You are here
model of the horseshoe vortex in juncture flows
- Date Issued:
- 1996
- Summary:
- When a boundary-layer flow, either laminar or turbulent, encounters a hemispherical body extending from a surface, a horseshoe-shaped vortex forms at the juncture. In this thesis, we study the evolution of this vortex using a numerical inviscid model and laboratory experiments. The numerical model is based on determining the evolution of the filament using the cut-off method. The assumption is that although the generation of the vortex depends on viscous effects, the dynamic evolution is well described by inviscid equations of motion. It is found that the vortex filament is fairly steady on the upstream side but on the downstream side, travelling waves appear on it which cannot be suppressed through evolution. For a range of Reynolds number, steady horseshoe-shaped vortex was obtained in the experiments, revealing the shape past the hemisphere. This is compared with the numerical results.
Title: | A model of the horseshoe vortex in juncture flows. |
![]() ![]() |
---|---|---|
Name(s): |
Monnier, Elie Bertrand. Florida Atlantic University, Degree grantor Dhanak, Manhar R., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1996 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 96 p. | |
Language(s): | English | |
Summary: | When a boundary-layer flow, either laminar or turbulent, encounters a hemispherical body extending from a surface, a horseshoe-shaped vortex forms at the juncture. In this thesis, we study the evolution of this vortex using a numerical inviscid model and laboratory experiments. The numerical model is based on determining the evolution of the filament using the cut-off method. The assumption is that although the generation of the vortex depends on viscous effects, the dynamic evolution is well described by inviscid equations of motion. It is found that the vortex filament is fairly steady on the upstream side but on the downstream side, travelling waves appear on it which cannot be suppressed through evolution. For a range of Reynolds number, steady horseshoe-shaped vortex was obtained in the experiments, revealing the shape past the hemisphere. This is compared with the numerical results. | |
Identifier: | 15326 (digitool), FADT15326 (IID), fau:12096 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1996. |
|
Subject(s): |
Boundary layer Cascades (Fluid dynamics) Flow visualization Vortex generators |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15326 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |