You are here
ultrareliable multicomputer architecture for real time control applications
- Date Issued:
- 1989
- Summary:
- This thesis considers the design of ultrareliable multicomputers for control applications. The fault tolerance problem is divided into three subproblems: software, processing node, and communication fault tolerance. Design is performed using layers of abstraction, with fault tolerance implemented by dedicated layers. For software fault tolerance, new constructs for concurrent n-version programming are introduced. For processing node fault tolerance, the distributed fault tolerance (DFT) concept of Chen and Chen is extended to allow for arbitrary failures. Communication fault tolerance is achieved with multicasting on a fault-tolerant graph (FG) network. Reliability models are developed for each of the layers, and a performance model is developed for the communication layer. An example flight control system is compared to currently existing architectures.
Title: | An ultrareliable multicomputer architecture for real time control applications. |
87 views
23 downloads |
---|---|---|
Name(s): |
Buechler, Peter Charles. Florida Atlantic University, Degree grantor Fernandez, Eduardo B., Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 1989 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 214 p. | |
Language(s): | English | |
Summary: | This thesis considers the design of ultrareliable multicomputers for control applications. The fault tolerance problem is divided into three subproblems: software, processing node, and communication fault tolerance. Design is performed using layers of abstraction, with fault tolerance implemented by dedicated layers. For software fault tolerance, new constructs for concurrent n-version programming are introduced. For processing node fault tolerance, the distributed fault tolerance (DFT) concept of Chen and Chen is extended to allow for arbitrary failures. Communication fault tolerance is achieved with multicasting on a fault-tolerant graph (FG) network. Reliability models are developed for each of the layers, and a performance model is developed for the communication layer. An example flight control system is compared to currently existing architectures. | |
Identifier: | 14573 (digitool), FADT14573 (IID), fau:11370 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.C.E.)--Florida Atlantic University, 1989. |
|
Subject(s): |
Computers--Reliability Fault-tolerant computing Real-time data processing Flight control |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/14573 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |