You are here
cTnI N-Terminal deletion: an agent for rescuing restrictive cardiomyopathy, a disease caused by mutations of Cardiac Troponin I
- Date Issued:
- 2014
- Summary:
- Restrictive cardiomyopathy (RCM) is represented in part by left ventricular stiffness and diastolic dysfunction. Missense mutations of the cardiac troponin I (cTnI) gene cause idiopathic RCM. These mutations are located in the C-terminus of cTnI and affect cardiac relaxation. Transgenic mouse models presenting the pathology observed in clinical patients with RCM have been generated previously and express the mutant cTnI in their hearts. RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity and promote diastolic dysfunction in the heart. Previous studies using double transgenic mice (cTnI/R193H/ND) showed that ventricular relaxation is enhanced in the cTnI/R193H transgenic mice. In this study, another double transgenic mouse model, (cTnI/R193H/ND/KO), provides an avenue to investigate its rescuing effects on RCMlinked mutations in the cTnI /R193H/KO mouse. Use of molecular biological techniques, transgenic animal developments and murine echocardiography in this study has culminated into a greater understanding of RCM and diastolic dysfunction.
Title: | cTnI N-Terminal deletion: an agent for rescuing restrictive cardiomyopathy, a disease caused by mutations of Cardiac Troponin I. |
126 views
46 downloads |
---|---|---|
Name(s): |
Getfield, Cecile A., author Huang, Xupei, Thesis advisor Florida Atlantic University, Degree grantor Charles E. Schmidt College of Medicine Department of Biomedical Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Date Created: | 2014 | |
Date Issued: | 2014 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 71 p. | |
Language(s): | English | |
Summary: | Restrictive cardiomyopathy (RCM) is represented in part by left ventricular stiffness and diastolic dysfunction. Missense mutations of the cardiac troponin I (cTnI) gene cause idiopathic RCM. These mutations are located in the C-terminus of cTnI and affect cardiac relaxation. Transgenic mouse models presenting the pathology observed in clinical patients with RCM have been generated previously and express the mutant cTnI in their hearts. RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity and promote diastolic dysfunction in the heart. Previous studies using double transgenic mice (cTnI/R193H/ND) showed that ventricular relaxation is enhanced in the cTnI/R193H transgenic mice. In this study, another double transgenic mouse model, (cTnI/R193H/ND/KO), provides an avenue to investigate its rescuing effects on RCMlinked mutations in the cTnI /R193H/KO mouse. Use of molecular biological techniques, transgenic animal developments and murine echocardiography in this study has culminated into a greater understanding of RCM and diastolic dysfunction. | |
Identifier: | FA00004196 (IID) | |
Degree granted: | Thesis (M.S.)--Florida Atlantic University, 2014. | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): | Includes bibliography. | |
Subject(s): |
Biochemical markers -- Diagnostic use Cardiovascular system -- Pathophysiology Coronary heart disease -- Molecular diagnosis Mice as laboratory animals Molecular biology |
|
Held by: | Florida Atlantic University Libraries | |
Sublocation: | Digital Library | |
Links: | http://purl.flvc.org/fau/fd/FA00004196 | |
Persistent Link to This Record: | http://purl.flvc.org/fau/fd/FA00004196 | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |