, M4 = .000015, M5 = 5E − 07,

σ2 = .24282 = .1024, IMOP ≈ 0.667

Input Parameters: Au = .5, αu = ln(1.5), λu = 1
5
, λd = 1

10

Error: ε = 0.5× 10−6

Admissible Set : (−2 , 2)

n r µ σ πmer π∗ λu λd Au a

1 .0281 .081198 .2428 .90 .799480 .2 .1 .5 2

2 .0141 .019972 .2428 .10 .323907 .2 .1 .5 2

3 .0830 .133135 .2428 .85 .771592 .2 .1 .5 2

4 .0570 .098263 .2428 .70 .686036 .2 .1 .5 2

5 .0616 .094030 .2428 .55 .597981 .2 .1 .5 2

6 .0882 .111732 .2428 .40 .507934 .2 .1 .5 2

7 .0366 .036643 .2428 .00 .261943 .2 .1 .5 2

8 .0111 .046501 .2428 .60 .627579 .2 .1 .5 2

9 .0814 .137424 .2428 .95 .827057 .2 .1 .5 2

10 .0455 .092612 .2428 .80 .743381 .2 .1 .5 2
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Table: DP2–0% Fads

Lévy Density: vΠ(1,2)(dx) = λu δαu(dx) + λd δαd(dx)

ICMR: Mk =
∫
R

(ex − 1)k vΠ(1,2)(dx)

M1 = .005, M2 = .0015, M3 = .00005, M4 = .000015, M5 = 5E − 07,

σ2 = .322 = .1024, IMOP ≈ 3.333

Input Parameters: Au = .10, αu = ln(1.1), λu = 1
10

, λd = 1
20

Error: ε = 0.5× 10−6

Admissible Set : (−10 , 10)

n r µ σ πmer π∗ λu λd Au a

1 .0566 .148718 .32 .90 .917842 .1 .05 .10 10

2 .0126 .022877 .32 .10 .123513 .1 .05 .10 10

3 .0988 .185858 .32 .85 .868192 .1 .05 .10 10

4 .0996 .171269 .32 .70 .719246 .1 .05 .10 10

5 .0944 .150727 .32 .55 .570303 .1 .05 .10 10

6 .0040 .044953 .32 .40 .421366 .1 .05 .10 10

7 .0676 .067622 .32 .00 .024237 .1 .05 .10 10

8 .0851 .146493 .32 .60 .619950 .1 .05 .10 10

9 .0164 .113697 .32 .95 .967492 .1 .05 .10 10

10 .0403 .122218 .32 .80 .818543 .1 .05 .10 10

11 .0488 .390103 .32 3.333 3.333 .1 .05 .10 10
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7.2.8 4–Double Poisson Model: Symmetric Information

Table: 4–DP1–0% Fads

Lévy Density: vΠ(4,2)(dx) =
∑4

i=1 λui δλui (dx) + λdi δλdi (dx)

ICMR: Mk =
∫
R

(ex − 1)k vΠ(4,2)(dx)

M1 = .072548, M2 = .07496, M3 = .015297, M4 = .025064, M5 = .005556,

σ2 = .24282 = .058952, IMOP ≈ 0.863842, ε = .5× 10−6

Input Parameters:

λu1 = 1
5
, λu2 = 1

10
λu3 = 1

15
, λu4 = 1

20
λd1 = 1

25
, λu2 = 1

30
λu3 = 1

35
, λu4 = 1

40

αu1 = ln(1.1), αu2 = ln(1.3), αu3 = ln(1.5), αu4 = ln(1.7),

Admissible Set : (−1.4282 , 1.4286)

n r µ σ πmer π∗ Au1 Au2 Au3 Au4

1 .0036 .056616 .2428 .90 .899982 .1 .3 .5 .7

2 .0243 .074392 .2428 .10 .101731 .1 .3 .5 .7

3 .0243 .074392 .2428 .85 .850044 .1 .3 .5 .7

4 .0546 .095889 .2428 .70 .700101 .1 .3 .5 .7

5 .0082 .040606 .2428 .55 .550260 .1 .3 .5 .7

6 .0339 .057438 .2428 .40 .401467 .1 .3 .5 .7

7 .0084 .008396 .2428 .00 .000609 .1 .3 .5 .7

8 .0241 .059429 .2428 .60 .600661 .1 .3 .5 .7

9 .0807 .136730 .2428 .95 .948994 .1 .3 .5 .7

10 .0739 .121015 .2428 .80 .800576 .1 .3 .5 .7
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Table: 4–DP2–0% Fads

Model: 4–Double Poisson

Lévy Density: vΠ(4,2)(dx) =
∑4

i=1 λui δλui (dx) + λdi δλdi (dx)

ICMR: Mk =
∫
R

(ex − 1)k vΠ(4,2)(dx)

M1 = .083524, M2 = .100819, M3 = .017855, M4 = .040604, M5 = .007315,

σ2 = .322 = .1024, IMOP ≈ 0.730888, ε = .5× 10−6

Input Parameters:

λu1 = 1
5
, λu2 = 1

10
λu3 = 1

20
, λu4 = 1

25
λd1 = 1

25
, λu2 = 1

30
λu3 = 1

55
, λu4 = 1

40

αu1 = ln(1.1), αu2 = ln(1.3), αu3 = ln(1.5), αu4 = ln(1.7),

Admissible Set : (−1.25 , 1.25)

n r µ σ πmer π∗ Au1 Au2 Au3 Au4

1 .0042 .096317 .32 .90 .899843 .2 .4 .6 .8

2 .0426 .052882 .32 .10 .103125 .2 .4 .6 .8

3 .0820 .169077 .32 .85 .848040 .2 .4 .6 .8

4 .0833 .154969 .32 .70 .700423 .2 .4 .6 .8

5 .0760 .132294 .32 .55 .551973 .2 .4 .6 .8

6 .0480 .088973 .32 .40 .402074 .2 .4 .6 .8

7 .0389 .038860 .32 .00 .003233 .2 .4 .6 .8

8 .0072 .068646 .32 .60 .600142 .2 .4 .6 .8

9 .0689 .166148 .32 .95 .946328 .2 .4 .6 .8

10 .0375 .119383 .32 .80 .799514 .2 .4 .6 .8
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Table: 4–DP3–0% Fads

Model: 4–Double Poisson

Lévy Density: vΠ(4,2)(dx) =
∑4

i=1 λui δλui (dx) + λdi δλdi (dx)

ICMR: Mk =
∫
R

(ex − 1)k vΠ(4,2)(dx)

M1 = .083524, M2 = .100819, M3 = .017855, M4 = .040604, M5 = .007315,

σ2 = .322 = .1024, IMOP ≈ 0.730888, ε = .5× 10−6

Input Parameters:

λu1 = 1
5
, λu2 = 1

10
λu3 = 1

20
, λu4 = 1

25
λd1 = 1

25
, λu2 = 1

30
λu3 = 1

55
, λu4 = 1

40

αu1 = ln(1.1), αu2 = ln(1.3), αu3 = ln(1.5), αu4 = ln(1.7),

Admissible Set : (−1.25 , 1.25)

n r µ σ πmer π∗ Au1 Au2 Au3 Au4

1 .0395 .092515 .2428 .90 .898522 .2 .4 .6 .8

2 .0718 .077736 .2428 .10 .105249 .2 .4 .6 .8

3 .0924 .142553 .2428 .85 .847797 .2 .4 .6 .8

4 .0051 .046317 .2428 .70 .700026 .2 .4 .6 .8

5 .0484 .080873 .2428 .55 .551263 .2 .4 .6 .8

6 .0256 .049179 .2428 .40 .401108 .2 .4 .6 .8

7 .0247 .024686 .2428 .00 .002057 .2 .4 .6 .8

8 .0066 .041929 .2428 .60 .600130 .2 .4 .6 .8

9 .0261 .082904 .2428 .95 .948587 .2 .4 .6 .8

10 .0793 .126422 .2428 .80 .798980 .2 .4 .6 .8
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Appendix A

Combinatorial Identities Derived

from the Kou Model

Define the objects Mj and Ks by the prescriptions:

Mj =

∫
R

(ex − 1)jv(dx), (A.0.1)

Ks =

∫
R

(esx − 1)v(dx), s ≥ 0. (A.0.2)

Mj is called the j–th instantaneous centralized moments of returns of the Lévy process

X, with measure v(·). Ks is a kernel used to calculate Mj. We have the following

result, which will be quite useful in the sequel.

Lemma A.1. If there exists k ∈ N , such that
∫
R

(ejx − 1)v(dx) < ∞ for each 0 ≤

j ≤ k, then Mj and Kj exist, and

Mj =

j∑
i=1

(−1)j−i
(
j

i

)
Ki. (A.0.3)

Proof. If there exists k ∈ N , such that
∫
R

(ejx − 1)v(dx) < ∞ for each 0 ≤ j ≤ k,

then

Kj =

∫
R

(ejx − 1)v(dx) <∞.
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Now

Mj =

∫
R

(ex − 1)j v(dx).

From the Binomial Theorem

(ex − 1)j =

j∑
i=0

(−1)j−i
(
j

i

)
eix

=

j∑
i=0

(−1)j−i
(
j

i

)
(eix − 1) +

j∑
i=0

(−1)j−i
(
j

i

)

=

j∑
i=1

(−1)j−i
(
j

i

)
(eix − 1) + (1− 1)j

=

j∑
i=1

(−1)j−i
(
j

i

)
(eix − 1).

Therefore

Mj =

∫
R

(ex − 1)j v(dx) =

j∑
i=1

(−1)j−i
(
j

i

) ∫
R

(eix − 1) v(dx) =

j∑
i=1

(−1)j−i
(
j

i

)
Ki,

which is clearly finite for each integer 0 ≤ j ≤ k.

We obtain new combinatorial identities by applying Lemma A.1 to the Kou jump-

diffusion model. The central result follows.

Theorem A.1. Let k ≥ 1 be an integer, η1 > k, η2 > 0, p + q = 1, p ≥ 0, q ≥ 0.

Then

k∑
j=1

(−1)k−j
(
k

j

)
j (j + p η2 − q η1)

(η1 − j)(η2 + j)
= k!

[
(−1)k q η2

Γ(η2)

Γ(η2 + k + 1)
+ p η1

Γ(η1 − k)

Γ(η1 + 1)

]
.

(A.0.4)

Proof. From Lemma A.1, if η1 > k then Kj and Mj exist for each 0 ≤ j ≤ k, and

Mk =
k∑
j=1

(−1)k−j
(
k

j

)
Kj.
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For the Kou model, Kj and Mj are given explicitly by Lemma 5.3, with

Mj = (−1)j (j!)
λ q η2 Γ(η2)

Γ(η2 + j + 1)
+ (j!)

λ p η1 Γ(η1 − j)
Γ(η1 + 1)

, (A.0.5)

and

Ks =
λ p s

(η1 − s)
+

λ q s

(η2 + s)
= λ

s (p η2 − q η1 + s)

(η1 − s)(η2 + s)
. (A.0.6)

The result then follows by dividing both sides by λ, the intensity rate of the driving

Poisson process.

In the sequel, we assume without loss of generality that λ = 1.

Corollary A.1. Let k, α ∈ N and η > k. Then

k∑
j=1

(−1)k−j
(
k

j

)
j2

(η2 − j2)
=

η

2
k!

[
(−1)k

Γ(η)

Γ(η + k + 1)
+

Γ(η − k)

Γ(η + 1)

]
.

(A.0.7)
k∑
j=1

(−1)k−j
1

j!(k − j)!
j2

(η2 − j2)
=

η

2

[
(−1)k

Γ(η)

Γ(η + k + 1)
+

Γ(η − k)

Γ(η + 1)

]
.

(A.0.8)
k∑
j=1

(−1)k−j
1

j!(k − j)!
j2

((k + α)2 − j2)
=

1

2

[
(−1)k+α (k + α)!

(2k + α)!
+

(α− 1)!

(k + α− 1)!

]
.

(A.0.9)

Proof. Put p = q = 1
2
, η1 = η2 = η > k in Theorem A.1 to get (A.0.7) and (A.0.8).

Set η = k + α, α ∈ N . Then by said theorem, we get the last identity as follows:

k∑
j=1

(−1)k−j
1

j!(k − j)!
j2

((k + α)2 − j2)
=

1

2
η

[
(−1)k

Γ(η)

Γ(η + k + 1)
+ pη

Γ(η − k)

Γ(η + 1)

]

=
1

2
η

[
(−1)k

(η − 1)!

(η + k)!
+

(η − k − 1)!

(η)!

]
=

1

2

[
(−1)k

(η)!

(η + k)!
+

(η − k − 1)!

(η − 1)!

]
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=
1

2

[
(−1)k+α (k + α)!

(2k + α)!
+

(α− 1)!

(k + α− 1)!

]
.

Theorem A.1 yields other special results based on the choice of the parameters p,

η1 and η2.

Theorem A.2. Let k ∈ N and η > k. Then

k∑
j=0

(−1)k−j
(
k

j

)
j

η − j
= k!

Γ(η − k)

Γ(η)
=

k!

Πk
j=1(η − j)

. (A.0.10)

k∑
j=0

(−1)k−j
1

j!(k − j)!
j

η − j
=

Γ(η − k)

Γ(η)
=

1

Πk
j=1(η − j)

. (A.0.11)

k∑
j=0

(−1)k−j
(
k

j

)
j

k + 1− j
= 1. (A.0.12)

Proof. Put p = 1, q = 0, and η1 = η2 = η in Theorem A.1. Then

k∑
j=1

(−1)k−j
(
k

j

)
j(j + η)

(η − j)(η + j)
= k! p η

Γ(η − k)

Γ(η + 1)
.

Thus starting with j = 0, we get

k∑
j=0

(−1)k−j
(
k

j

)
j

η − j
= k!

Γ(η − k)

Γ(η)
=

k!

Πk
j=1(η − j)

.

Dividing by k! yields the second identity. Putting η = k + 1 in equation(A.0.10),

yields
k∑
j=0

(−1)k−j
(
k

j

)
j

k + 1− j
=

k!

Πk
j=1(k + 1− j)

=
k!

k!
= 1.

This completes the proof.
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Theorem A.3. Let η > 0 and k, m be positive integers. Then

k∑
j=0

(−1)k−j
(
k

j

)
j

η + j
= (−1)kk!

Γ(η + 1)

Γ(η + k + 1)
= (−1)k

k!

Πk
j=1(η + j)

.

(A.0.13)
k∑
j=0

(−1)k−j
1

j!(k − j)!
j

η + j
= (−1)k

Γ(η + 1)

Γ(η + k + 1)
= (−1)k

1

Πk
j=1(η + j)

.

(A.0.14)
2m∑
j=0

(−1)j−1

(
2m

j

)
j

η + j
=

Γ(2m+ 1)Γ(η + 1)

Γ(η + 2m+ 1)
=

1

Π2m
j=1(η + j)

.

(A.0.15)
2m−1∑
j=0

(−1)j
(

2m− 1

j

)
j

η + j
=

Γ(2m)Γ(η + 1)

Γ(η + 2m)
=

(2m− 1)!

Π2m−1
j=1 (η + j)

.

(A.0.16)

Proof. Put p = 0, q = 1 and η1 = η2 = η in Theorem A.1. Then

k∑
j=0

(−1)k−j
(
k

j

)
j(j − η)

(η − j)(η + j)
=

k∑
j=0

(−1)k−j
(
k

j

)
j

η + j

= (−1)kk!η
Γ(η)

Γ(η + k + 1)
= (−1)k

k!

Πk
j=1(η + j)

.

Equation (A.0.14) follows by dividing both sides by k!.

Put k = 2m, where m is an integer. Then

k∑
j=0

(−1)2m−j
(

2m

j

)
j

η + j
= (−1)2m(2m)!

Γ(η + 1)

Γ(η + 2m+ 1)

= (2m)!
Γ(η + 1)

Γ(η + 2m+ 1)
=

2m!

Π2m
j=1(η + j)

.
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Similarly, setting k = 2m− 1 and multiplying by (-1), we have

2m−1∑
j=0

(−1)2m−1−j
(

2m− 1

j

)
j

η + j
=

2m−1∑
j=0

(−1)j
(

2m− 1

j

)
j

η + j

= (−1)2m−1(2m− 1)!
Γ(η + 1)

Γ(η + 2m)
= (2m− 1)!

Γ(η + 1)

Γ(η + 2m)
=

(2m− 1)!

Π2m−1
j=1 (η + j)

.

We have more interesting identities:

Theorem A.4. For any positive integers k and m, we have

k∑
j=0

(−1)k−j
(
k

j

)
j

j + 1
= (−1)k

1

k + 1
. (A.0.17)

k∑
j=0

(−1)j+1

(
k

j

)
j

j + 1
=

1

k + 1
. (A.0.18)

2m∑
j=0

(−1)j+1

(
2m

j

)
j

j + 1
=

1

2m+ 1
. (A.0.19)

2m−1∑
j=0

(−1)j
(

2m− 1

j

)
j

j + 1
= − 1

2m
. (A.0.20)

Proof. Putting η = 1 in Theorem A.3 yields,

k∑
j=0

(−1)k−j
(
k

j

)
j

j + 1
= (−1)kk!

Γ(2)

Γ(k + 2)
= (−1)k

k!

Πk
j=1(j + 1)

= (−1)k
1

k + 1
.

Multiplying (A.0.17) by (−1)k, yields (A.0.18).

Let m be an integer. Put k = 2m in (A.0.17). Then

2m∑
j=0

(−1)2m−j
(

2m

j

)
j

j + 1
=

2m∑
j=0

(−1)j
(

2m

j

)
j

j + 1
= (−1)2m 1

2m+ 1
=

1

2m+ 1
.
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Similarly, with k = 2m− 1, we get

−
2m−1∑
j=0

(−1)2m−1−j
(

2m− 1

j

)
j

j + 1
=

2m−1∑
j=0

(−1)j
(

2m− 1

j

)
j

j + 1
= (−1)2m 1

2m
=

1

2m
.

We have some results involving double sums.

Corollary A.2.
∞∑
n=0

2n−1∑
j=0

(−1)j
(

2n − 1

j

)
j

j + 1
= 1. (A.0.21)

∞∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
j

j + 1
= log(2)− 1. (A.0.22)

Proof. Put m = 2n−1 in the third identity of Theorem A.4.

Then 2m− 1 = 2n − 1, and so

∞∑
n=0

2n−1∑
j=0

(−1)j
(

2n − 1

j

)
j

j + 1
=
∞∑
n=0

1

2n
= 1.

Recall that

log (1 + x) =
∞∑
j=1

(−1)j−1x
j

j
, whence log 2 =

∞∑
j=1

(−1)j−1 1

j
=
∞∑
j=1

(−1)k

k + 1
.

By Theorem (A.3) ,

k∑
j=0

(−1)k−j
(
k

j

)
j

j + 1
= (−1)k

1

k + 1
.

Therefore

∞∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
j

j + 1
=
∞∑
k=1

(−1)k
1

k + 1
=
∞∑
k=0

(−1)k
1

k + 1
− 1 = log 2− 1.
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We state without proof some identities that follow directly from the third identity of

Theorem A.2, which states that for all positive integer k

k∑
j=0

(−1)k−j
(
k

j

)
j

k − j + 1
= 1.

Example A.1. Let n be a positive integer. Then

∞∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
j

(k − j + 1)k2
=

π2

3
. (A.0.23)

∞∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
j

(k − j + 1)(k(k + 1))
= 1. (A.0.24)

n∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
jk

k − j + 1
=

1

2
n(n+ 1). (A.0.25)

n∑
k=1

k∑
j=0

(−1)k−j
(
k

j

)
jk2

k − j + 1
=

1

6
n(n+ 1)(2n+ 1). (A.0.26)

A.1 Analytic Formula for G′(π) and G′′(π) for Kou

Market

We will show that G′(π) can be expressed analytically in terms of the cumulative

distribution function of Beta random variables. Let π ∈ [0, 1] and

G(π) =

∫
R

log(1 + π(ex − 1))v(dx).
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For the Kou model with parameters η1 ≥ 1, η2 > 0, λ > 0, p + q = 1, p, q ≥ 0, the

Lévy density is

v(x) = λ v−(x)I{x<0} + λ v+(x)I{x>0} (A.1.1)

= λ fkou(x).

fkou(x) = q η2 e
−η2 |x|I{x<0} + p η1 e

−η1 xI{x>0}, (A.1.2)

and

v±(x) = λfkou(x)IR± . (A.1.3)

Recall that

G′(π) =

∫
R

ex − 1

1 + π(ex − 1)
v(x)dx, (A.1.4)

=

∫ ∞
0

ex − 1

1 + π(ex − 1)
v(dx) +

∫ 0

−∞

ex − 1

1 + π(ex − 1)
v(dx).

Thus

G′(π) = G′+(π) +G′−(π), (A.1.5)

where

G′±(π)
4
=

∫
R±

ex − 1

1 + π(ex − 1)
v(x)dx. (A.1.6)

Let η > 0 and π ∈ [0, 1]. Define

D±(π, η)
4
=

∫
R±

ex − 1

1 + π(ex − 1)
e−η|x|dx. (A.1.7)

We have the following result.
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Proposition A.1. Let η > 0 and π ∈ [0, 1]. Then

D−(π, η) = −D+(1− π, η). (A.1.8)

Proof.

D−(π, η)
4
=

∫
R−

ex − 1

1 + π(ex − 1)
e−η |x|dx

=

∫
R−

ex − 1

1 + π(ex − 1)
eη xdx =

∫ ∞
0

(1− ey)
(ey + π(1− ey))

e−η ydy.

Put β = 1− π and set v(y) = eη y. Then

D−(π, η) =

∫ ∞
0

(ey − 1)v(−y)

(−π + (π − 1)ey)
dy = −

∫ ∞
0

(ey − 1)e−η y

(1 + β(ey − 1))
dy = −D+(1− π, η).

By the last result, we dispose of the subscripts “±”, and simply re-define D+(π, η) as

D(π, η)
4
=

∫ ∞
0

ex − 1

1 + π(ex − 1)
e−η xdx. (A.1.9)

We now have the following result.

Proposition A.2. For the Kou model,with parameters η1 ≥ 1, η2 > 0, λ > 0,

p+ q = 1, p, q ≥ 0,

G′(π) = λ p η1D(π, η1)− λ q η2D(1− π, η2). (A.1.10)

Proof.

G′(π) = G′+(π) +G′−(π),
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with

G′+(π) =

∫
R+

ex − 1

1 + π(ex − 1)
v(x)dx = λ p η1

∫ ∞
0

ex − 1

1 + π(ex − 1)
e−η1 xdx

= λ p η1D(π, η1), and

G′−(π) =

∫
R−

ex − 1

1 + π(ex − 1)
v(x)dx = λ q η2

∫ 0

−∞

ex − 1

1 + π(ex − 1)
e−η2 |x|dx

= λ q η2D−(π, η) = −λ q η2D+(1− π, η) = −λ q η2D(1− π, η). (A.1.11)

Thus (A.1.10) holds.

We now compute an explicit formula for D(π, η). Define J(π, η) by the prescription:

J(π, η)
4
=

∫ ∞
0

dy

(1 + π y)(1 + y)η
η > 0. (A.1.12)

Proposition A.3. Let η > 0, π ∈ (0, 1) and β = 1− π. Then

D(π, η) = J(π, η)− J(π, η + 1), (A.1.13)

and

J(π, η + 1) =
1

βη
− π

β
J(π, η). (A.1.14)

Proof. Set y = ex − 1. Then x = ln(1 + y) and dx = dy
1+y

.

D(π, η) =

∫ ∞
0

ex − 1

1 + π(ex − 1)
e−η xdx =

∫ ∞
0

ydy

(1 + π y)(1 + y)η+1

=

∫ ∞
0

(
1− 1

1 + y

)
dy

(1 + π y)(1 + y)η

= J(π, η)− J(π, η + 1).
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Let η > 1. Then

J(π, η − 1) =

∫ ∞
0

dy

(1 + π y)(1 + y)η−1
=

∫ ∞
0

(1 + y)dy

(1 + π y)(1 + y)η

=

∫ ∞
0

dy

(1 + π y)(1 + y)η
+

∫ ∞
0

ydy

(1 + π y)(1 + y)η

= J(π, η) +
1

π

∫ ∞
0

π ydy

(1 + π y)(1 + y)η

= J(π, η) +
1

π

∫ ∞
0

(1 + π y − 1)dy

(1 + π y)(1 + y)η

= J(π, η) +
1

π(η − 1)
− 1

π
J(π, η)

= −β
π
J(π, η) +

1

π(η − 1)
= −β

π
J(π, η) +

1

π(η − 1)
.

Change η − 1 to η to obtain

J(π, η) = −β
π
J(π, η + 1) +

1

π η
,

whence

J(π, η + 1) =
1

βη
− π

β
J(π, η).

We now give D(π, η) in terms of J(π, η).

Proposition A.4. Let η > 0, π ∈ (0, 1) and β = 1− π. Then

D(π, η) =
1

β
J(π, η)− 1

βη
. (A.1.15)

Proof. By Proposition A.3,

D(π, η) = J(π, η)− J(π, η + 1) = J(π, η)− 1

βη
+
π

β
J(π, η) =

1

β
J(π, η)− 1

βη
.
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We also have the following recursive formula for D(π, η).

Proposition A.5. Let η > 0, π ∈ (0, 1) and β = 1− π. Then

D(π, η + 1) =
1

βη(η + 1)
− π

β
D(π, η). (A.1.16)

Proof. By Proposition A.4,

D(π, η) =
1

β
J(π, η)− 1

βη

and so

D(π, η + 1) =
1

β
J(π, η + 1)− 1

β(η + 1)
.

By Proposition A.3,

D(π, η) = J(π, η)− J(π, η + 1) = β D(π, η) +
1

η
− β D(π, η + 1) +

1

η + 1
.

Thus

(1− β)D(π, η) =
1

η
− 1

η + 1
− β D(π, η + 1),

whence

β D(π, η + 1) =
1

η(η + 1)
− (1− β)D(π, η),

which implies that (A.1.16) holds.

Remark A.1. It follows from the recursive formulals contained in Propositions A.3–

A.5, that we only need to examine J(π, η) and D(π, η) for 0 < η < 1 , where π ∈

(0, 1).

We now give a major result.
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Theorem A.5. Let 0 < η < 1 , π ∈ (0, 1) and β = 1− π. Then

J(π, η) =
1

π

(
π

β

)η
B(1− η, η)

[
1− F

(
π

β
; 1− η, η

)]
, (A.1.17)

and

D(π, η) =
1

β π

(
π

β

)η
B(1− η, η)

[
1− F

(
π

β
; 1− η, η

)]
− 1

β π
, (A.1.18)

where F (x; a, b) is the cumulative distribution function of a Beta random variable with

parameters a and b, and B(a, b) is the corresponding Beta function.

Proof. Let π ∈ (0, 1), β = 1 − π and z = 1 + π y. Then y = z−1
π

, and 1 + y = z−β
π

,

with z = 1 when y = 0. Now

J(π, η) =

∫ ∞
0

dy

(1 + π y)(1 + y)η
=

1

π

∫ ∞
1

dz

z( z−β
π

)η
= πη−1

∫ ∞
1

dz

z(z − β)η
.

Put t = z − β. Thus

J(π, η) = πη−1

∫ ∞
1−β

dt

(t+ β)tη
=
πη−1

β

∫ ∞
π

dt

(1 + t
β
)tη
.
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Set t = β y. Therefore

J(π, η) =
πη−1

β

∫ ∞
π
β

β dy

(1 + y)(β y)η

=
1

π

(
π

β

)η [∫ ∞
0

dy

(1 + y)yη
−
∫ π

β

0

dy

(1 + y)yη

]

=
1

π

(
π

β

)η [
B(1− η, η)−

∫ π
β

0

y1−η−1(1 + y)−(1−η)−ηdy

]

=
1

π

(
π

β

)η
B(1− η, η)

[
1− 1

B(1− η, η)

∫ π
β

0

y1−η−1(1 + y)−(1−η)−ηdy

]

=
1

π

(
π

β

)η
B(1− η, η)

[
1− P

(
X(1−η,η) ≤

π

β

)]
=

1

π

(
π

β

)η
B(1− η, η)

[
1− F

(
π

β
; 1− η, η

)]
,

where F (x; a, b) = P (X(a,b) ≤ x) is the cumulative distribution function of the Beta

random variable X(a,b) with parameters a, b, and B(a, b) is the corresponding Beta

function. It is clear that (A.1.18) follows directly from Proposition A.4 and (A.1.17).

Remark A.2. The Beta cumulative distribution function (BCDF) F (x; a, b), which

is also called the Incomplete Beta function, is readily available in many statistical

packages. It can also be directly implemented in MATHLAB. Consequently, J(π, η)

and equivalently D(π, η), can be computed directly from the BCDF.

Example A.2. We compute D(π, 1.5). By Proposition A.4,

D(π, 1.5) =
1

β(.5)(1.5)
− π

β
D(π, .5) =

4

3β
− π

β
D(π, .5),

and from Theorem A.5,

D(π, .5) =
1

β π

√
π

β
B(.5, .5)

[
1− F

(
π

β
; .5, .5

)]
− 1

β π
.
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Putting y = t2, we have

F (x; .5, .5) =

∫ x

0

dy
√
y(1 + y)

= 2

∫ √x
0

dt

1 + t2
= 2 tan−1(

√
x).

Thus

D(π, .5) =
1

β π

√
π

β
B(.5, .5)

[
1− 2 tan−1

(√
π

β

)]
− 1

β π
,

whence

D(π, 1.5) =
4

3β
− 1

β2

√
π

β
B(.5, .5)

[
1− 2 tan−1

(√
π

β

)]
+

1

β2
.

We now give the main result for the Kou model.

Theorem A.6. Let π ∈ (0, 1) and β = 1 − π. For the Kou model with parameters

η1 ≥ 1, η2 > 0, λ > 0, p + q = 1, p, q ≥ 0, Sharpe ratio θt and volatility σt, the

optimal portfolio is the unique solution of the equation

πt =
θt
σt

+
(λ p η1D(πt, η1)− λ q η2D(1− πt, η2))

σ2
t

, (A.1.19)

where D(πt, η1) and D(1− πt, η2) can be computed from equation (A.1.18).

Proof. Theorem 3.8 gives the unique optimal portfolio as

πt =
θt
σt

+
G′(πt)

σ2
t

=
µt − rt +G′(πt)

σ2
t

.

The result follows by importing Propositions A.2, A.5 and Theorem 5.7.
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Analytic Formula for G′′(π)

Consider the Kou model with parameters η1 ≥ 1, η2 > 0, λ > 0, p+ q = 1, p, q ≥ 0.

By Propostion A.2,

G′(π) = λ p η1D(π, η1)− λ q η2D(1− π, η2), (A.1.20)

where

D(π, η)
4
=

∫ ∞
0

ex − 1

1 + π(ex − 1)
e−η xdx.

Thus

G′′(π) = λ p η1D
′(π, η1) + λ q η2D

′(1− π, η2), (A.1.21)

where

D′(π, η) = −
∫ ∞

0

(
ex − 1

1 + π(ex − 1)

)2

e−η xdx.

For η > 0 and π ∈ (0, 1), define

A(π, η)
4
=

∫ ∞
0

(
ex − 1

1 + π(ex − 1)

)2

e−η xdx. (A.1.22)

Clearly A(π, η) > 0 and from equation (A.1.20),

G′′(π) = −λ p η1A(π, η1)− λ q η2A(1− π, η2), (A.1.23)

which confirms that G′′(π) < 0 for all π ∈ (0, 1).

Proposition A.6. For η > 0 and π ∈ (0, 1)

A(π, η) = πη−2 [I1 − 2I2 + I3] , (A.1.24)
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where

I1 =
1

η πη
, (A.1.25)

I2 =
1

πη−1
J(π, η + 1), (A.1.26)

and

I3 =

∫ ∞
1

dz

z2(z − β)η+1
. (A.1.27)

Proof. Set y = ex − 1. Then

A(π, η) =

∫ ∞
0

y2 dy

(1 + π y)2 (1 + y)η+1
, η > 0. (A.1.28)

Set z = 1 + π y and β = 1− π. Then y = z−1
π

and 1 + y = z−β
π

and

A(π, η) = πη−2

∫ ∞
1

(z − 1)2 dz

z2 (z − β)η+1
,

= πη−2

[∫ ∞
1

dz

(z − β)η+1
− 2

∫ ∞
1

dz

z (z − β)η+1
+

∫ ∞
1

dz

z2 (z − β)η+1

]
,

= πη−2 [I1 − 2I2 + I3] ,

where

I1 =

∫ ∞
1

dz

(z − β)η+1
=

1

η(1− β)η
=

1

η πη
.

By equation (A.1.12),

I2 =

∫ ∞
1

dz

z (z − β)η+1
=

1

πη−1
J(π, η + 1),

which can be computed in detail using Theorem A.5, and

I3 =

∫ ∞
1

dz

z2 (z − β)η+1
. (A.1.29)
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Proposition A.7. Let 0 < η < 1, π ∈ (0, 1), β = 1− π and a = π
β

. Then

I3 =
(a
π

)η+2
[

1

η aη
−B(1− η, η)P [X(1−η,η) > a]−B(1− η, 1 + η)P [X(1−η,η+1) > a]

]
,

(A.1.30)

where X(u,v) is a Beta random variable with parameters u and v, and B(u, v) is the

corresponding Beta function.

Proof. Let t = z − β. Then

I3 =

∫ ∞
π

dt

(t+ β)2 tη+1
=

1

β2

∫ ∞
π

dt

(1 + t
β
)2 tη+1

.

Set y = t
β
, and a = π

β
. Thus

I3 =
1

βη+2

∫ ∞
a

dy

(1 + y)2 yη+1
=

1

βη+2
H(η + 1, a) =

(a
π

)η+2

H(η + 1, a),

where

H(η, a) =

∫ ∞
a

dy

(1 + y)2 yη
, a > 0. (A.1.31)

Now

H(η + 1, a) =

∫ ∞
a

dy

y(1 + y)(1 + y) yη
=

∫ ∞
a

(
1

y
− 1

1 + y

)
dy

(1 + y) yη

=

∫ ∞
a

dy

(1 + y) yη+1
−
∫ ∞
a

dy

(1 + y)2 yη

=

∫ ∞
a

dy

yη+1
−
∫ ∞
a

dy

(1 + y) yη
−
∫ ∞
a

dy

(1 + y)2 yη

=
1

η aη
−B(1− η, η)P [X(1−η,η) > a]−B(1− η, 1 + η)P [X(1−η,η+1) > a],

where X(u,v) is a Beta random variable with parameters, u and v and B(u, v) is the

corresponding Beta function.
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We now give an explicit formula for G′′(π).

Theorem A.7. Let π ∈ (0, 1), β = 1 − π and a = π
β

. For the Kou model with

parameters η1 ≥ 1, η2 > 0, λ > 0, p+ q = 1, p, q ≥ 0,

G′′(πt) = −λ p η1A(πt, η1)− λ q η2A(1− πt, η2), (A.1.32)

where

A(π, η) = πη−2 (I1 − 2I2 + I3) ,

I1 =
1

η πη
,

I2 =
1

πη−1
J(π, η + 1),

I3 =
(a
π

)η+2

H(η + 1, a),

where J(π, η + 1) = 1
βη
− a J(π, η), and for 0 < η < 1,

J(π, η) =
1

π
aη B(1− η, η) [1− F (a; 1− η, η)] ,

and

H(η+1, a) =
1

η aη
−B(1−η, η)[1−F (a; 1−η, η)]−B(1−η, 1+η)[1−F (a; 1−η, η+1)],

(A.1.33)

where F (x;u, v) is given in Proposition A.7.

Proof. The result follows from Propositions A.7, A.6, A.3 and A.2, and equation

A.1.23.

Remark A.3. We can easily set up a recursive formula for H(η + 1, a) in terms of
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H(η, a) when η > 1, as follows. Define

J(η, a) =

∫ ∞
a

dy

(1 + y) yη
, a > 0, η > 0. (A.1.34)

Since

H(η, a) =

∫ ∞
a

dy

(1 + y)2 yη
, a > 0, η > 0, (A.1.35)

it is easy to show that

H(η, a) = J(η + 1, a)−H(η + 1, a), (A.1.36)

where

J(η + 1, a) =
1

η aη
− J(η, a). (A.1.37)

Specifically, if 0 < η < 1 and a = π
1−π , then

J(η, a) = B(1− η, η) [1− F (a; 1− η, η)], (A.1.38)

where F (x;u, v) is the cumulative distribution function of a Beta random variable

with parameters u and v, and B(u, v) is the corresponding Beta function.
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Appendix B

The CGMY Diffusion Market

The C, GM, Y Lévy process X(CGMY ) was developed by Carr, Geman, Madan and

Yor [12], and is named after its creators. It is a generalization of the Variance Gamma

process VG (C, G, M) by the addition of a stability parameter Y . It reverts to the

the VG (C,G,M) process when Y = 0. Its Lévy density and characteristic function

are, respectively:

v(x) ≡ vCGMY (x) =
C

|x|1+Y
e−G |x|I{x<0}(x) +

C

x1+Y
e−M xI{x>0}(x), (B.0.1)

and

φt(u) = et η(u), u ∈ R, (B.0.2)

η(u) = C Γ(−Y )
{

(M − iu)Y −MY + (G+ iu)Y −GY
}
, (B.0.3)

where C, M ≥ 0 , G > 0, Y < 2, where Y 6= 1. It is a pure jump process with Lévy

triple (γ, 0, vCGMY ), where

γ = C

(∫ 1

0

e−M x x−Y dx−
∫ 0

−1

eGx |x|−Y dx
)
. (B.0.4)

The behaviour of this process is controlled by the stability parameter Y . If Y < 0,
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the paths have finite jumps in any finite interval; that is, it has finite activity. If

Y ≥ 0, the process exhibits infinitely many jumps in any finite time interval; that is,

it has infinite activity.

Its Lévy measure vCGMY (x), is a Completely Monotone (CM) Lévy measure, in

that, it relates arrival rates of large jump sizes to smaller jump sizes by requiring that

large jumps arrive less frequently than smaller jumps. The CGMY process may be of

finite activity (FA), infinite activity (IA), finite variation (FV), quadratic variation

(QV), or infinite variation (IV), depending on the value of Y the stability parameter,

as shown below (cf, CGMY [12]). We summarize these facts in the following theorem:

Range of Y values Properties of CGMY Process

−∞ < Y < −1 NCM, FA

−1 < Y < 0 CM, FA

0 < Y < 1 CM, IA, FV

1 < Y < 2 CM, IA, IV, QV

Theorem B.1 (Carr et al [12]). The CGMY Lévy process satisfies the following

properties.

(1) It has completely monotone Lévy density if Y > −1.

(2) It has infinite activity (
∫
R
v(x)dx =∞) if Y > 0.

(3) It has infinite variation (
∫
|x|≤1
|x| v(x)dx =∞) if Y > 1.
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B.1 The CGMY Market

The CGMY diffusion market consist of a bond B that earns the risk–free interest

rate rt with price Bt = exp
(∫ t

0
rs ds

)
, and a single stock S which has log returns

price dynamic:

d(logSt) = (µt −
1

2
σ2
t ) dt+ σt dBt + dXCGMY

t , (B.1.1)

which is equivalent (by Itô’s formula) to the percentage returns dynamic:

dSt
St

= µt dt+ σt dBt +

∫
R

(ex − 1)N(dt, dx), (B.1.2)

where

XCGMY
t =

∫
R

xN(t, dx), (B.1.3)

and

bt = µt +

∫
R

(ex − 1) vCGMY (x) dx, (B.1.4)

is the stock’s total expected returns, and µt is the continuous component of the total

returns, with volatility σt > 0. N(dt, dx) is the Poisson random measure independent

of the standard Brownian motion B, that counts the jumps of XCGMY . The Lévy

measure is given by: vCGMY (dx) = EN(1, dx).

B.2 CGMY Instantaneous Centralized Moments

These are the usual candidates, defined by the prescriptions:

Mk =

∫
R

(ex − 1)k vCGMY (x) dx and K(s) =

∫
R

(es x − 1) vCGMY (x) dx, s ≥ 0.

We now give a brief review of the negative Gamma function.
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B.2.1 The Negative Gamma Function

The positive Gamma function is defined for positive argument a > 0, as follows:

Γ(a) =

∫ ∞
0+

xa e−x
dx

x
. (B.2.1)

which yields the formulas:

Γ(a+ 1) = aΓ(a) and Γ(a+ 2) = a (a+ 1) Γ(a). (B.2.2)

We define the negative Gamma function by the prescriptions:

Γ(a) =
1

a
Γ(a+ 1), a ∈ (−1, 0), (B.2.3)

=
1

a (a+ 1)
Γ(a+ 2), a ∈ (−2, −1). (B.2.4)

For example,

Γ(−3

2
) =

Γ(1
2
)

−3
2

(−1
2
)

=
4

3
Γ(

1

2
) =

4

3

√
π.

The following result will be useful in the sequel.

Lemma B.1. For each a > 0 and y < 2 with y 6= 0, 1,

∫ ∞
0+

e−a x
dx

x1+y
= ay Γ(−y). (B.2.5)

Proof.
∫∞

0+
e−a x dx

x1+y =
∫∞

0+
x−y e−a x dx

x
= ay

∫∞
0+

(a x)−y e−a x dx
x

= ay Γ(−y), by (B.2.1).

Lemma B.2. Let X = (XCGMY
t )t≥0 be the CGMY process. Then for each s < M

K(s) = C Γ(−Y ) [(M − s)Y −MY + (G+ s)Y −GY ]. (B.2.6)
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Proof. Applying Lemma B.2, we get

K(s)

C
=

∫ 0−

−∞
(esx − 1)eGx

dx

(−x)1+y
+

∫ ∞
0+

(esx − 1)e−M x dx

x1+y

=

∫ ∞
0+

(e−sx − 1)e−Gx
dx

x1+y
+

∫ ∞
0+

(esx − 1)e−M x dx

x1+y

=

∫ ∞
0+

(e−(G+s)x − e−Gx) dx

x1+y
+

∫ ∞
0+

(e−(M−s)x − e−M x)
dx

x1+y

= Γ(−Y )((G+ s)Y −GY ) + Γ(−Y )((M − s)Y −MY ),

whence K(s) = C Γ(−Y )[(M − s)Y −MY + (G+ s)Y −GY ].

We express the last result in a more useful form.

Corollary B.1. Let φ(t) = tY , t ≥ 0. Then for each s ≤M

K(s) = C Γ(−Y )[φ(G+ s)− φ(G) + φ(M − s)− φ(M)]. (B.2.7)

With these explicit values of K(s) in hand, we are now able to compute M1, M2, M3,

M4, using the formula Mk =
∑k

j=1(−1)k−j
(
k
j

)
K(j).

Theorem B.2. Let X be the CGMY process with parameters C, G, M, Y and

∆φ(j) = φ(j + 1)− φ(j). Then

(1) If M > 1, then K1 = M1 = C Γ(−Y )[∆φ(G)−∆φ(M − 1)].

(2) If M > 2, then M2 = C Γ(−Y )[∆2φ(G)−∆2φ(M − 2)].

(3) If M > 3, then M3 = C Γ(−Y )[∆3φ(G)−∆3φ(M − 3)].

(4) If M > 4, then M4 = C Γ(−Y )[∆4φ(G)−∆4φ(M − 4)].

Proof. In each case, we assume that M > k, for k = 1, 2, 3, 4. By Corollary B.1,

M1 = C Γ(−Y )[φ(M−1)−φ(M)+φ(G+1)−φ(G)] = C Γ(−Y )[∆φ(G)−∆φ(M−1)].
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(2) If M > 2, then K2 exists and M2 = K2 − 2K1. Thus

M2 = C Γ(−Y )[φ(M − 2)− φ(M) + φ(G+ 2)− φ(G)

− 2(φ(M − 1)− φ(M) + φ(G+ 1)− φ(G))]

= C Γ(−Y )[φ(G+ 2)− 2φ(G+ 1)− φ(G) + (φ(M)− 2φ(M − 1)− φ(M − 2)]

= C Γ(−Y )[∆φ(G+ 1)−∆φ(G) + ∆φ(M − 1)−∆φ(M − 2)]

= C Γ(−Y )[∆2φ(G) + ∆2φ(M − 2)]

= C Γ(−Y )[∆kφ(G) + (−1)k ∆2φ(M − k)], k = 2.

(3) If M > 3, then K3 exits and M3 = K3 − 3K2 + 3K1. Thus

M3 = C Γ(−Y )[φ(G+ 3)− 3φ(G+ 2) + 3φ(G+ 1)− φ(G)

− (φ(M)− 3φ(M − 1) + 3φ(M − 2)− φ(M − 3)]

= C Γ(−Y )[∆3φ(G)−∆3φ(M − 3)]

= C Γ(−Y )[∆3φ(G) + (−1)3∆3φ(M − 3)]

= C Γ(−Y )[∆kφ(G) + (−1)k∆kφ(M − k)], k = 3.

(4) If M > 4, then K4 exists and M4K4 + 6K2 − 4K3 − 4K1. Thus

M4 = C Γ(−Y )[(φ(G+ 4)− 4φ(G+ 3) + 6φ(G+ 2)− 4φ(G+ 1) + φ(G)

+ (φ(M)− 4φ(M − 1) + 6φ(M − 2)− 4φ(M − 3) + φ(M − 4))]

= C Γ(−Y )[∆4φ(G) + ∆4φ(M − 4)]

= C Γ(−Y )[∆kφ(G) + ∆kφ(M − k)], k = 4.

We may extend the last result inductively to obtain:

Theorem B.3. Let X be the CGMY process with parameters C, G, M, Y and
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φ(t) = tY , t ≥ 0. Then for each positive integer k < M ,

Mk = C Γ(−Y )[∆kφ(G) + ∆kφ(M − k)]. (B.2.8)

We are now in a position to give the optimal portfolio π and its estimate π(k), based on

the k–th degree polynomial approximation of G(α) =
∫
R

log(1+α(ex−1))vCGMY (dx).

B.3 Maximization of Logarithmic Utility from

Terminal Wealth

Let π be the optimal portfolio that maximizes the expected logarithmic utility from

terminal wealth at time T in the CGMY market. Applying Theorem 3.8 yields

Theorem B.4. Let π be the optimal portfolio that maximizes the expected logarithmic

utility from terminal wealth in the CGMY market. Then, for each t ∈ [0, T ]

(1)

πt =
θt
σt

+
G′(πt)

σ2
t

=
µt − rt +G′(πt)

σ2
t

, (B.3.1)

(2) The maximum expected utility starting with x > 0 in wealth, is

u(x) = log(x) +
1

2
E

∫ T

0

θ2
t dt+ E

∫ T

0

f(πt) dt, (B.3.2)

where f(πt) = −1
2
(πt σt − θt)2 +G(πt).

Proof. This follows directly from Theorem 3.8.

Remark B.1. Because G(π), and hence G′(π), is in general very difficult to compute,

we resort to approximation methods. This leads to an approximation πk of π, based

on a k–degree truncated Taylor series expansion of G.
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Theorem B.5. Let π be the optimal portfolio that maximizes the expected logarithmic

utility from terminal wealth in the CGMY market with parameters C, G, M, Y .

(1) For each integer k < M there is an approximation π(k) such that for each t ∈ [0, T ]

π
(k)
t = πmer(t) +

G′k(π
(k)
t )

σ2
t

=
µt − rt +G′k(π

(k)
t )

σ2
t

, (B.3.3)

where Mk = C Γ(−Y )[∆kφ(G) + ∆kφ(M − k)] and Gk(α) =
∑k

j=1(−1)j−1Mj
αj

j
.

(2) The maximum expected logarithmic utility u(x) with x > 0 in initial wealth, is

approximated by u(k)(x) given by

u(k)(x) = log(x) +
1

2
E

∫ T

0

θ2
t dt+ E

∫ T

0

[
Gk(π

(k)
t )− 1

2
(π

(k)
t σt − θt)2

]
dt. (B.3.4)

(3) If the market parameters µt and rt are constants, then

u(k)(x) = log(x) + T

[
Gk(π

(k)
t ) + π

(k)
t (µt − rt)−

1

2
(π

(k)
t σt)

2

]
. (B.3.5)

Proof. Replace G by Gk in Theorem B.4, and the result follows.

Theorem B.6. Let π be the optimal portfolio that maximizes the expected logarithmic

utility from terminal wealth in the CGMY market given by (B.1.2) with parameters

C, G, M, Y . Suppose G(α) is approximated by Gk(α)for each integer k < M . Let

0 < ρ < 1, t ∈ [0, T ] and bt = µt + M1 is the stock’s total returns. Then π is

approximated by π(k) and

(1) Under linear approximation of G,

π
(1)
t =

µt − rt + C Γ(−Y )(φ(G+ 1)− φ(G) + φ(M − 1)− φ(M))

σ2
t

(B.3.6)

=
µt − rt +M1

σ2
t

=
bt − rt
σ2
t

,
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(2) Under quadratic approximation of G,

π
(2)
t =

µt − rt + C Γ(−Y )(φ(G+ 1)− φ(G) + φ(M − 1)− φ(M))

σ2
t + C Γ(−Y )[∆2φ(G) + ∆2φ(M − 2)]

(B.3.7)

=
µt − rt +M1

σ2
t +M2

=
bt − rt
σ2
t +M2

.

(3) Under cubic approximation of G,

π
(3)
t = π± =

(σ2
t +M2)±

√
(σ2

t +M2)2 − 4M3 (µt − rt +M1)

2M3

(B.3.8)

=
Vart ±

√
(Vart)2 − 4M3 (bt − rt)

2M3

where Vart = σ2
t +M2. (4) The maximum expected logarithmic utility from terminal

wealth with x > 0 in initial wealth is approximated by u(k)(x) and given by

u(k)(x) = log(x) +
1

2
E

∫ T

0

θ2
t dt+ E

∫ T

0

[
Gk(π

(k)
t )− 1

2
(π

(k)
t σt − θt)2

]
dt. (B.3.9)

Proof. This is the same as the proof of Theorem 5.18.
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