You are here

Molecular characterization of ARID and DDT domain

Download pdf | Full Screen View

Date Issued:
2010
Summary:
Transcriptional regulation of genes is vital to cell success making it an important aspect of research. Transcriptional regulation can occur in many ways; transcription factors bind to the promoter region and block transcription, disrupt an activator protein, or interact with histones to lead to higher order chromatin. Plant HomeoDomain can recognize and bind to different methylation states of histone tails. PHD proteins use other functional regions to carry out functions. Two associated domains having DNA-binding capacity were characterized in this study; the ARID domains of JARID1A and JARID1C and the DDT domains of BAZ1A, BAZ1B and BAZ2A. These genes are important because of their roles in various diseases such as cancer. The consensus sequences for BAZ1A-DDT is GGACGGRnnGG, GnGAGRGCRnnGGnG, RAGGGGGRnG and CRYCGGT. Consensus sequences for BAZ1B-DDT were CGnCCAnCTTnTGGG and YGCCCCTCCCCnR. Consensus sequences for BAZ2A-DDT were TACnnAGCnY and CnnCCRGCnRTGnYY. Consensus sequence for JARID1A-ARID was GnYnGCGYRCYnCnG. Consensus sequences for JARID1C-ARID was RGGRGCCRGGY.
Title: Molecular characterization of ARID and DDT domain.
123 views
35 downloads
Name(s): MacDonald, Emmanuel.
Charles E. Schmidt College of Science
Department of Biological Sciences
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Issued: 2010
Publisher: Florida Atlantic University
Physical Form: electronic
Extent: viii, 58 p. : ill. (some col.)
Language(s): English
Summary: Transcriptional regulation of genes is vital to cell success making it an important aspect of research. Transcriptional regulation can occur in many ways; transcription factors bind to the promoter region and block transcription, disrupt an activator protein, or interact with histones to lead to higher order chromatin. Plant HomeoDomain can recognize and bind to different methylation states of histone tails. PHD proteins use other functional regions to carry out functions. Two associated domains having DNA-binding capacity were characterized in this study; the ARID domains of JARID1A and JARID1C and the DDT domains of BAZ1A, BAZ1B and BAZ2A. These genes are important because of their roles in various diseases such as cancer. The consensus sequences for BAZ1A-DDT is GGACGGRnnGG, GnGAGRGCRnnGGnG, RAGGGGGRnG and CRYCGGT. Consensus sequences for BAZ1B-DDT were CGnCCAnCTTnTGGG and YGCCCCTCCCCnR. Consensus sequences for BAZ2A-DDT were TACnnAGCnY and CnnCCRGCnRTGnYY. Consensus sequence for JARID1A-ARID was GnYnGCGYRCYnCnG. Consensus sequences for JARID1C-ARID was RGGRGCCRGGY.
Identifier: 654819211 (oclc), 2705077 (digitool), FADT2705077 (IID), fau:3531 (fedora)
Note(s): by Emmanuel MacDonald.
Thesis (M.S.)--Florida Atlantic University, 2010.
Includes bibliography.
Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
Subject(s): Genetic transcription -- Regulation
Transcription factors
Zinc-finger proteins -- Synthesis
Cellular signal transduction
Gene expression
Persistent Link to This Record: http://purl.flvc.org/FAU/2705077
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU