You are here

cTnI N-Terminal deletion: an agent for rescuing restrictive cardiomyopathy, a disease caused by mutations of Cardiac Troponin I

Download pdf | Full Screen View

Date Issued:
2014
Summary:
Restrictive cardiomyopathy (RCM) is represented in part by left ventricular stiffness and diastolic dysfunction. Missense mutations of the cardiac troponin I (cTnI) gene cause idiopathic RCM. These mutations are located in the C-terminus of cTnI and affect cardiac relaxation. Transgenic mouse models presenting the pathology observed in clinical patients with RCM have been generated previously and express the mutant cTnI in their hearts. RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity and promote diastolic dysfunction in the heart. Previous studies using double transgenic mice (cTnI/R193H/ND) showed that ventricular relaxation is enhanced in the cTnI/R193H transgenic mice. In this study, another double transgenic mouse model, (cTnI/R193H/ND/KO), provides an avenue to investigate its rescuing effects on RCMlinked mutations in the cTnI /R193H/KO mouse. Use of molecular biological techniques, transgenic animal developments and murine echocardiography in this study has culminated into a greater understanding of RCM and diastolic dysfunction.
Title: cTnI N-Terminal deletion: an agent for rescuing restrictive cardiomyopathy, a disease caused by mutations of Cardiac Troponin I.
126 views
46 downloads
Name(s): Getfield, Cecile A., author
Huang, Xupei, Thesis advisor
Florida Atlantic University, Degree grantor
Charles E. Schmidt College of Medicine
Department of Biomedical Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Date Created: 2014
Date Issued: 2014
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 71 p.
Language(s): English
Summary: Restrictive cardiomyopathy (RCM) is represented in part by left ventricular stiffness and diastolic dysfunction. Missense mutations of the cardiac troponin I (cTnI) gene cause idiopathic RCM. These mutations are located in the C-terminus of cTnI and affect cardiac relaxation. Transgenic mouse models presenting the pathology observed in clinical patients with RCM have been generated previously and express the mutant cTnI in their hearts. RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity and promote diastolic dysfunction in the heart. Previous studies using double transgenic mice (cTnI/R193H/ND) showed that ventricular relaxation is enhanced in the cTnI/R193H transgenic mice. In this study, another double transgenic mouse model, (cTnI/R193H/ND/KO), provides an avenue to investigate its rescuing effects on RCMlinked mutations in the cTnI /R193H/KO mouse. Use of molecular biological techniques, transgenic animal developments and murine echocardiography in this study has culminated into a greater understanding of RCM and diastolic dysfunction.
Identifier: FA00004196 (IID)
Degree granted: Thesis (M.S.)--Florida Atlantic University, 2014.
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): Includes bibliography.
Subject(s): Biochemical markers -- Diagnostic use
Cardiovascular system -- Pathophysiology
Coronary heart disease -- Molecular diagnosis
Mice as laboratory animals
Molecular biology
Held by: Florida Atlantic University Libraries
Sublocation: Digital Library
Links: http://purl.flvc.org/fau/fd/FA00004196
Persistent Link to This Record: http://purl.flvc.org/fau/fd/FA00004196
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.