You are here

Performance analysis of the genetic algorithm and its applications

Download pdf | Full Screen View

Date Issued:
1995
Summary:
Research and applications of genetic algorithms have become increasingly important in a wide variety of scientific fields. In this thesis, we present an empirical analysis of genetic algorithms in the function optimization area. As a focus of our research, a novel empirical analysis approach to various genetic algorithms is provided. The research starts from the survey of current trends in genetic algorithms, followed by exploring the characteristics of the simple genetic algorithm, the modified genetic algorithm and hybridized genetic algorithm. A number of typical function optimization problems are solved by these genetic algorithms. Ample empirical data associated with various modifications to the simple genetic algorithm is also provided. Results from this research can be used to assist practitioners in their applications of genetic algorithms.
Title: Performance analysis of the genetic algorithm and its applications.
176 views
77 downloads
Name(s): Liu, Xinggang.
Florida Atlantic University, Degree grantor
Zhuang, Hanqi, Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1995
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 138 p.
Language(s): English
Summary: Research and applications of genetic algorithms have become increasingly important in a wide variety of scientific fields. In this thesis, we present an empirical analysis of genetic algorithms in the function optimization area. As a focus of our research, a novel empirical analysis approach to various genetic algorithms is provided. The research starts from the survey of current trends in genetic algorithms, followed by exploring the characteristics of the simple genetic algorithm, the modified genetic algorithm and hybridized genetic algorithm. A number of typical function optimization problems are solved by these genetic algorithms. Ample empirical data associated with various modifications to the simple genetic algorithm is also provided. Results from this research can be used to assist practitioners in their applications of genetic algorithms.
Identifier: 15210 (digitool), FADT15210 (IID), fau:11982 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.E.)--Florida Atlantic University, 1995.
Subject(s): Genetic algorithms
Combinatorial optimization
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/15210
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.