You are here
Software decomposition for multicore architectures
- Date Issued:
- 2006
- Summary:
- Current multicore processors attempt to optimize consumer experience via task partitioning and concurrent execution of these (sub)tasks on the cores. Conversion of sequential code to parallel and concurrent code is neither easy, nor feasible with current methodologies. We have developed a mapping process that synergistically uses top-down and bottom-up methodologies. This process is amenable to automation. We use bottom-up analysis to determine decomposability and estimate computation and communication metrics. The outcome is a set of proposals for software decomposition. We then build abstract concurrent models that map these decomposed (abstract) software modules onto candidate multicore architectures; this resolves concurrency issues. We then perform a system level simulation to estimate concurrency gain and/or cost, and QOS (Qualify-of-Service) metrics. Different architectural combinations yield different QOS metrics; the requisite system architecture may then be chosen. We applied this 'middle-out' methodology to optimally map a digital camera application onto a processor with four cores.
Title: | Software decomposition for multicore architectures. |
189 views
63 downloads |
---|---|---|
Name(s): |
Jain, Ankit. Florida Atlantic University, Degree grantor Shankar, Ravi, Thesis advisor |
|
Type of Resource: | text | |
Genre: | Electronic Thesis Or Dissertation | |
Issuance: | monographic | |
Date Issued: | 2006 | |
Publisher: | Florida Atlantic University | |
Place of Publication: | Boca Raton, Fla. | |
Physical Form: | application/pdf | |
Extent: | 327 p. | |
Language(s): | English | |
Summary: | Current multicore processors attempt to optimize consumer experience via task partitioning and concurrent execution of these (sub)tasks on the cores. Conversion of sequential code to parallel and concurrent code is neither easy, nor feasible with current methodologies. We have developed a mapping process that synergistically uses top-down and bottom-up methodologies. This process is amenable to automation. We use bottom-up analysis to determine decomposability and estimate computation and communication metrics. The outcome is a set of proposals for software decomposition. We then build abstract concurrent models that map these decomposed (abstract) software modules onto candidate multicore architectures; this resolves concurrency issues. We then perform a system level simulation to estimate concurrency gain and/or cost, and QOS (Qualify-of-Service) metrics. Different architectural combinations yield different QOS metrics; the requisite system architecture may then be chosen. We applied this 'middle-out' methodology to optimally map a digital camera application onto a processor with four cores. | |
Identifier: | 9780542579295 (isbn), 13349 (digitool), FADT13349 (IID), fau:10199 (fedora) | |
Collection: | FAU Electronic Theses and Dissertations Collection | |
Note(s): |
College of Engineering and Computer Science Thesis (M.S.)--Florida Atlantic University, 2006. |
|
Subject(s): |
Optimal designs (Statistics) Software architecture Software engineering Computer architecture System design Computer networks--Security measures |
|
Held by: | Florida Atlantic University Libraries | |
Persistent Link to This Record: | http://purl.flvc.org/fcla/dt/13349 | |
Sublocation: | Digital Library | |
Use and Reproduction: | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder. | |
Use and Reproduction: | http://rightsstatements.org/vocab/InC/1.0/ | |
Host Institution: | FAU | |
Is Part of Series: | Florida Atlantic University Digital Library Collections. |