You are here

connectionist approach to adaptive reasoning: An expert system to predict skid numbers

Download pdf | Full Screen View

Date Issued:
1996
Summary:
This project illustrates the neural network approach to constructing a fuzzy logic decision system. This technique employs an artificial neural network (ANN) to recognize the relationships that exit between the various inputs and outputs. An ANN is constructed based on the variables present in the application. The network is trained and tested. Various training methods are explored, some of which include auxiliary input and output columns. After successful testing, the ANN is exposed to new data and the results are grouped into fuzzy membership sets based membership evaluation rules. This data grouping forms the basis of a new ANN. The network is now trained and tested with the fuzzy membership data. New data is presented to the trained network and the results form the fuzzy implications. This approach is used to compute skid resistance values from G-analyst accelerometer readings on open grid bridge decks.
Title: A connectionist approach to adaptive reasoning: An expert system to predict skid numbers.
67 views
28 downloads
Name(s): Reddy, Mohan S.
Florida Atlantic University, Degree grantor
Pandya, Abhijit S., Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1996
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 111 p.
Language(s): English
Summary: This project illustrates the neural network approach to constructing a fuzzy logic decision system. This technique employs an artificial neural network (ANN) to recognize the relationships that exit between the various inputs and outputs. An ANN is constructed based on the variables present in the application. The network is trained and tested. Various training methods are explored, some of which include auxiliary input and output columns. After successful testing, the ANN is exposed to new data and the results are grouped into fuzzy membership sets based membership evaluation rules. This data grouping forms the basis of a new ANN. The network is now trained and tested with the fuzzy membership data. New data is presented to the trained network and the results form the fuzzy implications. This approach is used to compute skid resistance values from G-analyst accelerometer readings on open grid bridge decks.
Identifier: 15239 (digitool), FADT15239 (IID), fau:12010 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1996.
Subject(s): Artificial intelligence
Fuzzy logic
Neural networks (Computer science)
Pavements--Skid resistance
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15239
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.