You are here

Identifying Shallow Foundation Failure Modes and Mechanisms Using Surveillance of a Transparent Granular Soil Surrogate

Download pdf | Full Screen View

Date Issued:
2017
Summary:
A transparent soil model of granular fused quartz is developed to study the mechanics of shallow foundations. Soil models, unreinforced and reinforced, prepared at relative densities 0.34 (loose) and 0.64 to 0.69 (medium dense) are tested using a rectangular footing (25 mm wide x 40 mm long) under strain-controlled loading. Digital Image Correlation is used to identify displacements of a seeded central plane parallel to footing width (B) and construct vector fields and contour plots. Fiber-reinforced soil model data analysis is inconclusive. For the unreinforced medium-dense soil, minimum and peak magnitude horizontal displacements occurred directly under the footing at the footing edges; whereas in the loose soil, peak magnitude horizontal displacement occurred directly under the footing. Vector and contour plots revealed that a medium dense soil gradually distributes smaller magnitude displacements over a broad area, in contradistinction to acute, highly localized displacements of larger magnitude in a loose soil.
Title: Identifying Shallow Foundation Failure Modes and Mechanisms Using Surveillance of a Transparent Granular Soil Surrogate.
461 views
404 downloads
Name(s): Purdy, Denys W., author
Sobhan, Khaled, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Civil, Environmental and Geomatics Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 127 p.
Language(s): English
Summary: A transparent soil model of granular fused quartz is developed to study the mechanics of shallow foundations. Soil models, unreinforced and reinforced, prepared at relative densities 0.34 (loose) and 0.64 to 0.69 (medium dense) are tested using a rectangular footing (25 mm wide x 40 mm long) under strain-controlled loading. Digital Image Correlation is used to identify displacements of a seeded central plane parallel to footing width (B) and construct vector fields and contour plots. Fiber-reinforced soil model data analysis is inconclusive. For the unreinforced medium-dense soil, minimum and peak magnitude horizontal displacements occurred directly under the footing at the footing edges; whereas in the loose soil, peak magnitude horizontal displacement occurred directly under the footing. Vector and contour plots revealed that a medium dense soil gradually distributes smaller magnitude displacements over a broad area, in contradistinction to acute, highly localized displacements of larger magnitude in a loose soil.
Identifier: FA00004832 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Soils--Testing.
Soils.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004832
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004832
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.