












































































































































































CHAPTER 6 

CONCLUSIONS 

A comparison of the software test approach and the 

microcode test approach presented here shows that all 

pipeline stages are involved in each step of the software 

test approach, but the microcode approach isolates each 

level of the pipeline and tests them separately . The 

instruction fetch/instruction decode step was completely 

absent from the initial microcode tests. This capability 

alone provides much improved error isolation over the 

software test approach . Microcode tests can test each stage 

explicitly, which improves the error isolation information 

which the diagnostic can provide to the user . 

The microcode tests have improved functional unit 

granularity. The microcode test sequence presented here has 

the capability to isolating hardware faults to failing ALUs, 

shifters, special support hardware for multiply and divide 

operations, etc . Each functional unit is tested separately. 

Certain sequences of instructions should be avoided to 

keep from causing hazard and control or data contention 

problems in the hardware, as we have shown . . These sequences 

would be easier to police in the microcode than in software 

test programs, especially if compilers are producing the 
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machine instructions. 

The implementation and maintenance of the software test 

approach is sensitive to changes in the underlying system 
-

microcode. For instance, the hazard tests depend on the 

last microcode statement for one macro instruction to modify 

a register used by the first microcode statement of the 

following instruction. A change in the system microcode 

could invalidate the test if an additional micro instruction 

is inserted. 

After the initial Ifetch functions have been tested 

with diagnostic microcode, some testing in the Instruction 

Fetch stage of the pipeline may be possible using software, 

with no loss of error isolation ability. Instruction fetch 

testing requires valid macro instructions to be in main 

memory anyway, and since the physical size of microcode 

control store is so severely limited, a software approach 

could be more efficient where long streams of 

instructions are involved. 

macro 

It may be more efficient to develop software tests than 

microcode tests for the system cache RAMs, or any other 

logic which requires large data sets, without any loss in 

error isolation capability. This would require that the 

initial testing, that of the caching mechanism for example, 

be done initially from the microcode level. The appropriate 

test methods, for each test procedure detailed in Chapter 5, 

are presented in Table 6.1. 
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TABLE 6.1 

METHOD USED FOR EACH TEST IN THE OPTIMAL TEST APPROACH 

Test method used 

Test software microcode Maint. Processor 

CPU environmental check X 

Main memory pretest X 

Serial Link verify X 

Control Store RAM X 

Instruction Cache (part 1) X 

Microcode flow of control X 

Microcode conditional branch X 

ALU in the Execution stage X 

Execution support X 

Address generation 
X X 

AG stage internal busses 
X 

GP registers in the AG X 

Main memory access X X 

Data Cache and Translation Cache 
X X 

IF unit internal busses X 

Initial instruction fetch X X 

Instruction decode X X X 

PC relative operand decode X X 

Instruction caching mechanism X 

Instruction Cache 
X X 

Pipelineing X 

Events X X X 

Semaphore 
X X 
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The development of a test approach such as the one 

presented in this thesis requires a detailed understanding 

of the workings of the CPU under test, as we have shown. 

Table 6.2 presents guidelines to help diagnostic designers 

organize their test approach. 

We have developed a test approach which we have shown 

tests all sections of the processor and provides accurate 

fault isolation (refer to Figures 5.2 through 5.4). Many of 

the . fault isolation capabilities of the test approach are 

due to hardware design for testability practices. The most 

severe impact that the hardware design can have on our test 

approach is the ability or inability to download microcode 

test overlays. If the CPU design includes a PROM based 

microcode control store rather than a downloadable RAM 

control store, the test approach presented in this thesis is 

useless. For this reason, the test approach we developed 

does not apply to microprocessor chips. We have shown that 

certain diagnostic features available at the microcode 

level, such as the ability to examine an address generated 

without actually using the address, the ability to examine 

the Instruction Address Counter after decoding a macro 

branch instruction rather than actually performing the jump 

to the address can improve error isolation. Our test 

approach relies heavily upon scan path and CPU clock single 

stepping, both of which must be part of the CPU hardware 

design. The test approach depends upon a CPU designed for 

testability. 
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TABLE 6. 2 

RULES FOR CPU TEST PACKAGE DESIGN 

Partition the CPU into functional areas which can be tested independently 
from one another . Continue to subdivide the areas until the smallest 
functional units are isolated . This produces a preliminary list of tests. 

Initial tests will run from the Mainten ance Processor (MP). Test as much 
of the CPU as possible initially from the MP. 

Test from the MP sequential logic which cannot be closely controlled or 
observed from microcode. The MP may be used to further subdivide the 
functional test units to improve error isolation. 

Using the start small approach , start microcode testing from the Control 
Store and work outward. 

Disable parity checking, fault reporting and other distractions until 
later. 

Microprogramming may be available at more than one place in the CPU , 
take advantage of this to improve error isolation . 

If lengthy test sequences are necessary and if no improvement can be 
realized by a microcode approach , use a software approach (but not until 
after the underlying hardware has already been tested) because software 
is easier to maintain. 
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When CPU designs make more CPU internal information 

available outside of the CPU, for example, when the number 

of signals in the Serial Link increases, signature analysis 

techniques can be taken advantage of to compress the 

test comparison or "should be" data required by diagnostics, 

as is done in the 80386 and 68020 microprocessors (see 

[MACG84] and [GELS87]) . Intermediate test results can be 

accumulated in a Linear Feedback Shift Register implemented 

in the hardware, or alternatively the signature analysis can 

be implemented by software algorithms in the Maintenance 

Processor . For a discussion on signature analysis see 

[FUJI85 p239] . 

Evaluating the Diagnostic Package 

Ideally, automatic fault simulation should be run on 

the CPU under test with the diagnostic microcode providing 

the test vectors . In automatic fault simulation each node 

in the network under test is "stuck" at first a logic zero, 

then stuck at logic one, and the test vectors (the 

diagnostic microcode in this case) are applied to the 

network and the fault simulator verifies that the stuck node 

is detected. After completion of the fault simulation run a 

"percentage of faults found" by the test vectors figure can 

be calculated. In the recent Harris superminicomputer 

program mentioned earlier, the feasibility of running fault 

simulation on the new CPU design us i ng the microcode 

diagnostics as the test vectors on the Zycad LE1008 hardware 
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logic simulator was examined. We had hoped to be able to 

derive a percentage of coverage figure for the microcode 

tests. With approximately ten minutes per diagnostic run 

(measured) on the Zycad and approximately 180,000 gates in 

the design, assuming that the diagnostic microcode would, on 

the average, detect a fault half through the run (five 

minutes), the fault simulation run would require: 

180,000 gates * 2 (stuck at 1 and 0) * 5 minutes = 1250 days 

The possibility of running a fault simulation with a partial 

or limited set of faults, rather than running a complete 

fault simulation was examined. With 600 and 300 randomly 

chosen faults, fault simulation run times of 16 and 11 days, 

respectively, were estimated (the Zycad LE1008 fault 

simulation rate is roughly 1.5 million gate evaluations per 

second). Manpower estimates for simulation run set up and 

for evaluating the results were found to be substantial also 

and for these reasons the Zycad was not used to evaluate 

microcode effectivity on this project. It would appear that 

the required hardware resources are not available to 

accurately determine the fault coverage of the diagnostics 

discussed in this thesis. 

An intuitive estimate of fault coverage may be made by 

the diagnostic designer, based on his or her knowledge of 

the CPU and of the test package. In order to make an 

intuitive evaluation of test coverage of the final test 

package presented in Chapter 5, we can organize the CPU 
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components into three groups: data paths, memory parts and 

gate logic. 

Thorough data paths testing is accomplished in specific 

data path tests (for example, the AG stage internal buses 

test) and also indirectly in register write/read tests (e.g. 

the GP registers in the AG test). Data path testing also 

occurs during the testing of other CPU mechanisms (e.g. the 

caching mechanism testing tests data paths into and out of 

the instruction cache RAMs, instruction decode testing tests 

data paths in the decode unit, etc.). 

Cache RAMs are 

and full speed RAM 

tested from the Maintenance Processor 

access testing is performed from 

microcode. PALs (used in state machines, e.g., AT, AG, IRQ 

and IFU state sequencers) are tested in the state transition 

tests. The decode RAMs in the Instruction Decode unit are 

tested via software. 

The gate logic group includes the basic building blocks 

with which the CPU designer works. This logic appears in 

packages such as the 74SOO (quad two-input NAND gate) or the 

74F74 (dual D-type flip-flop) in the HCX CPU. The AND gate 

and OR gate primitives and macros in gate array design also 

fall into this group. This group of components is the most 

difficult to intuitively accept as having been tested by our 

package since this thesis addresses testing from a 

functional or block diagram level, and these components do 

not appear at this level. The gate level components which 

fall between the blocks in the block diagram are the 
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components most likely to be "missed" by our test package. 

It is the responsibility of the diagnostic designer to have 

a gate level understanding of the CPU under test to develop 

a thorough test package to detect and isolate faults from 

all three component groups. 
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APPENDIX 

MICROCODE TEST SUITE FOR THE HARRIS HCX CPU 

CT Only Tests 

<Overlay A for Section 1 begins here> 

1 Walking One Bit in the CS Address 
2 Walking Zero Bit in the CS Address 

<Overlay B for Section 1 begins here> 

3 Initial Repetition Counter 
4 Initial Micro Call and Return 
5 Switch Register (SW) Jumps, Load the sw from the 

L Bus 

CT and DL Tests 

<Overlay A for Section 2 begins here> 

1 Reserved 
2 Preliminary ALU 
3 DL ALU Compare 
4 L Bus Path to the DL ALUs 
5 DL Internal Buses 
6 Reserved 
7 Reserved 
8 AL ALU External Controls (1) 
9 DL ALU External Controls (2) 
10 ALU Internal Sources 
11 ALU Functions 
12 ALU Internal Destinations 
13 ALU Internal Registers 
14 Repetition Counter, Continued 

<Overlay B for Section 2 begins here> 

15 ALU Adder 

<Overlay C for Section 2 begins here> 

16 ALU Carry 
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17 Reserved 
18 Reserved 
19 Reserved 
20 Reserved 
21 Switch Register 
22 Jump on HPS 
23 Muldiv Special 
24 Shift Function 
25 DL Swap 
26 Reserved 
27 Reserved 
28 Reserved 
29 Reserved 
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30 Write/Read HPS<24,6 : 0> 

AG, DL and CT Tests 

<Overlay A for Section 3 begins here> 

1 !reg, Mova Address Controls 
2 Absrel Address Control 
3 Tbop Special Inhibits Clocking Cache 

Address Register 

<Overlay B for Section 3 begins here> 

4 Base and Limit Register Write and Read 

<Overlay C for Section 3 begins here> 

5 AG ALU Registers 

<Overlay D for Section 3 begins here> 

6 Sameac, Sameacp Specials 
7 Dltosp Special, Tos AC 
8 Sp2lsp and Lsp2ca specials, SP and LSP 
9 Deer (CA = ar - 4) 
10 Displ (CA = ar + L) 
11 Decra (CA = CA - 4) 
12 Incra (CA = CA + 4) 
13 Lit (Lit = L, ensure CA is not affected) 
14 Pop (CA = SP, SP = SP + 4) 
15 Push (CA = SP - 4, SP = SP - 4) 
16 Sprel (CA = SP + L) 
17 Litpush1 (CA = SP- 4, SP = SP- 4, Lit = L) 
18 Pusha (Lit = CA, CA = SP - 4, SP = SP - 4) 
19 Reserved 
20 Stack Pointer Counter 
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<Overlay E for Section 3 begins here> 

21 AG ALU Adder 
22 AG ALU Carry 
23 Reserved 
24 Reserved 
25 Reserved 
26 Reserved 
27 Reserved 
28 Hazards (Part 1) 
29 DL ALU Register Writes Do Not Overwrite AG 

Registers 

CT, DL, AG, and AT Tests 

<Overlay A for Section 4 begins here> 

1 Longword Memory Read 
2 Longword Memory Write 
3 Main Memory Access Pre Test 
4 DL NLIT MUX Controlled by Type and NCA<1:0>, 

Sign Extend 
5 DL NLIT MUX Controlled by Type & NCA<1:0> with 

Data Cache Hit 
6 Read2 
7 BTAD Controls DL2CD MUX and INS Latch w/Write 

Miss 
8 BTAD Controls DL2CD MUX and INS Latch w/Write 

Hit 
9 Read/Write, Hit/Miss, Data Type Combinations 

10 Micro Jump on Literal Operation 
11 Reserved 
12 System Space Write, TB Disabled 
13 System Space Execution Read, TB Disabled 
14 Reserved 
15 All Bits of Page Register 
16 Process Space Write, TB Disabled 
17 System Space Execution Write/Read TB Enabled 
18 Process Space Execution Write/Read, TB Enabled 
19 TB Disable 
20 System Space PTE Update 
21 Process Space PTE Update 
22 TB Addressing 
23 Data Patterns to PTE Field of TB 

<Overlay B for Section 4 begins here> 

24 T Key Compare 
25 Reserved 
26 TB Tag Compare 
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27 Data Patterns to the Process Key Field of the TB 
28 Data Patterns to the Logical TB Tag 
29 Reserved 
30 Reserved 
31 Addressing the Physical Page Address<31:10> of 

the DC Tag 
32 Data Patterns to Physical Page Address<31:10> of 

the DC Tag 
33 Reserved 
34 N Bit of PTE 
35 Protection Bits of PTE 
36 Reserved 
37 Data Cache 

CT, DL, AG, AT and IP Tests 

<Overlay A for Section 5 begins here> 

1 IAR Data Paths, DEF -> BA -> IAR -> 
RA -> LR -> L Bus 

2 IAR Data Paths, DEF -> BA -> IAR -> 
LIA -> LR -> L Bus 

3 IAR Data Paths, DEF -> BA -> IAR -> 
NPC -> PC -> LR -> L Bus 

4 IAR Increment Using !purge 
5 AC, NSRC and NDST Sourced from the 

IR 
6 L Bus Sourced by the Literal Register (LR) 

<Overlay B for Section 5 begins here> 

7 Preliminary Decode (NOOPSPEC, 1 Cycle) 
8 Decode with IAR Initialized to Byte Boundaries 

<Overlay C for Section 5 begins here> 

9 IAR Increment with Single Cycle Decode 
10 IAR Increment, 0-1024 
11 Address Control From the IC/IR During IC 

Miss 
12 Displacement Align 
13 2 Cycle Decode, Single ICW, verify IAR 
13a 2 Cycle Decode, Single ICW, verify !LIT 
14 3 Cycle Decode, Single ICW, Verify IAR 
14a 3 Cycle Decode, Single ICW, Verify !LIT 
15 2 Cycle Decode, 2 ICWs, Verify IAR 
15a 2 Cycle Decode, 2 ICWS, Verify !LIT 
16 3 Cycle Decode, 2 ICWs, Verify IAR 
16a 3 Cycle Decode, 2 ICWs, Verify !LIT 
17 3 Cycle Decode, 3 ICWs, Verify IAR 
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17a 3 Cycle Decode, 3 ICWs, Verify ILIT 

<Overlay C2 for Section 5 begins here> 

18 Indexed Operand Decode, Verify IAR 
18a Indexed Operand Decode, Verify !LIT 
19 Jump on IRSA<2:0> 
20 Source/Destination Register Number from the IR 
21 Data Type Sourced from the IR 
22 Immediate Operands with Sign Extend/Zero Extend 
23 Displacement Relative Operands 
24 Addressing Modes (Non-Deferred) 

<Overlay C3 for Section 5 begins here> 

25 Deferred Addressing Modes 
26 Indexed Address Generation, Non-Deferred 
27 Indexed Address Generation, Deferred 

<Overlay D for Section 5 begins here> 

28 IC Hit, Start Address to CT 

<Overlay E for Section 5 begins here> 

29 AC from IC/IR with IC Hit 
30 IC Miss/Hit/Hit/Hit, Address Control from the IR 
31 IC Hits, AC from IC with Escmic 
32 2 Cycle Decode, Single ICW with IC Hit/Miss/Hit, 

Verify IAR 
32a 2 Cycle Decode, Single ICW with IC Hit/Miss/Hit, 

Verify !LIT 
33 3 Cycle Decode, Single ICW with Hit/Miss/Hit , 

Verify IAR 
33a 3 Cycle Decode, Single ICW with Hit/Miss/Hit, 

Verify !LIT 
34 2 Cycle Decode, 2 rcws with Hit/Miss/Hit, 

Verify IAR 
34a 2 Cycle Decode, 2 ICWs with Hit/Miss/Hit, 

Verify !LIT 
35 3 Cycle Decode, 2 ICWs with Hit/Miss/Hit, 

Verify IAR 
35a 3 Cycle Decode, 2 ICWs with Hit/Miss/Hit, 

Verify !LIT 

<Overlay E2 for Section 5 begins here> 

36 3 Cycle Decode, 3 ICWs with Hit/Miss/Hit, 
Verify IAR 

36a 3 Cycle Decode, 3 ICWS with Hit/Miss/Hit, 
Verify !LIT 

38 Reserved 
39 Reserved 
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40 BBSSI Opcode 
41 Cjump Special 
42 Slow Branch 
43 Call 

<Overlay E3 for Section 5 begins here> 

37 Unconditional and Fast Branches 

<Overlay F for Section 5 begins here> 

44 IFU Sequencer State Exerciser 
45 Reserved 
46 Reserved 
47 Reserved 
48 Reserved 
49 Reserved 
50 Reserved 
51 RMH Zero Register Mask 
52 Reserved 
53 RMH Single Register Number from DMSRC 
54 Reserved 
55 Reserved 
56 Reserved 
57 RMH Double Register Number 
58 RMH 3 Register Numbers 
59 RMH 4 Register Numbers 
60 RMH Registers r13 - rO 
61 Reserved 

<Overlay G for Section 5 begins here> 

62 Slot Invalidate 
63 AG Hazards (Part 2) 
64 Reserved 
65 Reserved 
66 Reserved 
67 Reserved 
68 Reserved 

<Overlay H for Section 5 begins here> 

69 Instruction Cache Addressing 
70 Key Field of the Instruction Cache 
71 IA<31:13> Field of the Instruction Cache 
72 Escmicsp Special 
73 Cache Address Does Not Change When Not in Micstate 

<Overlay I for Section 5 begins here> 

74 3 Cycle Decode, 3 ICWs, System Space, 
verify IAR 

74a 3 Cycle Decode, 3 ICWs , System Space, 



97 

Verify !LIT 
75 Indexed Operand Decode, System Space, 

Verify IAR 
75a Indexed Operand Decode, System Space, 

Verify !LIT 
76 Deferred Addressing Modes, System Space 
77 Indexed Address Generation, Deferred, 

System Space 

<Overlay J for Section 5 begins here> 

78 3 Cycle Decode, 3 ICWs, PO Space, Verify 
78a 3 Cycle Decode, 3 ICWs, PO Space, Verify 
79 Indexed Operand Decode, PO Space, verify 
79a Indexed Operand Decode, PO Space, Verify 
80 Deferred Addressing Modes, PO Space 
81 Indexed Address Generation, Deferred, 
82 Consecutive PTE Fetches 
83 Instruction Cache Write/Read * 

Parity Error Forcing and Faults 

<Overlay A for Section 6 begins here> 

PO 

1 3 Cycle Decode, 3 ICWs, PO Space, Faults & 
Machine Check Enabled 

IAR 
!LIT 
IAR 
!LIT 

Space 

2 Deferred Addressing Modes, PO Space, Faults & 
Machine Check Enabled 

<Overlay B for Section 6 begins here> 
3 Instruction Cache Addressing, Faults & 

Machine Check Enabled 
4 Data Cache Write/Read, Faults & Mchk Enabled 
5 TB Addressing, Faults & Mchk Enabled 

<Overlay B2 for Section 6 begins here> 
6 Data Patterns to PTE Field of TB, Faults & 

Machine Check Enabled 
7 Addressing VA<15:10> of the DC Tag, Faults & 

Machine Check Enabled 
8 Data Patterns to VA<15:10> of the DC Tag, Faults 

& Machine Check Enabled 

<Overlay C for Section 6 begins here> 

9 Machine Check Special 
10 Reserved 
11 Reserved 
12 Reserved 
13 Reserved 
14 Reserved 
15 Reserved 
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16 PEs in VA<29 : 23>, T Key, Key Group and V Bit of TB 
17 PTE with Bad Parity from the TB 
18 Invalid AC Causes Machine Check 
19 Invalid Indexed AC Causes Machine Check 
20 Reserved 
21 Reserved 
22 Reserved 

<Overlay C2 for Section 6 begins here> 

23 Alignment Fault 
24 Execution Level Limit Fault 
25 Execution Access Mode Fault 
26 Overflow Fault 
27 AG Level Limit Fault 
28 AG Access Mode Fault 
29 AG Page Fault 
30 Invalid Operand Specifier Fault 
31 IP Access Mode Fault 
32 IP Level Limit Fault 
33 IP Page Fault 
34 PTEREF Bit of FSSR 
35 PTE Access Mode Faults 
36 Reserved 
37 Fault Priority 
38 Not a Real IP Fault 
39 Reserved 
40 DL Generates Disable Alignment Check 
41 Limit Violations in PO and P2 region 
42 Trace (HPS04) Trap 
43 BERR Interrupt 
44 CP Interrupt 
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