You are here

Acoustic Tonal and Vector Properties of Red Hind Grouper Vocalizationd

Download pdf | Full Screen View

Date Issued:
2017
Summary:
Vertebrates are the most prodigious vocalizing animals in existence, and the most diverse methods of acoustic communication among vertebrates can be found in the ocean. Relatively many teleost fish are gifted with the ability to communicate acoustically, and the family of serranidae often performs this as a function of the swim bladder. Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped with a drum shaped swim bladder acting as a monopole under typical ocean conditions. This configuration allows for what is understood to be omnidirectional projection of tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to 200 Hz of bandwidth and modulation effects based on observed data provided by researchers. Prior studies on many other fish show correlation in acoustic communication profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to an inherent female identity in all juvenile fish which converts to male according to environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization in terms of spectral content. Communication in fish is a complex multi-modal process, with acoustic communication being important for many of the species, particularly those in the littoral regions of the worlds’ oceans. If identifying characteristics of the red hind vocalization can be isolated based on detection, classification, tracking and localizing methodologies, then these identifying characteristics may indeed lead to passive feature identification that allows for estimation of individual fish mass. Hypotheses based on vector, cyclostationary and classical tonal mechanics are presented for consideration. A battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated undersea sound source were conducted. The results are supplied with the intent of validating hypothesis in a non-expert system manner that shows how a series of biological metrics may be assessed for detection, classification, localization and mass estimation for an individual vocalizing red hind grouper
Title: Acoustic Tonal and Vector Properties of Red Hind Grouper Vocalizationd.
76 views
15 downloads
Name(s): Matthews, Cameron Anthony, author
Beaujean, Pierre-Philippe, Thesis advisor
Florida Atlantic University, Degree grantor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2017
Date Issued: 2017
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 162 p.
Language(s): English
Summary: Vertebrates are the most prodigious vocalizing animals in existence, and the most diverse methods of acoustic communication among vertebrates can be found in the ocean. Relatively many teleost fish are gifted with the ability to communicate acoustically, and the family of serranidae often performs this as a function of the swim bladder. Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped with a drum shaped swim bladder acting as a monopole under typical ocean conditions. This configuration allows for what is understood to be omnidirectional projection of tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to 200 Hz of bandwidth and modulation effects based on observed data provided by researchers. Prior studies on many other fish show correlation in acoustic communication profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to an inherent female identity in all juvenile fish which converts to male according to environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization in terms of spectral content. Communication in fish is a complex multi-modal process, with acoustic communication being important for many of the species, particularly those in the littoral regions of the worlds’ oceans. If identifying characteristics of the red hind vocalization can be isolated based on detection, classification, tracking and localizing methodologies, then these identifying characteristics may indeed lead to passive feature identification that allows for estimation of individual fish mass. Hypotheses based on vector, cyclostationary and classical tonal mechanics are presented for consideration. A battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated undersea sound source were conducted. The results are supplied with the intent of validating hypothesis in a non-expert system manner that shows how a series of biological metrics may be assessed for detection, classification, localization and mass estimation for an individual vocalizing red hind grouper
Identifier: FA00004826 (IID)
Degree granted: Dissertation (Ph.D.)--Florida Atlantic University, 2017.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Wave-motion, Theory of.
Sound production by animals.
Fishes--Vocalization.
Bioacoustics.
Animal communication.
Underwater acoustics.
Acoustic surface waves.
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004826
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004826
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Owner Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.