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ABSTRACT

Author: Andrew Jason Dweck

Title: Modeling and Simulating Interest Rates via Time-Dependent
Mean Reversion

Institution: Florida Atlantic University

Thesis Advisor: Dr. Hongwei Long

Degree: Master of Science

Year: 2014

The purpose of this thesis is to compare the effectiveness of several interest

rate models in fitting the true value of interest rates. Up until 1990, the universally

accepted models were the equilibrium models, namely the Rendleman–Bartter model,

the Vasicek model, and the Cox–Ingersoll–Ross (CIR) model. While these models

were probably considered relatively accurate around the time of their discovery, they

do not provide a good fit to the initial term structure of interest rates, making them

substandard for use by traders in pricing interest rate options. The fourth model

we consider is the Hull–White one-factor model, which does provide this fit. After

calibrating, simulating, and comparing these four models, we find that the Hull–White

model gives the best fit to our data sets.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND ON INTEREST RATES

What are interest rates? Interest rates are used to define how much money a particular

borrower promises to pay to a lender. Interest rates can be classified as mortgage rates,

deposit rates, prime borrowing rates, et cetera. Given any particular situation, the

applicable interest rate depends on the credit risk, that is, the risk that there will be

a default by the borrower in paying the promised interest. In general, the higher the

credit risk, the more interest the borrower promises to pay the lender. There are two

main types of interest rates; these are the US Treasury rates and the LIBOR rates.

Treasury rates are the rates an investor earns on Treasury bills and Treasury bonds.

Investors may choose to trade bonds themselves, or they may choose to trade options

on those bonds1. LIBOR is short for London Interbank Offered Rate. A LIBOR quote

by a particular bank is the rate of interest at which the bank is prepared to make a

large wholesale deposit with other banks (Hull, 2009). Interest rates can be measured

with annual, semiannual, quarterly, monthly, weekly, or daily compounding. A 10%

interest rate compounded annually means that at the end of one year, $100 will have

1Although option pricing is not the focus of this study, it bears mentioning here what an option is.
A European option maturing at time T on an asset gives its holder the right, but not the obligation,
to either buy or sell the asset at time T for a certain price, while an American option maturing at
time T on an asset gives its holder the right, but not the obligation, to buy or sell the asset at any
time up to and including time T for a certain price. The option that gives its holder the right to
buy the asset is called a call on the asset, while the option that gives its holder the right to sell the
asset is called a put.
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grown to

$100× 1.1 = $110;

a 10% interest rate compounded semiannually means that 5% interest is earned every

six months, so that at the end of one year, $100 will have grown to

$100× 1.05× 1.05 = $110.25;

a 10% interest rate compounded quarterly means that 2.5% interest is earned every

three months, so that at the end of one year, $100 will have grown to

$100× 1.0254 = $110.38;

and so on. There is also the notion of continuous compounding. With continuous

compounding, an amount A invested for n years at the rate R grows to

AeRn.

This can be thought of as the limit the principal grows to as the compounding fre-

quency approaches infinity. It turns out there are some simple relationships between

rates compounded m times per annum and rates compounded continuously. We have

the following two equations:

Rc = m ln

(
1 +

Rm

m

)
and

Rm = m(eRc/m − 1),

where Rc denotes the continuously compounded interest rate and Rm denotes the

interest rate that is compounded m times per annum (Hull, 2009).

The n-year zero-coupon interest rate is defined as the rate of interest earned on an

investment that starts today and lasts for n years (Hull, 2009). By zero-coupon, we

2



mean that there are no payments prior to the end of the n-year period, when all of the

principal and interest are realized. Treasury “zero rates” can be determined by the

market prices of coupon-bearing bonds, but this requires some calculation. To price

bonds correctly, we have to add up all the payments that the owner of the bond will

receive up to, and including, the end of its life. These payments are called coupons,

or cash flows. When valuing a bond, the cash flows are discounted at the appropriate

zero rates. Thus, for a bond with a principal of $100 that provides coupons at the

rate of 6% semiannually, if the zero rates for maturities of six months, one year, one

year and six months, and two years are 5%, 5.8%, 6.4%, and 6.8%, respectively, then

the current value of the bond would be

3e−0.05×0.5 + 3e−0.058×1.0 + 3e−0.064×1.5 + 103e−0.068×2.0 = 98.39

or $98.39. This is called the theoretical price of the bond. The yield of a bond is

defined as the discounting rate that would need to be applied at the maturity of each

coupon to make the bond equal to its theoretical price. Note that, in our example, the

theoretical price came out to be $98.39. The bond yield can therefore be determined

by solving the equation

3e−y×0.5 + 3e−y×1.0 + 3e−y×1.5 + 103e−y×2.0 = 98.39

for y. In this case, y=6.76%. Similarly, the par yield for a certain maturity is defined

as the coupon rate needed to make the bond equal to its principal value. Note that, in

our example, the principal value was $100, while the compounding was semiannual.

Therefore, to obtain the par yield, we would solve the equation

c

2
e−0.05×0.5 +

c

2
e−0.058×1.0 +

c

2
e−0.064×1.5 +

(
100 +

c

2

)
e−0.068×2.0 = 100

for c. This equation can be easily solved as c=6.87% per annum (Hull, 2009).

3



We had mentioned earlier that Treasury zero rates can be determined from the

market prices of coupon-bearing bonds. We will now illustrate how this is done.

Suppose the prices of five bonds are as given in Table 1.1. Since the first three bonds

provide no coupons, the continuously compounded zero rate can be computed as

follows: We know that the first bond will provide a return of 2.5 in three months on an

investment of 97.5. Therefore, the quarterly compounded zero rate is (4×2.5)/97.5 =

10.256% per annum. Using the equation that gives Rc in terms of Rm mentioned

earlier, we get

Rc = 4 ln

(
1 +

0.10256

4

)
= 0.10127.

Thus, the three-month zero rate is 10.127% per annum. The second bond provides

a return of 5.1 in six months on an investment of 94.9. Therefore, the semianually

compounded zero rate is (2 × 5.1)/94.9 = 10.748% per annum. Therefore, we must

have

2 ln

(
1 +

0.10748

2

)
= 0.10469.

Thus, the six-month zero rate must be 10.469% per annum. Looking at the third

bond, we can see that the one-year rate is (1× 10)/90 = 0.10 compounded annually.

From this we can determine the continuously compounded one-year zero rate to be

ln (1 + 0.10) = 0.10536,

or 10.536% per annum. The fourth bond lasts for one year and six months and

provides three payments: $4 after six months, $4 after one year, and $104 after one

year and six months. In order to compute the 1.5-year zero rate, we must use the

zero rates obtained in the previous calculations to discount the annual coupons and

find the value of R that solves the equation

4e−0.10469×0.5 + 4e−0.10536×1.0 + 104e−R×1.5 = 96.

4



This gives R = 0.10681, or 10.681% per annum. Finally, we can use the information

on the last bond to set up the equation

6e−0.10469×0.5 + 6e−0.10536×1.0 + 6e−0.10681×1.5 + 106e−R×2.0 = 101.6.

Solving this gives R=0.10808, or 10.808% per annum. Hull defines the zero curve as

the chart that relates the zero rate to its maturity. The relationship between interest

rates and their maturities is known as the term structure of interest rates.

Bond principal Time to maturity Annual coupon Bond price

($) (years) ($) ($)

100 0.25 0 97.5

100 0.50 0 94.9

100 1.00 0 90.0

100 1.50 8 96.0

100 2.00 12 101.6

Table 1.1: Example of data used in determining Treasury zero rates

Continuous compounding plays an important role in pricing certain instruments,

such as bond options, swap options, and interest rate caps and floors, whose values

depend on the level of interest rates. Such instruments are called interest rate deriva-

tives (Hull, 2009). If we assume interest rates are constant, calculating expected

payoffs for these instruments is easy; in reality interest rates are stochastic. Many

researchers have already developed formulas for pricing options on assets whose val-

ues are resistant to changes in interest rates (such as stock options), but it turns

out that many European option-pricing models (as an example, Black’s model) can

be extended to include the case where interest rates are stochastic. Originally this

5



discovery led researchers to develop models for pricing all kinds of interest rate deriva-

tives, but these early models, which were known as the standard market models, all

rested on the assumption that the value of the underlying asset variable came from a

lognormal distribution. As one might imagine, this was not good for the interest rate

derivatives trader, and it led researchers to develop what are known as term structure

models, or models of the short rate r. These examined the behavior of r over very

small intervals of time, that is, as ∆t → 0. Some of the inventors of these models

also developed corresponding bond-pricing models to go along with the interest rate

models. We shall return to the short-rate models in the next chapter. Before we can

get into a thorough discussion of these models, we must first take up the discussion

of stochastic processes and Brownian motion.

1.2 BACKGROUNDON STOCHASTIC PROCESSES AND ITÔ’S FOR-

MULA

Stochastic processes and Brownian motion are central to understanding the theory

of mathematical finance. According to Øksendal (2007), a stochastic process is a

parameterized collection of random variables {Xt}, t ∈ T , defined on a probability

space (Ω,F , P ) and assuming values in Rn. Brownian motion is a special type of

stochastic process {Bt}, t ≥ 0, such that

P x(Bt1 ∈ F1, . . . , Btk ∈ Fk) =

∫
F1×···×Fk

p(t1, x, x1) · · · p(tk − tk−1, xk−1, xk) dx1 · · · dxk,

where

p(t, x, y) = (2πt)−n/2 · exp

(
−|x− y|

2

2t

)
for y ∈ Rn, t > 0 and

|x− y|2 =
n∑
i=1

(xi − yi)2.

6



Brownian motion can be used to deal with many problems in the area of mathematical

finance. For example, one problem that often arises in this area is the problem of

solving the equation that models a stock price Xt as a function of time t. Suppose

we know that the price Xt of a certain stock satisfies the differential equation

dXt

dt
= µXt + σXtWt,

where Wt is white noise and is equal to dBt/dt. What is the solution Xt of this

equation? What is the mean E[Xt]? What is the variance V ar[Xt]? To answer

these and other questions, we need a few basic results from stochastic calculus. First

and foremost, we must define the Itô integral. Let {Nt}, t ≥ 0, be an increasing

family of σ-algebras of subsets of Ω. A process g(t, ω) : [0,∞) × Ω → Rn is called

Nt-adapted if for each t ≥ 0 the function ω → g(t, ω) is Nt-measurable (Øksendal,

2007). Let V = V(S, T ) be the class of functions f(t, ω) : [0,∞) × Ω → R such

that (t, ω) → f(t, ω) is B × F -measurable, where B denotes the Borel σ-algebra on

[0,∞); f(t, ω) is Ft-adapted; and

E

 T∫
S

f(t, ω)2 dt

 <∞.
Let f ∈ V(S, T ). Then the Itô integral of f from S to T is defined by

T∫
S

f(t, ω) dBt(ω) = lim
n→∞

T∫
S

φn(t, ω) dBt(ω),

where {φn} is a sequence of elementary functions such that

E

 T∫
S

(f(t, ω)− φn(t, ω))2 dt

→ 0

as n→∞ (Øksendal, 2007). The next result, which Øksendal calls the Itô isometry,

is often useful:

E


 T∫
S

f(t, ω) dBt

2
 = E

 T∫
S

f 2(t, ω) dt


7



for all f ∈ V(S, T ).

Next, we must take up the topics of one-dimensional Itô processes and the one-

dimensional Itô formula. Let Bt be one-dimensional Brownian motion on (Ω,F , P ).

A one-dimensional Itô process or stochastic integral is a stochastic process Xt on

(Ω,F , P ) of the form

Xt = X0 +

t∫
0

u(s, ω) ds+

t∫
0

v(s, ω) dBs,

where v ∈ V , so that

P

 t∫
0

v(s, ω)2 ds <∞ for all t ≥ 0

 = 1.

We also assume that u is Ft-adapted and

P

 t∫
0

|u(s, ω)| ds <∞ for all t ≥ 0

 = 1.

The equation for the process Xt given above can be condensed to the shorter differ-

ential form

dXt = u dt+ v dBt

(Øksendal, 2007). Finally, we need one of the most important results in stochastic

calculus: the one-dimensional Itô formula. Let Xt be an Itô process given by

dXt = u dt+ v dBt.

Let g(t, x) ∈ C2([0,∞)×R) (i.e., g is twice continuously differentiable on [0,∞)×R).

Then Yt = g(t,Xt) is again an Itô process, and

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt) · (dXt)

2,

where

(dXt)
2 = (dXt) · (dXt)

8



is computed according to the rules

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt

(Øksendal, 2007).

Now that we have stated these critically important results, let us return our at-

tention to the stock price model (also known as the Black–Scholes model)

dXt

dt
= µXt + σXtWt

mentioned earlier. Wt = dBt/dt and usually we assume B0 = 0. Multiplying both

sides of this equation by dt and dividing both sides by Xt gives us the transformed

equation

dXt

Xt

= µ dt+ σ dBt.

By using Itô’s formula, we find that

Xt = X0e

(
µ−σ

2

2

)
t+σBt ,

which is called geometric Brownian motion. This is the general form of the solution

curve followed by the differential equation for stock prices. It is also the general

solution curve of the differential equation for interest rates under the Rendleman–

Bartter model, as will be discussed later on. If X0 is known and independent of Bt,

then it can be shown that

E[Xt] = X0e
µt

and

V ar[Xt] = X2
0e

2µt(eσ
2t − 1).

Before we proceed, we first try to make sense of what is termed the risk-neutral world.

In such a world, investors require no compensation for risk, and the expected return

on all securities is the risk-free interest rate. That being said, let us return to our

discussion of the short-rate models.
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1.3 OVERVIEW

In this study, we introduce, calibrate, and simulate four popular interest rate models.

These are:

1. Rendleman–Bartter model

2. Vasicek model

3. Cox–Ingersoll–Ross model

4. Hull–White one-factor model

In Chapter 2, we discuss what each of the models say about the way interest rates

behave, give the differential form of each model, and, where applicable, give their

closed-form solutions, expected (mean) values, and variances. We then explain how

each model can be discretized so that they may be calibrated to observable market

data, how the parameters in the models can be estimated (calibrated) from market

data using the familiar least squares procedure, how we can use the estimates for

these parameters to create a simulation equation for each of the models, and how

these simulation equations can be used to simulate interest rates for each day of data

used to calibrate them. In Chapter 3, we calibrate these models to three different sets

of two years of interest rate data, collected by the US Department of the Treasury

from January 2, 2008 to December 31, 2013, simulate them, and show how the models

can be compared in terms of accuracy by comparing the measures of fit obtained for

the prediction of each model. We break the data into three subsets: January 2, 2008

to December 31, 2009; January 4, 2010 to December 30, 2011; and January 3, 2012 to

December 31, 2013; and perform the calibrations and simulations separately on each

set. We also make use of two user-friendly software packages: Minitab and Excel.
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We use Minitab primarily for calibration, Excel primarily for simulation. Finally, in

Chapter 4, we conclude the study by summarizing our findings, their importance, and

their impact on financial analysis.
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CHAPTER 2

METHODOLOGY

In this chapter, we introduce four popular interest rate models. These are:

1. Rendleman–Bartter model

2. Vasicek model

3. Cox–Ingersoll–Ross model

4. Hull–White one-factor model

We first discuss what each of the models say about the way interest rates behave,

then give the differential form of each model, and, where applicable, give their closed-

form solutions, expected (mean) values, and variances. We then explain how each

can be discretized so that they may be calibrated to observable market data, how the

parameters in the models can be estimated (calibrated) from market data using the

familiar least squares procedure, how we can use the estimates for these parameters

to create a simulation equation for each of the models, and how these simulation

equations can be used to simulate interest rates for each day of data used to calibrate

them.

The first three models we are going to look at are called one-factor equilibrium

models. These assume that the short rate r follows some evolutionary path, but that

path depends only on the present value of r. This can be expressed by the relation

drt = m(rt) dt+ s(rt) dzt,

12



where m is the drift, s is the standard deviation, and zt is a standard Brownian

motion. By one factor, we mean that r depends on one source of uncertainty. There

exist models with multiple factors, but we do not consider them here.

2.1 RENDLEMAN–BARTTER MODEL

Rendleman and Bartter (1980) proposed a one-factor equilibrium model; under this

model’s assumption, the risk-neutral process for r is given by

drt = µrt dt+ σrt dzt,

that is, r follows a geometric Brownian motion (like the stock price Xt we considered

earlier). Hence, for this model, we can infer that

rt = r0e

(
µ−σ

2

2

)
t+σzt ,

with mean

E[rt] = r0e
µt

and variance

V ar[rt] = r2
0e

2µt(eσ
2t − 1).

The advantage of the Rendleman and Bartter model is that it assumes interest rates

behave like stock prices, which makes them easy to calculate; the disadvantage is that

the model is not very accurate.

Cescato and Lemgruber (2011) give the discretization of the Rendleman–Bartter

model as

ri = ri−1e

(
µ−σ

2

2

)
∆t+σ

√
∆tzi ,

where ri is the short rate value at time ti = i∆t, ri−1 is the short rate value at time

ti−1 = (i − 1)∆t, ∆t is the time interval, µ is the drift coefficient, σ is the diffusion
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coefficient, and zi is the standard normal random variable (Brownian motion) at time

ti. To calibrate this model, we can use the maximum likelihood method. Let

ui = ln
ri
ri−1

and

ū =
1

n

n∑
i=1

ui.

Then, we have

σ̂2∆t =
1

n

n∑
i=1

(ui − ū)2.

It follows that

σ̂2 =
1

T

n∑
i=1

(ui − ū)2

and

µ̂ =
1

T

n∑
i=1

(ui) +
σ̂2

2
,

where T is the total time in years. It turns out the first term in that last equation

will always be equal to

1

T
ln
rn
r0

,

where r0 denotes the first value in the data set and rn denotes the last value, which

can greatly simplify the calculation. Once we have these values for µ̂ and σ̂2, we can

create the simulation equation

r̃i = r̃i−1e

(
µ̂− σ̂

2

2

)
∆t+σ̂

√
∆tzi ,

where

r̃0 = r0.
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2.2 VASICEK MODEL

Vasicek (1977) proposed a model that assumes that r follows the risk-neutral process

drt = a(b− rt) dt+ σ dzt

and has the advantage that it incorporates mean reversion, which is always observed in

interest rates, making it a much more accurate model than Rendleman and Bartter’s

model. It can be shown that the Vasicek model has the closed-form solution

rt = r0e
−at + b(1− e−at) + σ

t∫
0

ea(s−t) dzs,

with mean

E[rt] = r0e
−at + b(1− e−at)

and variance

V ar[rt] =
σ2

2a
(1− e−2at).

Using the fact that bond prices depend only on the process followed by r in a risk-

neutral world, Vasicek shows that the price P (t, T ) at time t of a zero-coupon bond

that pays off $1 at time T is given by

P (t, T ) = A(t, T )e−B(t,T )r(t),

where

B(t, T ) =
1− e−a(T−t)

a
,

and

A(t, T ) = e
(B(t,T )−T+t)(a2b−σ2/2)

a2
−σ

2B(t,T )2

4a .

When a = 0, B(t, T ) = T − t and

A(t, T ) = e
σ2(T−t)3

6
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(Vasicek, 1977).

The discretization of the Vasicek model is given as

ri = (1− a∆t)ri−1 + ab∆t+ σ
√

∆tzi,

where ri is the short rate value at time ti = i∆t, ri−1 is the short rate value at time

ti−1 = (i − 1)∆t, ∆t is the time interval, b is the long-term rate, a is the reversion

speed of short rate to long-term rate, σ is the diffusion coefficient, and zi is the

standard normal random variable at time ti (Cescato & Lemgruber, 2011). This is

called an AR(1) time series model. To calibrate the Vasicek model, we first use the

least squares method to find the values â and b̂ that minimize the function

SV (a, b) =
n∑
i=1

(ri − ri−1 − ab∆t+ a∆tri−1)2

(Amin, 2012). We can let âb̂∆t = b0, −â∆t = b1, and run a least squares regression

to find values for b0 and b1. Once we have values for b0 and b1, we can divide b1 by

−∆t to find our estimate for a. Then we can use this estimate for a, together with

b0, to solve for our estimate for b. We then have the one-step prediction equation

r̂i = (1− â∆t)ri−1 + âb̂∆t.

We then calculate the standard deviation s of the prediction errors

r̂i − ri

and let

s = σ̂
√

∆t.

We can solve this equation to obtain

σ̂ = s/
√

∆t.
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Once this estimate for σ is obtained, we can simulate ri by using r̃i, which are gen-

erated by the following recursive formula:

r̃i = (1− â∆t)r̃i−1 + âb̂∆t+ σ̂
√

∆tzi,

where

r̃0 = r0.

2.3 COX–INGERSOLL–ROSS MODEL

Cox, Ingersoll, and Ross (1985) proposed that r follows the process

drt = a(b− rt) dt+ σ
√
rt dzt,

the advantage of which might not seem obvious at first glance. The fact is, this

model is not very different from Vasicek’s model. Both incorporate mean reversion,

but in this model the stochastic coefficient is always nonnegative, and hence the

entire process is always nonnegative. Like Vasicek’s model, the Cox, Ingersoll, and

Ross model has formulas that allow for the valuation at time t of zero-coupon bonds

that pay off $1 at time T . Just like in the Vasicek model,

P (t, T ) = A(t, T )e−B(t,T )r(t),

but in the Cox, Ingersoll, and Ross model

B(t, T ) =
2(eγ(T−t) − 1)

(γ + a)(eγ(T−t) − 1) + 2γ
,

and

A(t, T ) =

[
2γe(a+γ)(T−t)/2

(γ + a)(eγ(T−t) − 1) + 2γ

]2ab/σ2

,

where

γ =
√
a2 + 2σ2
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(Cox, Ingersoll, & Ross, 1985).

The discretization of the Cox–Ingersoll–Ross (CIR) model is given as

ri = (1− a∆t)ri−1 + ab∆t+ σ
√
ri−1

√
∆tzi,

where ri is the short rate value at time ti = i∆t, ri−1 is the short rate value at time

ti−1 = (i − 1)∆t, ∆t is the time interval, b is the long-term rate, a is the reversion

speed of short rate to long-term rate, σ is the diffusion coefficient, and zi is the

standard normal random variable at time ti (Cescato & Lemgruber, 2011). The CIR

model can be calibrated in a near-identical fashion to the Vasicek model. We first

find the values â and b̂ that minimize the function

SCIR(a, b) =
n∑
i=1

(
ri − ri−1√

ri−1

− ab∆t
√
ri−1

+ a∆t
√
ri−1

)2

.

If we consider a prediction equation of the form

r̂i − ri−1√
ri−1

= b0 + b1 ·
1
√
ri−1

+ b2
√
ri−1,

we can let 0 = b0, âb̂∆t = b1, −â∆t = b2, and run a least squares regression to find

values for b1 and b2. Note that unlike what we did for the Vasicek model, we are not

fitting an intercept term here. Once we have values for b1 and b2, we can divide b2 by

−∆t to find our estimate for a. Then we can use this estimate for a, together with

b1, to get our estimate for b. We then have the one-step prediction equation

r̂i − ri−1√
ri−1

=
âb̂∆t
√
ri−1

− â∆t
√
ri−1,

or

r̂i = (1− â∆t)ri−1 + âb̂∆t.

We then calculate the standard deviation s of the weighted prediction errors

r̂i − ri√
ri−1
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and let

s = σ̂
√

∆t.

From this we can obtain σ̂ as we did for the Vasicek model, and the desired simulation

model

r̃i = (1− â∆t)r̃i−1 + âb̂∆t+ σ̂
√
r̃i−1

√
∆tzi,

where

r̃0 = r0.

The main purpose of the equilibrium models is to describe how interest rates can

evolve over time. In the real world, however, not only are interest rates functions

of time—the parameters in the equations used to model those interest rates are also

functions of time! As such, the initial term structure of interest rates should be

considered before attempting to model them. Next we will consider a type of interest

rate model—called a no-arbitrage model—that takes this into account.

2.4 HULL–WHITE ONE-FACTOR MODEL

Ho and Lee proposed the first no-arbitrage model in 1986, which allowed for a time-

dependent mean. Hull and White (1990) extended this model to incorporate mean-

reversion. They proposed that r follows the stochastic differential equation

drt = [θ(t)− art] dt+ σ dzt

= a

[
θ(t)

a
− rt

]
dt+ σ dzt

which we can deduce many features from. We know, for instance, that the short rate

r is pulled to the level θ(t)/a at the rate of a. Thus, this model is similar to Vasicek’s

equilibrium model, except that b is replaced by the parameter θ(t)/a, which depends
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on time. For the Hull–White one-factor model, it can be shown that

rt = r0e
−at +

t∫
0

ea(s−t)θ(s) ds+ σ

t∫
0

ea(s−t) dzs,

with mean

E[rt] = r0e
−at +

t∫
0

ea(s−t)θ(s) ds

and variance

V ar[rt] =
σ2

2a
(1− e−2at).

Hull and White show that

θ(t) = Ft(0, t) + aF (0, t) +
σ2

2a
(1− e−2at),

where the F (0, t) is the instantaneous forward rate for a maturity t as seen at time

zero and the subscript t denotes a partial derivative with respect to t. Park (2004)

gives the formula for F (0, t) as

F (0, t) = t
∂R(0, t)

∂t
+R(0, t),

where

R(t, T ) = − log P (t, T )

T − t
.

We also have

P (t, T ) = A(t, T )e−B(t,T )r(t),

where

B(t, T ) =
1− e−a(T−t)

a
,

and

ln A(t, T ) = ln
P (0, T )

P (0, t)
+B(t, T )F (0, t)− 1

4a3
σ2(e−aT − e−at)2(e2at − 1)

20



(Hull & White, 1990).

The Hull–White one-factor model can be discretized as

ri = θi−1∆t+ (1− a∆t)ri−1 + σ
√

∆tzi,

where ri is the short rate value at time ti = i∆t, ri−1 is the short rate value at time

ti−1 = (i−1)∆t, ∆t is the time interval, θi−1 is the value of the parameter θ(t) at time

ti−1, σ is the diffusion coefficient, and zi is the standard normal random variable at

time ti. Thus, the Hull–White one-factor model can be regarded as a dynamic Vasicek

model that changes depending on the day. Up until now, calibrating our models has

been fairly easy; the Hull–White model is an exception. As mentioned earlier, the

no-arbitrage models require knowledge of the initial term structure before they can

be calibrated. Luckily, Park (2004) gives a method for calibrating the Hull–White

one-factor model using such initial term structure data. We wish to use this data to

approximate the forward curve F (0, t). Suppose we are willing to assume that this

curve is polynomial in nature. Then we could easily implement a least squares package

such as Minitab to approximate the curve. Once this curve has been estimated, we

can use a simple formula to calculate θ(t):

θ(t) =
∂F (0, t)

∂t
+ aF (0, t) +

σ2

2a
(1− e−2at)

(Park, 2004). However, Hull (2009) says that the term

σ2

2a
(1− e−2at),

as seen in the expression for θ(t), is usually fairly small and can be ignored when

calculating θ(t). Once we have an expression for θ(t), we can estimate a and σ using

procedures similar to those used to estimate these parameters for the previous three
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models. We begin by noting that

ri − ri−1 = (Ft (0, ti−1) + aF (0, ti−1)) ∆t− a∆tri−1 + σ
√

∆tzi

= Ft (0, ti−1) ∆t+ a (F (0, ti−1)− ri−1) ∆t+ σ
√

∆tzi.

We then proceed by finding the estimate of a that minimizes the function

SHW (a) =
n∑
i=1

(ri − ri−1 − Ft (0, ti−1) ∆t− a (F (0, ti−1)− ri−1) ∆t)2,

which looks complicated but will be relatively straightforward since we will have

already known all of the other quantities in this expression. If we consider a prediction

equation of the form

r̂i − ri−1 − Ft (0, ti−1) ∆t = b1 (F (0, ti−1)− ri−1) ,

we can let 0 = b0, â∆t = b1, and run a least squares regression to obtain a value for

b1. Once we have a value for b1, we can divide this value by ∆t to obtain an estimate

for a. We then have the one-step prediction of ri:

r̂i = (Ft (0, ti−1) + âF (0, ti−1)) ∆t+ (1− â∆t)ri−1.

We then calculate the standard deviation s of the prediction errors

r̂i − ri

and let

s = σ̂
√

∆t.

We can then obtain σ̂ in the usual way. Once the estimate for σ is obtained, we can

simulate ri by using r̃i, which is generated from the following recursive formula:

r̃i = (Ft (0, ti−1) + âF (0, ti−1)) ∆t+ (1− â∆t)r̃i−1 + σ̂
√

∆tzi,
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where

r̃0 = r0.

There exist other no-arbitrage models, such as the Black–Karasinski, Heath–Jarrow–

Morton, and Libor Market models, but we do not consider them further in this study.
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CHAPTER 3

DATA ANALYSIS AND RESULTS

In this chapter, we calibrate the models considered in the previous chapter to three

different sets of two years of interest rate data, collected by the US Department of

the Treasury from January 2, 2008 to December 31, 2013, simulate them, and show

how the models can be compared in terms of accuracy by comparing the measures of

fit obtained for the prediction of each model. We break the data into three subsets:

January 2, 2008 to December 31, 2009; January 4, 2010 to December 30, 2011; and

January 3, 2012 to December 31, 2013; and perform the calibrations and simulations

separately on each set. In this chapter, we also make use of two user-friendly soft-

ware packages: Minitab and Excel. We use Minitab primarily for calibration, Excel

primarily for simulation.

3.1 DATA PREPARATION

For this study, we consider the US Department of the Treasury’s Daily Treasury Yield

Curve Rates data set, taken from http://www.treasury.gov/resource-center/data-

chart-center/interest-rates/. For the sake of simplicity, we only consider one-year

rates. A snapshot of the data is included in Table 3.1. We will break the data into

three subsets: January 2, 2008 to December 31, 2009; January 4, 2010 to December

30, 2011; and January 3, 2012 to December 31, 2013. Using these three data sets, we

will generate interest rates by first calibrating and then simulating the Rendleman–

Bartter, Vasicek, CIR, and Hull–White models. For each of these three subsets, we
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will calibrate the models using all data points, and then simulate the models for each

day of data used to calibrate them. Thus, in each subset, we are considering two

complete years of interest rate data. Since the data were collected daily, we will let

∆t = 1/252, as is the usual convention, during calibration. Once the models are

calibrated, we will simulate each one for each of the days we have collected data (i.e.

∆t = 1/252) to generate new interest rates based on the original data sets. We shall

call the true value of r the observed value for each day in our data sets. Since 0.12

is the first value occurring in the 2012-2013 set, we will use this value for r0 when

simulating values for the second day in our data set, i.e., January 4, 2012. In other

words,

r̃0 = r0 = 0.12.

We do the same thing for the 2010-2011 and 2008-2009 sets. For brevity, we only

narrate the results for the 2012-2013 period. For the other two sets, we just give

the simulation equations and the measures of fit. The calibrations of the Vasicek,

CIR, and Hull–White one-factor models can be easily performed in Minitab, using

Minitab’s regression feature. The Rendleman–Bartter model can be calibrated by

hand. The simulations for each of the models can be efficiently performed in Excel,

which is particularly adept at iterating recursive formulas.

When comparing mathematical models, there are four universally accepted mea-

sures of fit. These are defined as follows:

1. Root mean square error

rmse =

√∑
Rates

(True rate−Model rate)2

Number of rates

2. Average absolute error as a percentage of the mean rate

ape =
1

Mean rate

∑
Rates

|True rate−Model rate|
Number of rates
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3. Average absolute error

aae =
∑
Rates

|True rate−Model rate|
Number of rates

4. Average relative percentage error

arpe =
1

Number of rates

∑
Rates

|True rate−Model rate|
True rate

In general, the smaller these quantities are, the better the fit the model has.

3.2 RENDLEMAN–BARTTER MODEL

3.2.1 2012-2013

For the Rendleman–Bartter model over the 2012-2013 period, using the aforemen-

tioned methods, we get approximately

µ̂− σ̂2

2
= 0.04002

and

σ̂2 = 0.83446.

Date One-Year Rate

1/2/08 3.17

1/3/08 3.13

1/4/08 3.06

...
...

12/31/13 0.13

Table 3.1: Snapshot of Daily Treasury Yield Curve Rates data set

26



Therefore, we must have

σ̂ =
√

0.83446

≈ 0.91349

and

µ̂ = 0.04002 +
0.83446

2

= 0.45725.

Putting all of our previous results together, we can simulate the interest rate on day

i by

r̃i = r̃i−1e

(
µ̂− σ̂

2

2

)
∆t+σ̂

√
∆tzi

= r̃i−1e
0.04002· 1

252
+0.91349

√
1

252
zi

= r̃i−1e
0.00016+0.05754zi , i = 1, 2, . . . , 500,

where r̃0 = r0 = 0.12. The measures of fit for the Rendleman–Bartter model are

summarized in Table 3.2. The Excel output is included in the appendix. From this

we can infer that the Rendleman–Bartter model

rt = 0.12e0.04002t+0.91349zt ,

where t is measured in years, is not a great fit for the data. The simulation depends

too much on the initial value, 0.12, and this greatly distorts the results. Note that

the simulated values for rt “agree” somewhat with the theoretical mean

E[rt] = 0.12e0.45725t

for this model.
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3.2.2 2010-2011

For the Rendleman–Bartter model over the 2010-2011 period, the simulation equation

used was

r̃i = r̃i−1e
−0.00262+0.06783zi , i = 1, 2, . . . , 502,

where r̃0 = r0 = 0.45.

3.2.3 2008-2009

For the Rendleman–Bartter model over the 2008-2009 period, the simulation equation

used was

r̃i = r̃i−1e
−0.00379+0.05340zi , i = 1, 2, . . . , 501,

where r̃0 = r0 = 3.17.

2008-2009 2010-2011 2012-2013

rmse 0.47668 0.04778 0.04258

ape 0.34913 0.15589 0.22254

aae 0.40202 0.03888 0.03405

arpe 0.53252 0.17152 0.20268

Table 3.2: Measures of fit for Rendleman–Bartter model

3.3 VASICEK MODEL

3.3.1 2012-2013

For the Vasicek model over the 2012-2013 period, using Minitab to simplify the cal-

culation, we get approximately

âb̂∆t = 0.00616
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and

−â∆t = −0.0401.

Solving for â and b̂ yields â = 10.1052 and b̂ = 0.15362. Minitab gave s as being

approximately 0.00839, which means that

σ̂ =
s√
∆t

=
0.00839√

1/252

≈ 0.13316.

Putting all of this information together, can simulate ri by r̃i, which is given by:

r̃i = (1− â∆t)r̃i−1 + âb̂∆t+ σ̂
√

∆tzi

= 0.9599r̃i−1 + 0.00616 + 0.00839zi, i = 1, 2, . . . , 500,

where r̃0 = r0 = 0.12. The measures of fit for the Vasicek model are summarized in

Table 3.3. The Minitab and Excel output are included in the appendix, indicative

that the Vasicek model

rt = 0.12e−10.1052t + 0.15362(1− e−10.1052t) + 0.13316

t∫
0

e10.1052(s−t) dzs,

where t is measured in years, is a better fit for the data than the Rendleman–Bartter

model was. The simulation is quickly pulled to the value 0.15362, a much more

accurate portrayal of the data’s true mean. Again we see that the simulated values

for rt exhibit agreement with the theoretical mean

E[rt] = 0.12e−10.1052t + 0.15362(1− e−10.1052t).

3.3.2 2010-2011

For the Vasicek model over the 2010-2011 period, the simulation equation used was

r̃i = 0.9862r̃i−1 + 0.00278 + 0.01449zi, i = 1, 2, . . . , 502,
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where r̃0 = r0 = 0.45.

3.3.3 2008-2009

For the Vasicek model over the 2008-2009 period, the simulation equation used was

r̃i = 0.99096r̃i−1 + 0.00502 + 0.06735zi, i = 1, 2, . . . , 501,

where r̃0 = r0 = 3.17.

2008-2009 2010-2011 2012-2013

rmse 0.48295 0.07357 0.02975

ape 0.32543 0.25128 0.16917

aae 0.37473 0.06267 0.02588

arpe 0.39364 0.31817 0.17734

Table 3.3: Measures of fit for Vasicek model

3.4 COX–INGERSOLL–ROSS MODEL

3.4.1 2012-2013

For the Cox–Ingersoll–Ross model over the 2012-2013 period, we get approximately

âb̂∆t = 0.00634

and

−â∆t = −0.0413.

Solving for â and b̂ yields â = 10.4076 and b̂ = 0.15351. Minitab gave s as being

approximately 0.02185. From this we know that σ̂=0.34686. Putting all of this
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information together, we can simulate ri by r̃i, which is given by:

r̃i = (1− â∆t)r̃i−1 + âb̂∆t+ σ̂
√
r̃i−1

√
∆tzi

= 0.9587r̃i−1 + 0.00634 + 0.02185
√
r̃i−1zi, i = 1, 2, . . . , 500,

where r̃0 = r0 = 0.12. The measures of fit for the CIR model are summarized in

Table 3.4. The Minitab and Excel output are included in the appendix. Based on the

measures of fit, the CIR model appears to provide a slightly better fit for the data

than the Rendleman–Bartter and Vasicek models did.

3.4.2 2010-2011

For the Cox–Ingersoll–Ross model over the 2010-2011 period, the simulation equation

used was

r̃i = 0.9864r̃i−1 + 0.00273 + 0.02962
√
r̃i−1zi, i = 1, 2, . . . , 502,

where r̃0 = r0 = 0.45.

3.4.3 2008-2009

For the Cox–Ingersoll–Ross model over the 2008-2009 period, the simulation equation

used was

r̃i = 0.99186r̃i−1 + 0.00399 + 0.05606
√
r̃i−1zi, i = 1, 2, . . . , 501,

where r̃0 = r0 = 3.17.
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2008-2009 2010-2011 2012-2013

rmse 0.46536 0.07327 0.02972

ape 0.30899 0.25025 0.16898

aae 0.35580 0.06241 0.02585

arpe 0.36204 0.31650 0.17710

Table 3.4: Measures of fit for CIR model

3.5 HULL–WHITE ONE-FACTOR MODEL

3.5.1 2012-2013

Finally, we have the Hull–White one-factor model. As mentioned earlier, before we

can calibrate this model, we need to approximate the function θ(t), which requires

knowledge of the initial term structure. To accomplish this, we used Minitab’s Fitted

Line Plot feature, which gave for the 2012-2013 period

F (0, t) = 0.1289 + 0.2631t− 0.3344t2 + 0.1034t3,

from which we know that

∂F (0, t)

∂t
= 0.2631− 0.6688t+ 0.3102t2.

We therefore must have that

θ(t) ≈ ∂F (0, t)

∂t
+ aF (0, t)

= 0.2631− 0.6688t+ 0.3102t2

+ a(0.1289 + 0.2631t− 0.3344t2

+ 0.1034t3).
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Using the procedures mentioned earlier, we get approximately

â∆t = 0.154.

Solving for the estimate of a yields â = 38.808. Minitab gave s as being approximately

0.00813. From this we know that σ̂=0.12911. Putting all of this information together,

we can simulate ri by r̃i, which is given by:

r̃i =

(
Ft

(
0,
i− 1

252

)
+ âF

(
0,
i− 1

252

))
∆t+ (1− â∆t)r̃i−1 + σ̂

√
∆tzi

= 0.00397Ft

(
0,
i− 1

252

)
+ 0.154F

(
0,
i− 1

252

)
+ 0.846r̃i−1

+ 0.00813zi, i = 1, 2, . . . , 500,

where r̃0 = r0 = 0.12. The measures of fit for the Hull–White one-factor model

are summarized in Table 3.5. The Minitab and Excel output are included in the

appendix.

3.5.2 2010-2011

For the Hull–White one-factor model over the 2010-2011 period, the simulation equa-

tion used was

r̃i = 0.9395r̃i−1 + θ̂i−1∆t+ 0.01433zi, i = 1, 2, . . . , 502,

where

θ̂i−1∆t = 0.00397(−0.1378 + 0.02846ti−1 − 0.03483t2i−1)

+ 0.0605(0.3906− 0.1378ti−1 + 0.01423t2i−1

− 0.01161t3i−1),

and r̃0 = r0 = 0.45.
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3.5.3 2008-2009

For the Hull–White one-factor model over the 2008-2009 period, the simulation equa-

tion used was

r̃i = 0.9735r̃i−1 + θ̂i−1∆t+ 0.06721zi, i = 1, 2, . . . , 501,

where

θ̂i−1∆t = 0.00397(0.3650− 5.2660ti−1 + 3.072t2i−1)

+ 0.0265(2.245 + 0.3650ti−1 − 2.633t2i−1

+ 1.024t3i−1),

and r̃0 = r0 = 3.17.

2008-2009 2010-2011 2012-2013

rmse 0.37558 0.04399 0.01508

ape 0.24526 0.14375 0.07839

aae 0.28242 0.03585 0.01199

arpe 0.31740 0.15724 0.08276

Table 3.5: Measures of fit for Hull–White one-factor model

Comparisons of the results for each of the four models considered in this study

over each of the periods are given in Tables 3.6-3.8. As can obviously be inferred

from the tables, the Hull–White one-factor model provides the best fit for our data

over each of the periods. A graphical comparison of the four models is given in the

appendix, where the x-axis represents the time in days, and the y-axis represents the

level of one-year rates. These graphs demonstrate agreement with the statistics given

in the tables; all indicate that the Hull–White one-factor model provides the best fit

for the given data.
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RB V CIR HW

rmse 0.47668 0.48295 0.46536 0.37558

ape 0.34913 0.32543 0.30899 0.24526

aae 0.40202 0.37473 0.35580 0.28242

arpe 0.53252 0.39364 0.36204 0.31740

Table 3.6: Comparison of models for 2008-2009 period

RB V CIR HW

rmse 0.04778 0.07357 0.07327 0.04399

ape 0.15589 0.25128 0.25025 0.14375

aae 0.03888 0.06267 0.06241 0.03585

arpe 0.17152 0.31817 0.31650 0.15724

Table 3.7: Comparison of models for 2010-2011 period

RB V CIR HW

rmse 0.04258 0.02975 0.02972 0.01508

ape 0.22254 0.16917 0.16898 0.07839

aae 0.03405 0.02588 0.02585 0.01199

arpe 0.20268 0.17734 0.17710 0.08276

Table 3.8: Comparison of models for 2012-2013 period
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CHAPTER 4

CONCLUSION

In this chapter, we conclude the study by summarizing our findings, their importance,

and their impact on financial analysis.

We simulated interest rate values over three two-year periods using four different

models: the Rendleman–Bartter model, the Vasicek model, the Cox–Ingersoll–Ross

model, and the Hull–White one-factor model. Overall, the Hull–White model gave

the lowest amount of error between the true interest rate value and the predicted

rate for each day. It should be noted, however, that there are many different ways to

calibrate each of these models, and different calibration techniques will yield different

results. For instance, we could have estimated the parameters using the maximum

likelihood (MLE) or method of moments techniques. However, for the purposes of this

study, the least squares method (LSM) was the safest and easiest to implement. In

addition, our choice to use a cubic polynomial function to estimate the F (0, t) in the

Hull–White model was not necessarily “ideal” since in actuality interest rates do not

increase (or decrease) without bound. Our estimate does, however, convey the general

idea that interest rates do behave like time-dependent mean reversion processes; and,

at least on our restricted two-year domain, seem to follow a path given by a cubic

polynomial. Now, had our data sets been somewhat larger, say, five to ten years of

interest rate values, a higher-degree polynomial or even a trigonometric path might

have been more preferable.

As investors trade more bond and swap options, their reliance on more accurate
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interest rate models is indisputable. This may be why so many investors got “fed

up” with the equilibrium models of interest rates. Besides being unreliable, the

equilibrium models do not provide an exact fit to today’s term structure of interest

rates, making them unrealistic as well, not that they cannot sometimes be useful. If

an analyst chooses the parameters of an equilibrium model wisely enough, he or she

can make very accurate predictions given the historical data. In fact, before option

trading became popular, the equilibrium models of interest rates actually priced the

underlying bonds quite reasonably well. But now that investors are actively trading

options on those bonds, the pricing processes have become quite complicated. It is

no longer possible to predict with near-certainty what the value of an interest rate

derivative will be years from now, given that the variability in value of an option on

a bond must be at least as high as the variability in value of the bond itself. As Hull

(2009) remarks, “A 1% error in the price of the underlying bond may lead to a 25%

error in an option price” (p. 678).
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APPENDIX A

GRAPHS, MINITAB OUTPUT, AND EXCEL SIMULATION

SNAPSHOTS

A.1 RENDLEMAN–BARTTER MODEL

A.1.1 2008-2009

Figure A.1: Rendleman-Bartter model vs. true value 2008-2009
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Date Simulated Value

1/2/08 3.17000

1/3/08 3.15254

1/4/08 2.95101

...
...

12/31/09 0.25108

Table A.1: Snapshot of Excel simulation for Rendleman-Bartter model
2008-2009

A.1.2 2010-2011

Figure A.2: Rendleman-Bartter model vs. true value 2010-2011
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Date Simulated Value

1/4/10 0.45000

1/5/10 0.44282

1/6/10 0.45102

...
...

12/30/11 0.08079

Table A.2: Snapshot of Excel simulation for Rendleman-Bartter model
2010-2011

A.1.3 2012-2013

Figure A.3: Rendleman-Bartter model vs. true value 2012-2013
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Date Simulated Value

1/3/12 0.12000

1/4/12 0.12223

1/5/12 0.12196

...
...

12/31/13 0.11463

Table A.3: Snapshot of Excel simulation for Rendleman-Bartter model
2012-2013
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A.2 VASICEK MODEL

A.2.1 2008-2009

Figure A.4: Vasicek model vs. true value 2008-2009

Predictor Coef SE Coef T P

Constant 0.005017 0.005247 0.96 0.339

Lag 1 -0.009036 0.003727 -2.42 0.016

S=0.0673472

Table A.4: Minitab output for Vasicek model calibration 2008-2009
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Date Simulated Value

1/2/08 3.17000

1/3/08 3.10096

1/4/08 3.14830

...
...

12/31/09 0.05282

Table A.5: Snapshot of Excel simulation for Vasicek model 2008-2009

A.2.2 2010-2011

Figure A.5: Vasicek model vs. true value 2010-2011
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Predictor Coef SE Coef T P

Constant 0.002779 0.001796 1.55 0.122

Lag 1 -0.013776 0.006704 -2.05 0.040

S=0.0144931

Table A.6: Minitab output for Vasicek model calibration 2010-2011

Date Simulated Value

1/4/10 0.45000

1/5/10 0.43698

1/6/10 0.46342

...
...

12/30/11 0.14116

Table A.7: Snapshot of Excel simulation for Vasicek model 2010-2011
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A.2.3 2012-2013

Figure A.6: Vasicek model vs. true value 2012-2013

Predictor Coef SE Coef T P

Constant 0.006165 0.001947 3.17 0.002

Lag 1 -0.04015 0.01248 -3.22 0.001

S=0.00838844

Table A.8: Minitab output for Vasicek model calibration 2012-2013
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Date Simulated Value

1/3/12 0.12000

1/4/12 0.11807

1/5/12 0.13212

...
...

12/31/13 0.17703

Table A.9: Snapshot of Excel simulation for Vasicek model 2012-2013

A.3 COX–INGERSOLL–ROSS MODEL

A.3.1 2008-2009

Figure A.7: CIR model vs. true value 2008-2009
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Predictor Coef SE Coef T P

Sqrt(Lag 1) -0.008144 0.003682 -2.21 0.027

Sqrt(Lag 1) Inverse 0.003989 0.003283 1.22 0.225

S=0.0560611

Table A.10: Minitab output for CIR model calibration 2008-2009

Date Simulated Value

1/2/08 3.17000

1/3/08 3.08757

1/4/08 3.19475

...
...

12/31/09 0.20494

Table A.11: Snapshot of Excel simulation for CIR model 2008-2009
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A.3.2 2010-2011

Figure A.8: CIR model vs. true value 2010-2011

Predictor Coef SE Coef T P

Sqrt(Lag 1) -0.013591 0.006341 -2.14 0.033

Sqrt(Lag 1) Inverse 0.002733 0.001438 1.90 0.058

S=0.0296151

Table A.12: Minitab output for CIR model calibration 2010-2011
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Date Simulated Value

1/4/10 0.45000

1/5/10 0.42951

1/6/10 0.40830

...
...

12/30/11 0.15628

Table A.13: Snapshot of Excel simulation for CIR model 2010-2011

A.3.3 2012-2013

Figure A.9: CIR model vs. true value 2012-2013
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Predictor Coef SE Coef T P

Sqrt(Lag 1) -0.04128 0.01253 -3.29 0.001

Sqrt(Lag 1) Inverse 0.006337 0.001879 3.37 0.001

S=0.0218529

Table A.14: Minitab output for CIR model calibration 2012-2013

Date Simulated Value

1/3/12 0.12000

1/4/12 0.12711

1/5/12 0.12663

...
...

12/31/13 0.16854

Table A.15: Snapshot of Excel simulation for CIR model 2012-2013
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A.4 HULL–WHITE ONE-FACTOR MODEL

A.4.1 2008-2009

Figure A.10: Hull-White one-factor model vs. true value 2008-2009
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Figure A.11: Fitted line plot used in Hull-White one-factor model cali-
bration 2008-2009

Predictor Coef SE Coef T P

C6-C3 0.026526 0.008763 3.03 0.003

S=0.0672121

Table A.16: Minitab output for Hull-White one-factor model calibration
2008-2009
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Date Simulated Value

1/2/08 3.17000

1/3/08 3.18284

1/4/08 3.23546

...
...

12/31/09 0.90115

Table A.17: Snapshot of Excel simulation for Hull-White one-factor
model 2008-2009

A.4.2 2010-2011

Figure A.12: Hull-White one-factor model vs. true value 2010-2011
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Figure A.13: Fitted line plot used in Hull-White one-factor model cali-
bration 2010-2011

Predictor Coef SE Coef T P

C6-C3 0.06047 0.01522 3.97 0.000

S=0.0143302

Table A.18: Minitab output for Hull-White one-factor model calibration
2010-2011
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Date Simulated Value

1/4/10 0.45000

1/5/10 0.44801

1/6/10 0.44583

...
...

12/30/11 0.15494

Table A.19: Snapshot of Excel simulation for Hull-White one-factor
model 2010-2011

A.4.3 2012-2013

Figure A.14: Hull-White one-factor model vs. true value 2012-2013
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Figure A.15: Fitted line plot used in Hull-White one-factor model cali-
bration 2012-2013

Predictor Coef SE Coef T P

C6-C3 0.15429 0.02395 6.44 0.000

S=0.00813339

Table A.20: Minitab output for Hull-White one-factor model calibration
2012-2013
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Date Simulated Value

1/3/12 0.12000

1/4/12 0.12577

1/5/12 0.13572

...
...

12/31/13 0.15048

Table A.21: Snapshot of Excel simulation for Hull-White one-factor
model 2012-2013
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