You are here
Lifeline structures under earthquake excitations
- Date Issued:
- 1993
- Summary:
- An analytical method is proposed for the response analysis of lifeline structures subjected to earthquake excitations. The main feature of the approach is to consider the vibrational motion as a result of the wave motion in a waveguide-like lifeline structure. Based on the theory of wave propagation, scattering matrices are derived to characterize the wave propagation in individual segments and wave reflections and transmissions at supports and boundaries. Response solution is derived in a closed form, suitable for stochastic analysis when the input is an earthquake excitation. A space-time earthquake ground motion model that accounts for both coherent decay and seismic wave propagation is used to specify motions at supports. The proposed technique can be used to obtain lifeline structural response accurately and determine the correlation between any two locations in an effective manner. The computational aspects of its implementation are also discussed. Numerical examples are presented to illustrate the application and efficiency of the proposed analytical scheme.
Title: | Lifeline structures under earthquake excitations. |
86 views
30 downloads |
---|---|---|
Name(s): |
Reddy, Kondakrindhi Praveen. Florida Atlantic University, Degree grantor Yong, Yan, Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1993 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 168 p. | |
Language(s): | English | |
Summary: | An analytical method is proposed for the response analysis of lifeline structures subjected to earthquake excitations. The main feature of the approach is to consider the vibrational motion as a result of the wave motion in a waveguide-like lifeline structure. Based on the theory of wave propagation, scattering matrices are derived to characterize the wave propagation in individual segments and wave reflections and transmissions at supports and boundaries. Response solution is derived in a closed form, suitable for stochastic analysis when the input is an earthquake excitation. A space-time earthquake ground motion model that accounts for both coherent decay and seismic wave propagation is used to specify motions at supports. The proposed technique can be used to obtain lifeline structural response accurately and determine the correlation between any two locations in an effective manner. The computational aspects of its implementation are also discussed. Numerical examples are presented to illustrate the application and efficiency of the proposed analytical scheme. | |
Identifier: | 14898 (digitool), FADT14898 (IID), fau:11682 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 1993. |
|
Subject(s): |
Artificial intelligence Fuzzy logic Neural networks (Computer science) Pavements--Skid resistance |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14898 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |