You are here
Non-separable two dimensional wavelets and their filter banks in polar coordinates
- Date Issued:
- 1995
- Summary:
- The problems encountered in development and implementation of orthonormal two dimensional wavelet bases and their filter banks in polar coordinates are addressed. These wavelets and filter banks have possible applications in processing signals that are collected by sensors working in the polar coordinate system, such as biomedical and radar generated signals. The relationship between the space of measurable, square-integrable functions on the punctured polar coordinate system L^2(P) and space of measurable, square-integrable functions on the rectangular plane L^2(R^2) is developed. This allows us to develop complete wavelet bases in a more convenient and familiar surrounding of L^2(R^2) and to transport this theory to L^2(P). Corresponding filter banks are also developed. The implementation of wavelet analysis of punctured polar plane is discussed. An example of wavelet bases, filter banks, and implementation is provided.
Title: | Non-separable two dimensional wavelets and their filter banks in polar coordinates. |
![]() ![]() |
---|---|---|
Name(s): |
Andric, Oleg. Florida Atlantic University, Degree grantor Erdol, Nurgun, Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1995 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 111 p. | |
Language(s): | English | |
Summary: | The problems encountered in development and implementation of orthonormal two dimensional wavelet bases and their filter banks in polar coordinates are addressed. These wavelets and filter banks have possible applications in processing signals that are collected by sensors working in the polar coordinate system, such as biomedical and radar generated signals. The relationship between the space of measurable, square-integrable functions on the punctured polar coordinate system L^2(P) and space of measurable, square-integrable functions on the rectangular plane L^2(R^2) is developed. This allows us to develop complete wavelet bases in a more convenient and familiar surrounding of L^2(R^2) and to transport this theory to L^2(P). Corresponding filter banks are also developed. The implementation of wavelet analysis of punctured polar plane is discussed. An example of wavelet bases, filter banks, and implementation is provided. | |
Identifier: | 15190 (digitool), FADT15190 (IID), fau:11962 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1995. |
|
Subject(s): |
Wavelets (Mathematics) Coordinates, Polar Signal processing--Mathematical models |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/15190 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |