You are here
Settling of fine particles
- Date Issued:
- 1992
- Summary:
- This study pertaining to the settling of fine particles is developed using various models and formulas. The model considers two layers, i.e, the suspension zone dominated by perikinetic flocculation and the settling zone governed by gravitational force. In the suspension zone, floc formation of fine particles is simulated by the maximum chain model in which floc parameters and fractal dimension are compared with existing data. In addition, fractal dimension is compared with that of the hierarchical model. The main assumption of the model is that any floc having sixteen particles outweighs Brownian force, and thus the floc starts falling down into the settling zone. The flocs moving from the suspension zone are considered as nonspherical particles in the settling zone. The study uses a dimensionless settling velocity, omega*, for estimation of the sedimentation of flocs. Settling causes aggregation of the depositing flocs. The form of these aggregates is analyzed by the fractal relationship P ~ L delta.
Title: | Settling of fine particles. |
92 views
30 downloads |
---|---|---|
Name(s): |
Kim, Hung Soo. Florida Atlantic University, Degree grantor Scarlatos, Panagiotis (Pete) D., Thesis advisor College of Engineering and Computer Science Department of Ocean and Mechanical Engineering |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1992 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 107 p. | |
Language(s): | English | |
Summary: | This study pertaining to the settling of fine particles is developed using various models and formulas. The model considers two layers, i.e, the suspension zone dominated by perikinetic flocculation and the settling zone governed by gravitational force. In the suspension zone, floc formation of fine particles is simulated by the maximum chain model in which floc parameters and fractal dimension are compared with existing data. In addition, fractal dimension is compared with that of the hierarchical model. The main assumption of the model is that any floc having sixteen particles outweighs Brownian force, and thus the floc starts falling down into the settling zone. The flocs moving from the suspension zone are considered as nonspherical particles in the settling zone. The study uses a dimensionless settling velocity, omega*, for estimation of the sedimentation of flocs. Settling causes aggregation of the depositing flocs. The form of these aggregates is analyzed by the fractal relationship P ~ L delta. | |
Identifier: | 14872 (digitool), FADT14872 (IID), fau:11658 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.E.)--Florida Atlantic University, 1992. |
|
Subject(s): |
Fluid dynamics Flow visualization |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14872 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |