You are here

Lifeline structures under earthquake excitations

Download pdf | Full Screen View

Date Issued:
1993
Summary:
An analytical method is proposed for the response analysis of lifeline structures subjected to earthquake excitations. The main feature of the approach is to consider the vibrational motion as a result of the wave motion in a waveguide-like lifeline structure. Based on the theory of wave propagation, scattering matrices are derived to characterize the wave propagation in individual segments and wave reflections and transmissions at supports and boundaries. Response solution is derived in a closed form, suitable for stochastic analysis when the input is an earthquake excitation. A space-time earthquake ground motion model that accounts for both coherent decay and seismic wave propagation is used to specify motions at supports. The proposed technique can be used to obtain lifeline structural response accurately and determine the correlation between any two locations in an effective manner. The computational aspects of its implementation are also discussed. Numerical examples are presented to illustrate the application and efficiency of the proposed analytical scheme.
Title: Lifeline structures under earthquake excitations.
86 views
30 downloads
Name(s): Reddy, Kondakrindhi Praveen.
Florida Atlantic University, Degree grantor
Yong, Yan, Thesis advisor
College of Engineering and Computer Science
Department of Ocean and Mechanical Engineering
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1993
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 168 p.
Language(s): English
Summary: An analytical method is proposed for the response analysis of lifeline structures subjected to earthquake excitations. The main feature of the approach is to consider the vibrational motion as a result of the wave motion in a waveguide-like lifeline structure. Based on the theory of wave propagation, scattering matrices are derived to characterize the wave propagation in individual segments and wave reflections and transmissions at supports and boundaries. Response solution is derived in a closed form, suitable for stochastic analysis when the input is an earthquake excitation. A space-time earthquake ground motion model that accounts for both coherent decay and seismic wave propagation is used to specify motions at supports. The proposed technique can be used to obtain lifeline structural response accurately and determine the correlation between any two locations in an effective manner. The computational aspects of its implementation are also discussed. Numerical examples are presented to illustrate the application and efficiency of the proposed analytical scheme.
Identifier: 14898 (digitool), FADT14898 (IID), fau:11682 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.)--Florida Atlantic University, 1993.
Subject(s): Artificial intelligence
Fuzzy logic
Neural networks (Computer science)
Pavements--Skid resistance
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14898
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Host Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.