You are here

adaptive computed torque controller for the I.B.M. Electric Drive Robot

Download pdf | Full Screen View

Date Issued:
1990
Summary:
The I.B.M. Electric Drive Robot (E.D.R.) is a six-link manipulator originally controlled by a classical analog P.I.D. controller. Its performance is not satisfactory because of its poor tracking capabilities and a considerable vibration during arm movement. This is the central motivation for designing an adaptive computed torque controller for this system. In order to accomplish this the physical model of the robot is first reparameterized such that it is linear with respect to a set of uncertain parameters. Once this is accomplished the adaptive controller is then formulated. Next methods of computer simulation are developed and employed. These simulation results show the superior performance of the proposed scheme over both a classical computed torque controller and the current P.I.D. controller.
Title: An adaptive computed torque controller for the I.B.M. Electric Drive Robot.
18 views
1 downloads
Name(s): Miller, Lee Wayne.
Florida Atlantic University, Degree grantor
Pajunen, Grazyna, Thesis advisor
College of Engineering and Computer Science
Department of Computer and Electrical Engineering and Computer Science
Type of Resource: text
Genre: Electronic Thesis Or Dissertation
Issuance: monographic
Date Issued: 1990
Publisher: Florida Atlantic University
Place of Publication: Boca Raton, Fla.
Physical Form: application/pdf
Extent: 131 p.
Language(s): English
Summary: The I.B.M. Electric Drive Robot (E.D.R.) is a six-link manipulator originally controlled by a classical analog P.I.D. controller. Its performance is not satisfactory because of its poor tracking capabilities and a considerable vibration during arm movement. This is the central motivation for designing an adaptive computed torque controller for this system. In order to accomplish this the physical model of the robot is first reparameterized such that it is linear with respect to a set of uncertain parameters. Once this is accomplished the adaptive controller is then formulated. Next methods of computer simulation are developed and employed. These simulation results show the superior performance of the proposed scheme over both a classical computed torque controller and the current P.I.D. controller.
Identifier: 14612 (digitool), FADT14612 (IID), fau:11407 (fedora)
Collection: FAU Electronic Theses and Dissertations Collection
Note(s): College of Engineering and Computer Science
Thesis (M.S.E.)--Florida Atlantic University, 1990.
Subject(s): Adaptive control systems--Computer simulation
PID controllers--Computer simulation
Robotics
Manipulators (Mechanism)
Held by: Florida Atlantic University Libraries
Persistent Link to This Record: http://purl.flvc.org/fcla/dt/14612
Sublocation: Digital Library
Use and Reproduction: Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Use and Reproduction: http://rightsstatements.org/vocab/InC/1.0/
Owner Institution: FAU
Is Part of Series: Florida Atlantic University Digital Library Collections.