You are here
connectionist approach to adaptive reasoning: An expert system to predict skid numbers
- Date Issued:
- 1996
- Summary:
- This project illustrates the neural network approach to constructing a fuzzy logic decision system. This technique employs an artificial neural network (ANN) to recognize the relationships that exit between the various inputs and outputs. An ANN is constructed based on the variables present in the application. The network is trained and tested. Various training methods are explored, some of which include auxiliary input and output columns. After successful testing, the ANN is exposed to new data and the results are grouped into fuzzy membership sets based membership evaluation rules. This data grouping forms the basis of a new ANN. The network is now trained and tested with the fuzzy membership data. New data is presented to the trained network and the results form the fuzzy implications. This approach is used to compute skid resistance values from G-analyst accelerometer readings on open grid bridge decks.
Title: | A connectionist approach to adaptive reasoning: An expert system to predict skid numbers. |
67 views
28 downloads |
---|---|---|
Name(s): |
Reddy, Mohan S. Florida Atlantic University, Degree grantor Pandya, Abhijit S., Thesis advisor College of Engineering and Computer Science Department of Computer and Electrical Engineering and Computer Science |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1996 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 111 p. | |
Language(s): | English | |
Summary: | This project illustrates the neural network approach to constructing a fuzzy logic decision system. This technique employs an artificial neural network (ANN) to recognize the relationships that exit between the various inputs and outputs. An ANN is constructed based on the variables present in the application. The network is trained and tested. Various training methods are explored, some of which include auxiliary input and output columns. After successful testing, the ANN is exposed to new data and the results are grouped into fuzzy membership sets based membership evaluation rules. This data grouping forms the basis of a new ANN. The network is now trained and tested with the fuzzy membership data. New data is presented to the trained network and the results form the fuzzy implications. This approach is used to compute skid resistance values from G-analyst accelerometer readings on open grid bridge decks. | |
Identifier: | 15239 (digitool), FADT15239 (IID), fau:12010 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1996. |
|
Subject(s): |
Artificial intelligence Fuzzy logic Neural networks (Computer science) Pavements--Skid resistance |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15239 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |